Skip to main content

Table 2 LSC probability distribution

From: Automatic student modeling in adaptive educational systems through probabilistic learning style combinations: a qualitative comparison between two innovative stochastic approaches

LSC Probabilities
P(S,Vi,A,Seq) \(0.17 \times 0.89 \times 0.35 \times 0.84 = 0.045\)
P(S,Vi,A,G) \(0.17 \times 0.89 \times 0.35 \times 0.16 = 0.008\)
P(S,Vi,R,Seq) \(0.17 \times 0.89 \times 0.65 \times 0.84 = 0.083 \)
P(S,Vi,R,G) \(0.17 \times 0.89 \times 0.65 \times 0.16 = 0.016 \)
P(S,Ve,A,Seq) \(0.17 \times 0.11 \times 0.35 \times 0.84 = 0.005\)
P(S,Ve,A,G) \(0.17 \times 0.11 \times 0.35 \times 0.16 = 0.002\)
P(S,Ve,R,Seq) \(0.17 \times 0.11 \times 0.65 \times 0.84 = 0.010 \)
P(S,Ve,R,G) \(0.17 \times 0.11 \times 0.65 \times 0.16 = 0.003\)
P(I,Vi,A,Seq) \(0.83 \times 0.89 \times 0.35 \times 0.84 = 0.217\)
P(I,Vi,A,G) \(0.83 \times 0.89 \times 0.35 \times 0.16 = 0.043 \)
P(I,Vi,R,Seq) \(0.83 \times 0.89 \times 0.65 \times 0.84 = 0.403 \)
P(I,Vi,R,G) \(0.83 \times 0.89 \times 0.65 \times 0.16 = 0.076 \)
P(I,Ve,A,Seq) \(0.83 \times 0.11 \times 0.35 \times 0.84 = 0.026\)
P(I,Ve,A,G) \(0.83 \times 0.11 \times 0.35 \times 0.16 = 0.005\)
P(I,Ve,R,Seq) \(0.83 \times 0.11 \times 0.65 \times 0.84 = 0.049\)
P(I,Ve,R,G) \(0.83 \times 0.11 \times 0.65 \times 0.16 = 0.009 \)
Sum of probabilities of all LSC 1.000