Skip to main content

Structured Markovian models for discrete spatial mobile node distribution


The study and characterization of node mobility in wireless networks is extremely important to foresee the node distribution in the network, enabling the creation of suitable models, and thus a more accurate prediction of performance and dependability levels.

In this paper we adopt a structured Markovian formalism, namely SAN (Stochastic Automata Networks), to model and analyze two popular mobility models for wireless networks: the Random Waypoint and Random Direction.

Our modeling considers mobility over a discrete space, i.e., over a space divided in a given number of slots, allowing a suitable analytical representation of structured regions. We represent several important aspects of mobility models, such as varying speed and pause times, and several border behaviors that may take place. One, two, and three-dimensional models are presented. For the two-dimensional models, we show that any regular or irregular convex polygon can be modeled, and we describe several routing strategies in two dimensions.

In all cases, the spatial node distribution obtained from the steady state analysis is presented and whenever analogous results over continuous spaces were available in the literature, the comparison with the ones obtained in this paper is shown to be coherent.

Besides showing the suitability of SAN to model this kind of reality, the paper also contributes to new findings for the modeled mobility models over a noncontinuous space.


  1. 1.

    Abolhasan M, Wysocki T, Dutkiewicz E (2004) A review of routing protocols for mobile ad hoc networks. Ad Hoc Netw 2(1):1–22

    Article  Google Scholar 

  2. 2.

    Ajmone Marsan M, Conte G, Balbo G (1984) A class of generalized stochastic petri nets for the performance evaluation of multiprocessor systems. ACM Trans Comput Syst 2(2):93–122

    Article  Google Scholar 

  3. 3.

    Bansal N, Liu Z (2003) Capacity, delay and mobility in wireless ad-hoc networks. In: IEEE Infocom

    Google Scholar 

  4. 4.

    Benchaïba M, Bouabdallah A, Badache N, Ahmed-Nacer M (2004) Distributed mutual exclusion algorithms in mobile ad hoc networks: an overview. Oper Syst Rev 38(1):74–89

    Article  Google Scholar 

  5. 5.

    Bettstetter C (2001) Mobility modeling in wireless networks: Categorization, smooth movement, and border effects. Mob Comput Commun Rev 5(3):55–66

    Article  Google Scholar 

  6. 6.

    Bettstetter C (2001) Smooth is better than sharp: a random mobility model for simulation of wireless networks. In: Proceedings of the 4th ACM international workshop on Modeling, analysis and simulation of wireless and mobile systems. ACM, New York, pp 19–27

    Google Scholar 

  7. 7.

    Bettstetter C, Resta G, Santi P (2003) The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Trans Mob Comput 2(3):257–269

    Article  Google Scholar 

  8. 8.

    Bettstetter C, Hartenstein H, Perez-Cost X (2004) Stochastic properties of the random waypoint mobility model. Wirel Netw 10(5):555–567

    Article  Google Scholar 

  9. 9.

    Brenner L, Fernandes P, Sales A (2005) The need for and the advantages of generalized tensor algebra for Kronecker structured representations. Int J Simul Syst Sci Technol 6(3–4):52–60

    Google Scholar 

  10. 10.

    Brenner L, Fernandes P, Plateau B, Sbeity I (2007) PEPS 2007—Stochastic Automata Networks Software Tool. In: International conference on quantitative evaluation of systems (QEST 2007). IEEE Press, New York, pp 163–164

    Chapter  Google Scholar 

  11. 11.

    Broch J, Maltz DA, Johnson DB, Hu Y, Jetcheva J (1998) A performance comparison of multi-hop wireless ad hoc network routing protocols. In: Proceedings of the fourth annual ACM/IEEE int conf on mobile computing and networking (MobiCom). ACM Press, New York, pp 85–97

    Chapter  Google Scholar 

  12. 12.

    Buchholz P, Ciardo G, Donatelli S, Kemper P (2000) Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. INFORMS J Comput 12(3):203–222

    MathSciNet  Article  Google Scholar 

  13. 13.

    Camp T, Boleng J, Davies V (2002) A survey of mobility models for ad hoc network research. Wirel Commun Mob Comput 2(5):483–502. Special issue on Mobile Ad Hoc Networking: Research, Trends and Applications

    Article  Google Scholar 

  14. 14.

