Allaire S, Kim J, Breen S, Jaffray D, Pekar V (2008) Full orientation invariance and improved feature selectivity of 3D SIFT with application to medical image analysis. In: MMBIA-2008, Anchorage, AK, USA, pp 1–8
Google Scholar
Bookstein FL (1989) Principal warps: Thin-plate splines and decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585
Article
Google Scholar
Cao G, Shi P, Hu B (2006) Ultrasonic liver discrimination using 2-D phase congruency. IEEE Trans Biomed Eng 53(10):2116–2119
Article
Google Scholar
Cheung W, Hamarneh G (2007) N-sift: N-dimensional scale invariant feature transform for matching medical images. In: 4th international symposium on biomedical imaging: From nano to macro (ISBI) 2007, Washington, DC, USA, pp 12–15
Google Scholar
Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC (1998) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17(3):463–468
Article
Google Scholar
Dosil R, Pardo XM (2003) Generalized ellipsoids and anisotropic filtering for segmentation improvement in 3-D medical imaging. Image Vis Comput 21(4):325–343
Article
Google Scholar
Dosil R, Pardo XM, Fdez-Vidal XR (2005) Decomposition of three-dimensional medical images into visual patterns. IEEE Trans Biomed Eng 52(12):2115–2118
Article
Google Scholar
Ferrari RJ, Hill KA, Plewes DB, Martel AL (2008) Can bilateral asymmetry analysis of breast MR images provide additional information for detection of breast diseases. In: XXI Brazilian symposium on computer graphics and image processing—SIBGRAPI 2008, Campo Grande, MS, Brazil, pp 113–120
Chapter
Google Scholar
Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4(12):2379–2394
Article
Google Scholar
Field DJ (1993) Scale-invariance and self-similar wavelet transforms: an analysis of natural scenes and mammalian visual systems. Oxford University Press, New York
Google Scholar
Förstner W (1986) A feature based correspondence algorithm for image matching. Int Arch Photogramm Remote Sens 26(3):150–166
Google Scholar
Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231. Special issue on “Program Generation, Optimization, and Platform Adaptation”
Article
Google Scholar
Gispert JD, Reig S, Pascau J, Vaquero JJ, Garcia-Barreno P, Desco M (2004) Method for bias field correction of brain T1-weighted magnetic resonance images minimizing segmentation error. Hum Brain Mapp 22:133–144
Article
Google Scholar
Granlund G, Knutsson H (1995) Signal processing for computer vision. Kluwer Academic, Boston
Book
Google Scholar
Jaffray D, Brock KK, Ferrari R, Pekar V (2008) Applications of image processing in image-guided radiation therapy. Medica Mundi 52(1):32–39
Google Scholar
Jähne B (1997) Digital image processing, 4th edn. Springer, San Diego
Google Scholar
Kaus MR, Brock KK (2009) In: Deformable image registration for radiation therapy planning. Biomechanical system technology: computational methods, vol 1. World Scientific, Singapore, pp 1–28
Google Scholar
Kitchen L, Rosenfeld A (1982) Gray-level corner detection. Pattern Recognit Lett 1:95–102
Article
Google Scholar
Kovesi P (1999) Image features from phase congruency. Videre, J Comput Vis Res 1(3):2–26
Google Scholar
Kovesi P (2000) Phase congruency: A low-level image invariant. Psychol Res 64:136–148
Article
Google Scholar
Kovesi P (2003) Phase congruency detects corners and edges. In: The Australian pattern recognition society conference: DICTA, Sydney, Australia, December, pp 309–318
Google Scholar
Leavens C, Vik T, Schulz H, Allaire S, Kim J, Dawson L, O’Sullivan B, Breen S, Jaffray D, Pekar V (2008) Validation of automatic landmark identification for atlas-based segmentation for radiation treatment planning of the head-and-neck region. In: Proceedings of the SPIE conference on medical imaging, vol 6914. San Diego, CA, USA, pp 3G1–3G7,
Google Scholar
Linguraru MG, Marias K, English R, Brady M (2006) A biologically inspired algorithm for microcalcification cluster detection. Med Image Anal 10(6):850–862
Article
Google Scholar
Liu J, Gao W, Huang S, Nowinski WL (2008) A model-based, semi-global segmentation approach for automatic 3-d point landmark localization in neuroimages. IEEE Trans Med Imaging 27:1034–1044
