Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Original Paper | Open | Published:

Free tools and resources for Brazilian Portuguese speech recognition


An automatic speech recognition system has modules that depend on the language and, while there are many public resources for some languages (e.g., English and Japanese), the resources for Brazilian Portuguese (BP) are still limited. This work describes the development of resources and free tools for BP speech recognition, consisting of text and audio corpora, phonetic dictionary, grapheme-to-phone converter, language and acoustic models. All of them are publicly available and, together with a proposed application programming interface, have been used for the development of several new applications, including a speech module for the OpenOffice suite. Performance tests are presented, comparing the developed BP system with a commercial software. The paper also describes an application that uses synthesis and speech recognition together with a natural language processing module dedicated to statistical machine translation. This application allows the translation of spoken conversations from BP to English and vice versa. The resources make easier the adoption of BP speech technologies by other academic groups and industry.


  1. 1.

    Rabiner L, Juang B (1993) Fundamentals of speech recognition. PTR Prentice Hall, Englewood Cliffs

  2. 2.

    Huang X, Acero A, Hon H (2001) Spoken language processing. Prentice-Hall, New York

  3. 3.

    Dutoit T (2001) An introduction to text-to-speech synthesis. Kluwer Academic, Dordrecht

  4. 4.

    Taylor P (2009) Text-to-speech synthesis. Cambridge University Press, Cambridge

  5. 5.

    Allen J, Hunnicutt MS, Klatt DH, Armstrong RC, Pisoni DB (1987) From text to speech: the MITalk system. Cambridge University Press, Cambridge

  6. 6.

    Odell J, Mukerjee K (2007) Architecture, user interface, and enabling technology in Windows Vista’s speech systems. IEEE Trans Comput 56(9):1156–1168

  7. 7. Visited in June 2010

  8. 8.

    Schramm M, Freitas L, Zanuz A, Barone D (2000) A Brazilian Portuguese language corpus development. In: International conference on spoken language processing, vol 2, pp 579–582

  9. 9.

    Teruszkin R, Vianna F (2006) Implementation of a large vocabulary continuous speech recognition system for Brazilian Portuguese. J Commun Inf Syst 21:204–218

  10. 10.

    Ynoguti CA, Violaro F (2008) A Brazilian Portuguese speech database. In: XXVI simpósio Brasileiro de telecomuniçacões

  11. 11.

    Neto J, Meinedo H, Viveiros M, Cassaca R, Martins C, Caseiro D (2008) Broadcast news subtitling system in Portuguese. In: IEEE international conference on acoustics, speech, and signal processing

  12. 12.

    Neto J, Martins C, Meinedo H, Almeida L (1997) The design of a large vocabulary speech corpus for Portuguese. In: Proceedings of the European conference on speech technology

  13. 13.

    Paul D, Baker J (1992) The design for the Wall Street Journal-based CSR corpus. In: Proceedings of the international conference on spoken language processing

  14. 14.

    Ribeiro ITM, Duarte I, Matos G (1998) Corpus de diálogo CORAL. In: III encontro para o processamento computacional da língua Portuguesa escrita e Falada

  15. 15.

    Trancoso I, Martins R, Moniz H, Silva A, Ribeiro M (2008) The LECTRA corpus: Classroom lecture transcriptions in European Portuguese. In: Language resources and evaluation conference

  16. 16.

    Valtchev V, Odell JJ, Woodland PC, Young SJ (1997) MMIE training of large vocabulary recognition systems. Speech Commun 22(4):303–314

  17. 17. Visited in June 2010

  18. 18.

    Vandewalle P, Kovacevic J, Vetterli M (2009) Reproducible research in signal processing—what, why, and how. IEEE Signal Process Mag 26:37–47

  19. 19.

    Couto I, Neto N, Tadaiesky V, Klautau A, Maia R (2010) An open source HMM-based text-to-speech system for Brazilian Portuguese. In: 7th international telecommunications symposium

  20. 20. Visited in June 2010

  21. 21.

    Neto N, Sousa E, Macedo V, Adami A, Klautau A (2005) Desenvolvimento de software livre usando reconhecimento e síntese de voz: O estado da arte para o Português Brasileiro. In: 6th forum internacional software livre

  22. 22. Visited in June 2010

  23. 23.