    Choffnes DR, Bustamante FE (2005) An integrated mobility and traffic model for vehicular wireless networks. In: Proceedings of the 2nd ACM int. workshop on vehicular ad hoc networks, VANET ’05. ACM, New York, pp 69–78

    Chapter  Google Scholar 

  15. 15.

    Chu T, Nikolaidis I (2004) Node density and connectivity properties of the random waypoint model. Comput Commun 27:914–922

    Article  Google Scholar 

  16. 16.

    Czekster RM, Fernandes P, Webber T (2009) GTAEXPRESS: a software package to handle Kronecker descriptors. In: QEST’09: quantitative evaluation of systems

    Google Scholar 

  17. 17.

    Czekster RM, Fernandes P, Sales A, Taschetto D, Webber T (2010) Simulation of Markovian models using Bootstrap method. In: Proceedings of the 2010 summer computer simulation conference (SCSC ’10). pp 564–569

    Google Scholar 

  18. 18.

    Czekster RM, Fernandes P, Sales A, Webber T (2011) A memory aware heuristic for fast computation of structured Markovian models through tensor product restructuring. Numer Linear Algebra Appl (to appear)

  19. 19.

    Czekster RM, Fernandes P, Webber T (2011) Efficient vector-descriptor product exploiting time-memory trade-offs. ACM SIGMETRICS Perform Eval Rev (to appear)

  20. 20.

    Delamare F, Dotti FL, Fernandes P, Nunes CM, Ost LC (2006) Analytical modeling of random waypoint mobility patterns. In: PE-WASUN ’06: proceedings of the 3rd ACM international workshop on performance evaluation of wireless ad hoc, sensor and ubiquitous networks. ACM, New York, pp 106–113

    Chapter  Google Scholar 

  21. 21.

    Di W, Xiaofeng Z, Xin W (2006) Analysis of 3-d random direction mobility model for ad hoc network. In: ITS telecommunications proceedings, 6th int conf on, pp 741–744

    Google Scholar 

  22. 22.

    Doyle SJ, Forde TK, Doyle LE (2006) Spatial stationarity of link statistics in mobile ad hoc network modelling. In: MASCOTS ’06: proceedings of the 14th IEEE international symposium on modeling, analysis, and simulation. IEEE Comput Soc, Washington, pp 43–50

    Chapter  Google Scholar 

  23. 23.

    Fuggetta A, Picco GP, Vigna G (1998) Understanding code mobility. IEEE Trans Softw Eng 24:342–361

    Article  Google Scholar 

  24. 24.

    González MC, Hidalgo CA, Barabási A-L (2008) Understanding individual human mobility patterns. Nature 453(7196):779–782

    Article  Google Scholar 

  25. 25.

    Guérin RA (1987) Channel occupancy time distribution in a cellular radio system. IEEE Trans Veh Technol 36:89–99

    Article  Google Scholar 

  26. 26.

    Haas ZJ, Pearlman MR (1998) The performance of query control schemes for the zone routing protocol. In: ACM SIGCOMM. pp 167–177

    Google Scholar 

  27. 27.

    Hillston J (1996) A compositional approach to performance modelling. Cambridge University Press, New York

    Book  Google Scholar 

  28. 28.

    Hyytiä E, Virtamo J (2007) Random waypoint mobility model in cellular networks. Wirel Netw 13(2):177–188

    Article  Google Scholar 

  29. 29.

    Hyytia E, Lassila P, Virtamo J (2006) Spatial node distribution of the random waypoint mobility model with applications. IEEE Trans Mob Comput 5(6):680–694

    Article  Google Scholar 

  30. 30.

    Jardosh A, Belding-Royer E, Almeroth K, Suri S (2003) Towards realistic mobility models for mobile ad hoc networks. In: Proceedings of the 9th annual international conference on mobile computing and networking. ACM, New York, pp 217–229

    Google Scholar 

  31. 31.

    Jardosh A, BeldingRoyer EM, Almeroth KC, Suri S (2003) Towards realistic mobility models for mobile ad hoc networks. In: MobiCom ’03: proceedings of the 9th annual int conf on mobile computing and networking. ACM, New York, pp 217–229

    Chapter  Google Scholar 

  32. 32.

    Jayakumar G, Ganapathi G (2008) Reference point group mobility and random waypoint models in performance evaluation of manet routing protocols. J Comput Syst Netw Commun

  33. 33.

    Kemper P (1996) Numerical analysis of superposed GSPNs. IEEE Trans Softw Eng 22(9):615–628

    Article  Google Scholar 

  34. 34.

