Skip to main content

An improved particle filter for sparse environments

Abstract

In this paper, we combine a path planner based on Boundary Value Problems (BVP) and Monte Carlo Localization (MCL) to solve the wake-up robot problem in a sparse environment. This problem is difficult since large regions of sparse environments do not provide relevant information for the robot to recover its pose. We propose a novel method that distributes particle poses only in relevant parts of the environment and leads the robot along these regions using the numeric solution of a BVP. Several experiments show that the improved method leads to a better initial particle distribution and a better convergence of the localization process.

References

  1. Amigoni F. Experimental evaluation of some exploration strategies for mobile robots. In:Proceedings of IEEE International Conference on Robotics and Automation; 2008; Pasadena, California. EUA: IEEE; 2008.

  2. Angeli A, Doncieux S, Meyer JA and Filliat D. Incremental vision-based topological SLAM. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008; Nice, França. EUA: IEEE; 2008.

  3. Begum M, Mann GKI and Gosine RG. Concurrent mapping and localization for mobile robot using soft computing techniques. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2005; Alberta. Canada:IEEE; 2005.

    Google Scholar 

  4. Blanco JL, Fernández-Madrigal JA and González J. Efficient probabilistic range-only SLAM. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008; Nice, França. EUA: IEEE; 2008.

  5. Bourgault F, Makarenko AA, Williams SB, Grocholsky B and Durrant-Whyte HF. Information based adaptive robotic exploration. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2002. Switzerland: IEEE; 2002.

    Google Scholar 

  6. Dapper F, Prestes E, Idiart MAP and Nedel LP. Simulating pedestrian behavior with potential fields. In:Advances in Computer Graphics. New York: Springer; 2006. p. 324–335. (Lecture Notes in Computer Science, v. 4035).

    Chapter  Google Scholar 

  7. Dapper F, Prestes E and Nedel LP. Generating steering behaviors for virtual humanoids using BVP control. In: Advances in Computer Graphics. New York: Springer; 2007. (Lecture Notes in Computer Science)

    Google Scholar 

  8. Faria G, Prestes E, Idiart MAP and Romero RAF. Multi robot system based on boundary value problems. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006; Beijing, China. EUA: IEEE; 2006. p. 424-429.

  9. Faria G, Romero RAF, Prestes E, and Idiart MAP. Comparing harmonic functions and potential fields in the trajectory control of mobile robots. In:Proceedings of IEEE Conference on Robotics, Automation and Mechatronics; 2004; Singapore. IEEE; 2004. p. 762–767. (v. 1).

    Google Scholar 

  10. Fox D, Thrun S, Dellaert F and Burgard W. Particle filters for mobile robot localization. In: Doucet A, Freitas JFG and Gordon NJ. (Eds.).Sequential Monte Carlo in practice. New York: Springer; 2001.

    Google Scholar 

  11. Freda L, Loiudice F and Oriolo G. A randomized method for integrated exploration. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006; Beijing, China. EUA: IEEE; 2006.

  12. Gasparri A, Panzieri S, Pascucci F and Ulivi G. Monte carlo filter in mobile robotics localization: a clustered evolutionary point of view.Journal of Intelligent and Robotic Systems. 2006; 47(2):155–174.

    Article  Google Scholar 

  13. Gonzalez R and Woods R.Digital image processing. Estados Unidos: Addison-Wesley Publishing Company; 1992.

    Google Scholar 

  14. Jensfelt P and Kristensen S. Active global localisation for a mobile robot using multiple hypothesis tracking.IEEE Transactions on Robotics and Automation. 2001; 17(5):748–760.

    Article  Google Scholar 

  15. Kwon TB and Song JB. Thinning-based topological exploration using position probability of topological nodes. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006; Beijing, China. EUA: IEEE; 2006.

  16. Kwon TB, Yang JH, Song JB and Chung W. Efficiency improvement in Monte Carlo localization through topological information. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006; Beijing. China: IEEE; 2006. p. 424–429.

    Google Scholar 

  17. Leonard JJ and Durrant-Whyte HF.Directed sonar sensing for mobile robot navigation. Norwell: Kluwer Academic; 1992.

    MATH  Google Scholar 

  18. Leung C, Huang S and Dissanayake G. Active SLAM using model predictive control and attractor based exploration. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2006; Beijing, China. EUA: IEEE; 2006.

  19. Milstein A, Sanchez JN and Williamson ET. Robust global localization using clustered particle filtering. In:Proceedings of Innovative Applications of Artificial Intelligence; 2002; Edmonton, Canada. EUA: The AAAI Press; 2002. p. 581-586.

  20. Mobile Robots.Mobilesim. [on the internet]. Available from http://robots.mobilerobots.com/wiki/MobileSim. Access in 10/09/2009.

  21. Montemerlo M, Thrun S, Koller D and Wegbreit B. Fast SLAM: A factored solution to the simultaneous localization and mapping problem. In:Proceedings of Innovative Applications of Artificial Intelligence; 2002; Edmonton, Canada. EUA: The AAAI Press; 2002.

  22. Silva-Junior EP, Engel PM, Trevisan M and Idiart MAP. Exploration method using harmonic functions.Robotics and Autonomous Systems. 2002; 40(1):25–42.

    Article  Google Scholar 

  23. Roy N, Burgard W, Fox D and Thrun S. Coastal navigation: mobile robot navigation with uncertainty in dynamic environments. In:Proceedings of IEEE International Conference on Robotics and Automation; 1999; Detroit. EUA: IEEE ; 1999.

  24. Schiele B and Crowley JL. A comparison of position estimation techniques using occupancy grids. In:Proceedings of IEEE International Conference on Robotics and Automation; 1994; San Diego. EUA: IEEE; 1994.

  25. Smith L and Husbands P. Visual landmark navigation through large-scale environments. In:Proceedings of EPSRC/BBSRC International Workshop on Biologically Inspired Robotics: The Legacy of W. Grey Walter; 2002; Bristol. Londres: The Royal Society; 2002. p. 272–279.

    Google Scholar 

  26. Stachniss C, Grisetti G and Burgard W. Information gain-based exploration using raoblackwellized particle filters. In:Proceedings of Robotics: Science and Systems; 2005; Massachusetts. Cambridge: The MIT Press; 2005.

    Google Scholar 

  27. Thrun S, Burgard W, Fox D and Dellaert F. Robust Monte Carlo localization for mobile robots.Artificial Intelligence. 2000; 128(1/2):99–141.

    Google Scholar 

  28. Thrun S, Burgard W and Fox D.Probabilistic Robotics. Cambridge: The MIT Press; 2005.

    MATH  Google Scholar 

  29. Trevisan, M, Idiart MAP, Prestes E and Engel PM. Exploratory navigation based on dynamic boundary value problems.Jounal of Intelligent and Robotic Systems. 2006; 45(2):101–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Prestes, E., Ritt, M. & Führ, G. An improved particle filter for sparse environments. J Braz Comp Soc 15, 55–64 (2009). https://doi.org/10.1007/BF03194506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03194506

Keywords

  • boundary value problems
  • autonomous navigation
  • environment exploration
  • global localization
  • Monte Carlo localization