Skip to main content

Identification of video subsequence using bipartite graph matching

Abstract

Subsequence identification consists of identifying real positions of a specific video clip in a video stream together with the operations that may be used to transform the former into a subsequence from the latter. To cope with this problem, we propose a new approach, considering a bipartite graph matching to measure video clip similarity with a target video stream which has not been preprocessed.

The main contributions of our work are the application of a simple and efficient distance to solve the subsequence identification problem along with the definition of a hit function that identifies precisely which operations were used in query transformation. Experimental results demonstrate that our method performances achieve 90% recall with 93% precision, though it is done without preprocessing of the target video.

References

  1. 1.

    Adjeroh DA, Lee MC, King I (1999) A distance measure for video sequences. Comput Vis Image Underst 75(1–2):25–45

    Article  Google Scholar 

  2. 2.

    Bimbo AD (1999) Visual information retrieval. Morgan Kaufmann, San Francisco

    Google Scholar 

  3. 3.

    Chen L, Chua TS (2001) A match and tiling approach to content-based video retrieval. In: ICME. IEEE Comput Soc, Los Alamitos

    Google Scholar 

  4. 4.

    Chiu CY, Wang HM (2010) Time-series linear search for video copies based on compact signature manipulation and containment relation modeling. IEEE Trans Circuits Syst Video Technol 20(11):1603–1613

    Article  Google Scholar 

  5. 5.

    Davis J, Goadrich M (2006) The relationship between precision-recall and roc curves. In: Proc of the 23rd international conference on machine learning, Pittsburgh, PA

    Google Scholar 

  6. 6.

    Deng L, Jin LZ (2010) A video retrieval algorithm based on ensemble similarity. In: IEEE international conference on intelligent computing and intelligent systems (ICIS), vol 3, pp 638–642

    Google Scholar 

  7. 7.

    Deselaers T, Keysers D, Ney H (2004) Features for image retrieval—a quantitative comparison. In: DAGM 2004, pattern recognition, 26th DAGM symposium, Tübingen, Germany. Lecture notes in computer science, pp 228–236

    Google Scholar 

  8. 8.

    Diakopoulos N, Volmer S (2003) Temporally tolerant video matching. In: Proc of the ACM SIGIR Workshop on multimedia information retrieval, Toronto, Canada

    Google Scholar 

  9. 9.

    do Patrocínio ZKG Jr, Guimarães SJF, de Paula HB (2007) Bipartite graph matching for video clip localization. In: SIBGRAPI, pp 129–138

    Google Scholar 

  10. 10.

    Gauch J, Shivadas A (2005) Identification of new commercials using repeated video sequence detection. In: International conference on image processing, vol III, pp 1252–1255

    Google Scholar 

  11. 11.

    Gauch JM, Shivadas A (2006) Finding and identifying unknown commercials using repeated video sequence detection. Comput Vis Image Underst 103:80–88

    Article  Google Scholar 

  12. 12.

    Guimarães SJF, do Patrocínio ZKG Jr (2010) Identification and analysis of video subsequence using bipartite graph matching. In: 16th WebMedia Brazilian symposium on multimedia and the web

    Google Scholar 

  13. 13.

    Guimarães SJF, Kelly R, Torres A (2006) Counting of video clip repetitions using a modified bmh algorithm: preliminary results. In: Proc of the IEEE ICME, Toronto, Canada, pp 1065–1068

    Google Scholar 

  14. 14.

    Horspool RN (1980) Practical fast searching in strings. Softw Pract Exp 10(6):501–506

    Article  Google Scholar 

  15. 15.

    Huang Z, Shen HT, Shao J, Cui B, Zhou X (2010) Practical online near-duplicate subsequence detection for continuous video streams. IEEE Trans Multimed 12(5):386–398

    Article  Google Scholar 

  16. 16.

    Jain AK, Vailaya A, Xiong W (1999) Query by video clip. Multimed Syst 7(5):369–384

    Article  Google Scholar 

  17. 17.

    Joly A, Frelicot C, Buisson O (2005) Content-based video copy detection in large databases: A local fingerprints statistical similarity search approach. In: International conference on image processing, vol I, pp 505–508

    Google Scholar 

  18. 18.

    Kim Y, Chua T (2005) Retrieval of news video using video sequence matching. In: MMM, pp 68–75

    Google Scholar 

  19. 19.

    Lienhart R, Effelsberg W, Jain R (1999) Visualgrep: A systematic method to compare and retrieve video sequences. Multimed Tools Appl 10(1):47–72

    Article  Google Scholar 

  20. 20.

    Naturel X, Gros P (2005) A fast shot matching strategy for detecting duplicate sequences in a television stream. In: Proceedings of the 2nd ACM SIGMOD international workshop on computer vision meets DataBases

    Google Scholar 

  21. 21.

    Navarro G (2001) A guided tour to approximate string matching. ACM Comput Surv 33(1):31–88

    Article  Google Scholar 

  22. 22.

    Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization: algorithms and complexity. Prentice-Hall, Upper Saddle River

    Google Scholar 

  23. 23.

    Pedro JS, Denis N, Domínguez S (2005) Video retrieval using an edl-based timeline. In: Marques JS, de la Blanca NP, Pina P (eds) IbPRIA (1). Lecture notes in computer science, vol 3522. Springer, Berlin, pp 401–408

    Google Scholar 

  24. 24.

    Peng Y, Ngo CW (2006) Clip-based similarity measure for query-dependent clip retrieval and video summarization. IEEE Trans Circuits Syst Video Technol 16(5):612–627

    Article  Google Scholar 

  25. 25.

    Rubner Y, Puzicha J, Tomasi C, Buhmann JM (2001) Empirical evaluation of dissimilarity measures for color and texture. Comput Vis Image Underst 84(1):25–43

    Article  Google Scholar 

  26. 26.

    Shen HT, Shao J, Huang Z, Zhou X (2009) Effective and efficient query processing for video subsequence identification. IEEE Trans Knowl Data Eng 21(3):321–334

    Article  Google Scholar 

  27. 27.

    Tan YP, Kulkarni SR, Ramadge PJ (1999) A framework for measuring video similarity and its application to video query by example. In: ICIP (2), pp 106–110

    Google Scholar 

  28. 28.

    Tseng BL, Lin CY, Smith JR (2004) Using MPEG-7 and MPEG-21 for personalizing video. IEEE Multimed 11(1):42–53

    Article  Google Scholar 

  29. 29.

    Wei S, Zhao Y, Zhu C, Xu C, Zhu Z (2011) Frame fusion for video copy detection. IEEE Trans Circuits Syst Video Technol 21(1):15–28

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Silvio Jamil Ferzoli Guimarães.

Additional information

A previous version of this paper appeared at WEBMEDIA 2010, the Brazilian Symposium on Multimedia and the Web.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Guimarães, S.J.F., do Patrocínio, Z.K.G. Identification of video subsequence using bipartite graph matching. J Braz Comput Soc 17, 175–192 (2011). https://doi.org/10.1007/s13173-011-0036-4

Download citation

Keywords

  • Video retrieval
  • Graph bipartite
  • Video clip localization