    Santos S, Alcaim A (2002) Um sistema de reconhecimento de voz contínua dependente da tarefa em língua portuguesa. Rev Soc Brasil Telecomun 17(2):135–147

  24. 24.

    Fagundes R, Sanches I (2003) Uma nova abordagem foneticofonologica em sistemas de reconhecimento de fala espontinea. Rev Soc Brasil Telecomun 95:225–239

  25. 25.

    Silva E, Baptista L, Fernandes H, Klautau A (2005) Desenvolvimento de um sistema de reconhecimento automático de voz contínua com grande vocabulário para o Português Brasileiro. In: XXV congresso da sociedade Brasileira de computação

  26. 26.

    Abad A, Trancoso I, Neto N, Ribeiro M (2009) Porting an European Portuguese broadcast news recognition system to Brazilian Portuguese. In: Interspeech, Brighton, UK

  27. 27.

    Rabiner L (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE 77(2):257–86

  28. 28.

    Juang H, Rabiner R (1991) Hidden Markov models for speech recognition. Technometrics 33:251–272

  29. 29.

    Deshmukh N, Ganapathiraju A, Picone J (1999) Hierarchical search for large-vocabulary conversational speech recognition. IEEE Signal Process Mag 84–107

  30. 30.

    Jevtić N, Klautau A, Orlitsky A (2001) Estimated rank pruning and Java-based speech recognition. In: Automatic speech recognition and understanding workshop

  31. 31.

    Ladefoged P (2001) A course in phonetics, 4th edn. Harcourt Brace, New York

  32. 32. Visited in June 2010

  33. 33.

    Antoniol G, Fiutem R, Flor R, Lazzari G (1993) Radiological reporting based on voice recognition. In: Human–computer interaction. Lecture notes in computer science, vol 753. Springer, Berlin, pp 242–253

  34. 34.

    Lee CH, Gauvain JL (1993) Speaker adaptation based on MAP estimation of HMM parameters. In: IEEE ICASSP, pp 558–561

  35. 35.

    Ralf SG, Kompe R (2000) A combined MAP + MLLR approach for speaker adaptation. Proc Sony Res Forum 9:9–14

  36. 36.

    Bellman R (1957) Dynamic programming. Princeton University Press, Princeton

  37. 37.

    Young S, Ollason D, Valtchev V, Woodland P (2006) The HTK book, version 3.4. Cambridge University Engineering Department, Cambridge

  38. 38.

    Stolcke A (2002) SRILM—an extensible language modeling toolkit. In: International conference on spoken language processing

  39. 39.

    Lee A (2009) The Julius book, 0.0.2 ed., rev 4.1.2

  40. 40.

    Caseiro D, Trancoso I, Oliveira L, Viana C (2002) Grapheme-to-phone using finite-state transducers. In: In IEEE workshop on speech synthesis

  41. 41.

    Teixeira A, Oliveira C, Moutinho L (2006) On the use of machine learning and syllable information in European Portuguese grapheme-phone conversion. In: Computational processing of the Portuguese language. Lecture notes in computer science, vol 3960. Springer, Berlin, pp 212–215

  42. 42.

    Silva D, de Lima A, Maia R, Braga D, de Moraes JF, de Moraes JA, Resende F Jr (2006) A rule-based grapheme-phone converter and stress determination for Brazilian Portuguese natural language processing. In: VI international telecommunications symposium

  43. 43.

    Faria A (2003) Applied phonetics: Portuguese text-to-speech. Tech Rep. University of California

  44. 44. Visited in June 2010

  45. 45.

    Silva P, Neto N, Klautau A (2009) Novos recursos e utilização de adaptação de locutor no desenvolvimento de um sistema de reconhecimento de voz para o Português Brasileiro. In: XXVII simpósio Brasileiro de telecomuniçacões

  46. 46.