Article
Google Scholar
Lo C-H, Don H-S (1989) 3D moment forms: Their construction and application to object identification and positioning. IEEE Trans Pattern Anal Mach Intell 11(10):1053–1064
Article
Google Scholar
Mageras GS, Mechalakos J (2007) Planning in the igrt context: closing the loop. Semin Radiat Oncol 17(4):268–277
Article
Google Scholar
Mallat S (1989) A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693
Article
Google Scholar
Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. J Appl Math 11:431–441
MathSciNet
Google Scholar
McLoughlin KJ, Bones PJ, Kovesi PD (2002) Connective tissue representation for detection of microcalcifications in digital mammograms. Prog Biomed Opt Imaging 3(22):1246–1256
Google Scholar
Monga O, Benayoun S (1995) Using partial derivatives of 3-D images to extract typical surface features. Comput Vis Image Underst 61(2):171–189
Article
Google Scholar
Morrone MC, Burr DC (1988) Feature detection in human vision: A phase-dependent energy model. Proc R Soc Lond B 235:221–245
Article
Google Scholar
Morrone MC, Owens RA (1987) Feature detection from local energy. Pattern Recognit Lett 6(5):303–313
Article
Google Scholar
Morrone MC, Ross JR, Burr DC, Owens RA (1986) Mach bands are phase dependent. Nature 324(6094):250–253
Article
Google Scholar
Otsu S (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66
Article
MathSciNet
Google Scholar
Pekar V, McNutt TR, Kaus MR (2004) Automated model-based organ delineation for radiotherapy planning in prostatic region. Int J Radiat Oncol Biol Phys 60(3):973–980
Article
Google Scholar
Pudney C, Kovesi P, Robbins B (1995) Feature detection using oriented local energy for 3D confocal microscope images. Image Anal Appl Comput Graph 1024:274–282
Article
Google Scholar
Rohr K (1997) On 3D differential operators for detecting point landmarks. Image Vis Comput 15(3):220–233
Article
Google Scholar
Ruiz-Alzola J, Kikinis R, Westin CF (2001) Detection of point landmarks in multidimensional tensor data. Signal Process 81:2243–2247
Article
Google Scholar
Shi XW (2010) GPU implementation of fast Gabor filters. In: Proceedings of 2010 IEEE international symposium on circuits and systems, Paris, France, June, pp 373–376
Google Scholar
Slabaugh G, Kong K, Unal G, Fang T (2007) Variational guidewire tracking using phase congruency. In: Medical image computing and computer-assisted intervention (MCCAI) 2007, vol 4792, pp 612–619
Chapter
Google Scholar
Thirion J-H (1996) New feature points based on geometric invariants for 3-D image registration. Int J Comput Vis 18(2):121–137
Article
Google Scholar
Troost EGC, Schinagl DAX, Bussink J, Boerman OC, van der Kogel AJ, Oyen WJG, Kaanders JHAM (2009) Innovations in radiotherapy planning of head and neck cancers: Role of PET. J Nucl Med 51(1):66–76
Article
Google Scholar
Venkatesh S, Ownes R (1990) On the classification of image features. Pattern Recognit Lett 11(5):339–349
Article
Google Scholar
Wang H, Dong L, Lii MF, Lee AL, Crevoisier R, Mohan R, Cox JD, Kuban DA, Cheung R (2005) Implementation and validation of a three-dimensional deformable registration algorithm for target prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 61(3):725–735
Article
Google Scholar
Wong A, Bishop W (2008) Efficient least squares fusion of MRI and CT images using a phase congruency model. Pattern Recognit Lett 29(3):173–180
Article
Google Scholar
Wong A, Orchard J (2009) Robust multimodal registration using local phase-coherence representations. J Signal Process Syst 54:89–100
Article
Google Scholar
Wörz S, Rohr K (2006) Localization of anatomical point landmarks in 3-D medical images by fitting 3-D parametric intensity models. Med Image Anal 10(1):41–58
Article
Google Scholar
Xing L, Thorndyke B, Schreibmann E, Yang Y, Li T, Kim G, Luxton G, Koong A (2006) Overview of image-guided radiation therapy. Med Dosim 31(2):91–112
Article
Google Scholar
Xings L, Siebers J, Keall P (2007) Computational challenges for image-guided radiation therapy: Framework and current research. Semin Radiat Oncol 17(4):245–257
Article
Google Scholar