    Kleinrock L, Silvester J (1978) Optimum transmission radio for packet radio networks or why six is a magic number. In: Proc of the IEEE national telecommunications conf

    Google Scholar 

  35. 35.

    Kumar M, Rajesh RS (2009) Performance analysis of manet routing protocols in different mobility models. Int J Comput Sci Netw Secur 9(2):22–29

    Google Scholar 

  36. 36.

    Lassila P, Hyytiä E, Koskinen H (2005) Connectivity properties of random waypoint mobility model for ad hoc networks. In: Proceedings of the fourth annual Mediterranean workshop on ad hoc networks (Med-Hoc-Net)

    Google Scholar 

  37. 37.

    Le Boudec J, Vojnovic M (2005) Perfect simulation and stationarity of a class of mobility models. In: INFOCOM 2005. 24th annual joint conf of the IEEE computer and communications societies. Proceedings IEEE, vol 4. IEEE Press, New York, pp 2743–2754

    Google Scholar 

  38. 38.

    Lin G, Oubir G, Rajaraman R (2004) Mobility models for ad hoc network simulation. In: IEEE infocom

    Google Scholar 

  39. 39.

    Malpani N, Welch JL, Vaidya N (2000) Leader election algorithms for mobile ad hoc networks. In: DIALM ’00: proceedings of the 4th international workshop on discrete algorithms and methods for mobile computing and communications. ACM, New York, pp 96–103

    Chapter  Google Scholar 

  40. 40.

    Milner R (1999) Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge

    Google Scholar 

  41. 41.

    Nain P, Towsley D, Liu B, Liu Z (2005) Properties of random direction models. In: IEEE Infocom, pages. IEEE Press, New York, pp 1897–1907

    Google Scholar 

  42. 42.

    Navidi W, Camp T (2004) Stationary distributions for the random waypoint mobility model. IEEE Trans Mob Comput 3(1):99–108

    Article  Google Scholar 

  43. 43.

    Nilsson A (2004) Performance analysis of traffic load and node density in ad hoc networks. In: Proceedings of the 5th European wireless 2004: mobile and wireless systems beyond 3G

    Google Scholar 

  44. 44.

    Plateau B (1985) On the stochastic structure of parallelism and synchronization models for distributed algorithms. ACM SIGMETRICS Perform Eval Rev 13(2):147–154

    Article  Google Scholar 

  45. 45.

    Rajaraman R (2002) Topology control and routing in ad hoc networks: a survey. SIGACT News 33(2):60–73

    Article  Google Scholar 

  46. 46.

    Resta G, Santi P (2002) An analysis of the node spatial distribution of the random waypoint mobility model for ad hoc networks. In: POMC ’02: proceedings of the second ACM international workshop on principles of mobile computing. ACM, New York, pp 44–50

    Chapter  Google Scholar 

  47. 47.

    Royer EM, Melliar-Smith PM, Moser LE (2001) An analysis of the optimum node density for ad hoc mobile networks. In: IEEE international conference on communications, vol 3. pp 857–861

    Google Scholar 

  48. 48.

    Saha AK, Johnson DB (2004) Modeling mobility for vehicular ad-hoc networks. In: Proceedings of the 1st ACM int. workshop on vehicular ad hoc networks, VANET ’04. ACM, New York, pp 91–92

    Chapter  Google Scholar 

  49. 49.

    Santi P, Blough DM (2002) An evaluation of connectivity in mobile wireless ad hoc networks. In: DSN ’02: proceedings of the 2002 international conference on dependable systems and networks. IEEE Comput Soc, Washington, pp 89–102

    Chapter  Google Scholar 

  50. 50.

    Stewart WJ (2009) Probability, Markov chains, queues, and simulation. Princeton University Press, Princeton

    Google Scholar 

  51. 51.

    Wu X, Sadjadpour H, Garcialunaaceves J, Xu H (2008) A hybrid view of mobility in manets: Analytical models and simulation study? Comput Commun 31(16):3810–3821

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Paulo Fernandes.

Additional information

The order of authors is merely alphabetical. Paulo Fernandes and Fernando Luís Dotti are partially funded by CNPq, Brazil.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Luís Dotti, F., Fernandes, P. & Nunes, C.M. Structured Markovian models for discrete spatial mobile node distribution. J Braz Comput Soc 17, 31–52 (2011).

Download citation


  • Structured stochastic modeling formalisms
  • Mobile nodes
  • Markovian models