    Cirigliano RJ, Monteiro C, de F Barbosa FL, Resende FL Jr, Couto L, Moraes J (2005) Um conjunto de 1000 frases foneticamente balanceadas para o Português Brasileiro obtido utilizando a abordagem de algoritmos genéticos. In: XXII simpósio Brasileiro de telecomuniçacões

  47. 47.

    Neto N, Silva P, Klautau A, Adami A (2008) Spoltech and OGI-22 baseline systems for speech recognition in Brazilian Portuguese. In: International conference on computational processing of Portuguese language—PROPOR

  48. 48.

    Weimar F, Barone D, Adami A (2010) A baseline system for continuous speech recognition of Brazilian Portuguese using the West Point Brazilian Portuguese speech corpus. In: International conference on computational processing of Portuguese language

  49. 49.

    Davis S, Merlmestein P (1980) Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans ASSP 357–366

  50. 50.

    Woodland P, Young S (1993) The HTK tied-state continuous speech recognizer. In: Proceedings of the Eurospeech’93, Berlim

  51. 51.

    Welch LR (2003) Hidden Markov models and the Baum–Welch algorithm. IEEE Inf Theory Soc Newslett 53:10–12

  52. 52.

    Silva E, Pantoja M, Celidnio J, Klautau A (2004) Modelos de linguagem n-grama para reconhecimento de voz com grande vocabulários. In: III workshop em tecnologia da informação e da linguagem humana

  53. 53.

    Chen SF, Goodman J (1999) An empirical study of smoothing techniques for language modeling. Comput Speech Lang 13:359–394

  54. 54.

    Kneser R, Ney H (1995) Improved backing-off for M-gram language modeling. In: IEEE international conference on acoustics, speech and signal processing, pp 181–184

  55. 55. Visited in June 2010

  56. 56. Visited in June 2010

  57. 57.

    Hosn C, Baptista LAN, Imbiriba T, Klautau A (2006) New resources for Brazilian Portuguese: results for grapheme-to-phoneme and phone classification. In: VI international telecommunications symposium

  58. 58.

    Lander T, Cole R, Oshika B, Noel M (1995) The OGI 22 language telephone speech corpus. In: Proceedings of the Eurospeech, Madrid

  59. 59.

    Colen WD, Batista P (2010) Veja mampe, sem as mpos! SpeechOO, uma extenspo de ditado para o In: 11th fórum internacional software livre

  60. 60. Visited in June 2010

  61. 61.

    Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of the human language technology, pp 127–133

  62. 62. Visited in June 2010

  63. 63. Visited in June 2010

  64. 64. Visited in June 2010

  65. 65.

    Aziz W, Pardo T, Paraboni I (2009) Fine-tuning in Portuguese–English statistical machine translation. In: 7th Brazilian symposium in information and human language technology

  66. 66.

    Koehn P, Hoang H, Birch A, Callison-Burch C, Federico M, Bertoldi N, Cowan B, Shen W, Moran C, Zens R, Dyer C, Bojar O, Constantin A, Herbst E (2007) Moses: open source toolkit for statistical machine translation. In: Proceedings of association for computational linguistics, pp 177–180

  67. 67.

    Och FJ, Ney H (2000) Improved statistical alignment models. In: Proceedings of association for computational linguistics, pp 440–447

  68. 68.

    Caseli H, Nunes I (2009) Statistical machine translation: little changes big impacts. In: 7th Brazilian symposium in information and human language technology, pp 1–9

  69. 69.

    Zhang Y, Vogel S, Waibel A (2004) Interpreting BLEU/NIST scores: How much improvement do we need to have a better system. In: 4th international conference on language resources and evaluation

  70. 70.

    Koehn P, Hoang H (2007) Factored translation models. In: Empirical methods on natural language processing, pp 868–876

  71. 71.

    Yao X, Bhutada P, Georgila K, Sagae K, Artstein R, Traum D (2010) Practical evaluation of speech recognizers for virtual human dialogue systems. In: 7th international language resources and evaluation

  72. 72. Visited in June 2010

Download references

Author information

Correspondence to Nelson Neto.

Rights and permissions

Reprints and Permissions

About this article


  • Speech recognition
  • Brazilian Portuguese
  • Grapheme-to-phone conversion
  • Application programming interface
  • Speech-based applications