Arredondo M and Lebart K. A methodology for the systematic assessment of underwater video processing algorithms.Oceans 2005; 1:362–367.
Google Scholar
Bay H, Tuytelaars T, Booktitle L and Gool L Van. Surf: speeded up robust features. In:Proceedings of 9 European Conference on Computer Vision; 2006; Graz, Austria. Springer: Lecture Notes in Computer Science; 2006. P. 404–417.
Google Scholar
Booij O, Terwijn B, Zivkovic Z and Krose B. Navigation using an appearance based topological map. In:Proceedings of IEEE International Conference on Robotics and Automation; 2007; Roma, Italy. Amsterdam: Publications of the Universiteit van Amsterdam; 2007. p. 3927–3932.
Google Scholar
Centeno M.Rovfurg-II: projeto e construção de um veículo subaquático não tripulado de baixo custo. [Master thesis]. Rio Grande: Universidade Federal do Rio Grande; 2007.
Google Scholar
Dechter R and Pearl J. Generalized best-first search strategies and the optimality af a*.Journal of the Association for Computing Machinery 1985; 32(3):505–536.
MATH
MathSciNet
Google Scholar
Dijkstra EW. A note on two problems in connexion with graphs.Numerische Mathematik 1959; 1:269–271.
Article
MATH
MathSciNet
Google Scholar
Fischler M and Bolles R. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography.Communications of the ACM 1981; 24(6):381–395.
Article
MathSciNet
Google Scholar
Fleischer SD.Bounded-error vision-based navigation of autonomous underwater vehicles. [PhD thesis]. Stanford: Stanford University; 2000.
Google Scholar
Fritzke B.Growing cell structures: a self organizing network for unsupervised and supervised learning. Berkeley: University of California; 1993. (Technical report).
Google Scholar
Garcia R, Cufi and Carreras M. Estimating the motion of an underwater robot from a monocular image sequence. In:Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems; 2001; Maui, Hawaii. Girona, Spain: Institute of Informatics and Applications, University of Girona; 2001. p. 1682–1687. (v. 3).
Google Scholar
Garcia R, Lla V and Charot F. VLSI architecture for an underwater robot vision system. In:Proceedings of IEEE Oceans Conference; 2005; Brest, France. Girona, Spain: Institute of Informatics and Applications,University of Girona; 2005. p. 674–679. (v. 1)
Google Scholar
Gracias N, van der Zwaan S, Bernardino A and Santos-Vitor J. Results on underwater mosaic-based navigation. In:Proceedings of IEEE Oceans Conference; 2002. Biloxi, Mississippi. Lisboa, Portugal: Instituto Superior Técnico & Instituto de Sistemas e Robótica; 2002. p. 1588–1594. (v. 3).
Google Scholar
Gracias N and Santos-Victor J. Underwater video mosaics as visual navigation maps.Computer Vision and Image Understanding. 2000; 79(1):66–91.
Article
Google Scholar
Hartley R and Zisserman A.Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press; 2004.
MATH
Google Scholar
Kohonen T.Self-organizing maps. Secaucus: Springer-Verlag; 2001.
MATH
Google Scholar
Lowe D. Distinctive image features from scale-invariant keypoints.International Journal of Computer Vision. 2004; 60(2):91–110.
Article
Google Scholar
Mahon I and Williams S. Slam using natural features in an underwater environment. In:Proceedings of International Conference on Control, Automation, Robotics and Vision; 2004, Kunming, China. NSW Austrália: University of Sydney; p. 2076–2081. (v. 3).
Google Scholar
Nicosevici T, García R, Negahdaripour S, Kudzinava M and Ferrer J. Identification of suitable interest points using geometric and photometric cues in motion video for efficient 3-d environmental modeling. In:Proceedings of International Conference in Robotic and Automation; 2007; Roma, Italy. p. 4969–4974.
Plakas K and Trucco E. Developing a real-time, robust, video tracker. In:Proceedings of MTS/IEEE Oceans Conference and Exhibition; 2000; Providence, RI, USA. Edinburgh, UK: Heriot-Watt University; 2000. p. 1345–1352. (v. 2).
Google Scholar
Rousseeuw P. Least median of squares regression.Journal of the American Statistics Association. 1984; 79(388):871–880.
Article
MATH
MathSciNet
Google Scholar
Se S, Lowe D and Little J. Mobile robot localization and mapping with uncertainty using scale-invariant visual landmarks.The International Journal of Robotics Research. 2002; 21(8):735–758.
Article
Google Scholar
Se S, Lowe D and Little J. Vision-based global localization and mapping for mobile robots.IEEE Transactions on Robotics. 2005; 21(3):364–375.
Article
Google Scholar
Shi J and Tomasi C. Good features to track. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition; 1994; Seattle, WA, USA. NY, USA: Cornell University Ithaca; 1994. p. 593–600.
Google Scholar
Tomasi C. and Kanade T.Detection and tracking of point features. Pittsburgh: Carnegie Mellon University; 1991. (Technical report).
Google Scholar
Tommasini T, Fusiello A, Roberto V and Trucco E. Robust feature tracking in underwater video sequences. In:Proceedings of MTS/IEEE Oceans Conference and Exhibition; 1998; Nice, France. IT: Università di Udine; 1998. p. 46–50. (v. 1).
Google Scholar
Torr PHS and Murray DW. The development and comparison of robust methodsfor estimating the fundamental matrix.International Journal of Computer Vision. 1997; 24(3):271–300.
Article
Google Scholar
Xu X and Negahdaripour S. Vision-based motion sensing for underwater navigation and mosaicing of ocean floor images. In:Proceedings of MTS/IEEE Oceans Conference and Exhibition; 1997; Halifax, NS, Canada. Coral Gables, FL: University of Miami; 1997. p. 1412–1417. (v. 2).
Google Scholar