# Table 2 LSC probability distribution

LSC

Probabilities

P(S,Vi,A,Seq)

$$0.17 \times 0.89 \times 0.35 \times 0.84 = 0.045$$

P(S,Vi,A,G)

$$0.17 \times 0.89 \times 0.35 \times 0.16 = 0.008$$

P(S,Vi,R,Seq)

$$0.17 \times 0.89 \times 0.65 \times 0.84 = 0.083$$

P(S,Vi,R,G)

$$0.17 \times 0.89 \times 0.65 \times 0.16 = 0.016$$

P(S,Ve,A,Seq)

$$0.17 \times 0.11 \times 0.35 \times 0.84 = 0.005$$

P(S,Ve,A,G)

$$0.17 \times 0.11 \times 0.35 \times 0.16 = 0.002$$

P(S,Ve,R,Seq)

$$0.17 \times 0.11 \times 0.65 \times 0.84 = 0.010$$

P(S,Ve,R,G)

$$0.17 \times 0.11 \times 0.65 \times 0.16 = 0.003$$

P(I,Vi,A,Seq)

$$0.83 \times 0.89 \times 0.35 \times 0.84 = 0.217$$

P(I,Vi,A,G)

$$0.83 \times 0.89 \times 0.35 \times 0.16 = 0.043$$

P(I,Vi,R,Seq)

$$0.83 \times 0.89 \times 0.65 \times 0.84 = 0.403$$

P(I,Vi,R,G)

$$0.83 \times 0.89 \times 0.65 \times 0.16 = 0.076$$

P(I,Ve,A,Seq)

$$0.83 \times 0.11 \times 0.35 \times 0.84 = 0.026$$

P(I,Ve,A,G)

$$0.83 \times 0.11 \times 0.35 \times 0.16 = 0.005$$

P(I,Ve,R,Seq)

$$0.83 \times 0.11 \times 0.65 \times 0.84 = 0.049$$

P(I,Ve,R,G)

$$0.83 \times 0.11 \times 0.65 \times 0.16 = 0.009$$

Sum of probabilities of all LSC

1.000