Skip to main content

A progressive vector map browser for the web

Abstract

With the increasing popularity of web-based map browsers, remotely obtaining a high quality depiction of cartographic information has become commonplace. Most web mapping systems, however, rely on high-capacity servers transmitting pre-rendered tiled maps in raster format. That approach is capable of producing good quality renderings on the client side while using limited bandwidth and exploiting the browser’s image cache. These goals are harder to achieve for maps in vector format. In this work, we present an alternative client-server architecture capable of progressively transmitting vector maps in levels-of-detail (LOD) by using techniques such as polygonal line simplification, spatial data structures and, most importantly, a customized memory management algorithm. A multiplatform implementation of this system is described, where the client application is written entirely in JavaScript and processed within the web browser, avoiding the need of external applications or plug-ins. Results of experiments aimed at gauging both the performance and the display quality obtained with the system are presented and explained. Extensions to the system are also discussed, including issues such as level-of-detail versus visual importance tradeoffs and the handling of closed polygonal lines.

References

  1. 1.

    Fry B and Reas C.Download Processing 1.0. Available from: 〈http://processing.org/download/index.html〉. Access in: 03/2009.

  2. 2.

    Gordillo S and Balaguer F. Refining an object-oriented GIS design model: topologies and field data.GIS ’98: Proceedings of the 6th ACM international symposium on Advances in geographic information systems; 1998; New York, NY, USA. p. 76–81.

  3. 3.

    Bertolotto M and Egenhofer MJ. Progressive Transmission of Vector Map Data over the World Wide Web.Geoinformatica 2001; 5(4):345–373.

    MATH  Article  Google Scholar 

  4. 4.

    Kraak M and Brown A.Web Cartography -Developments and prospects. New York: Taylor & Francis; 2001.

    Google Scholar 

  5. 5.

    CARTO: net — cartographers on the net.SVG, scalable vector graphics: tutorials, examples, widgets and libraries. Available from: 〈http://www.carto.net〉. Access in: 03/2009.

  6. 6.

    Davis C.Geometria computacional para sistemas de informação geográfica. Available from: 〈http://www.dpi.inpe.br/gilberto/livro/geocomp/〉. Access in: 03/2009. [In Portuguese]

  7. 7.

    Free Software Foundation Inc.GCC, the GNU compiler collection. Available from: 〈http://gcc.gnu.org/〉. Access in: 03/2009.

  8. 8.

    Google Inc.ExplorerCanvas. Available from: 〈http://excanvas.sourceforge.net〉. Access in: 03/2009.

  9. 9.

    Google Inc.Google Maps. Available from: 〈http://maps.google.com〉. Access in: 03/2009.

  10. 10.

    Gaede V and Günther O. Multidimensional access methods.ACM Computing Surveys 1998; 30(2):170–231.

    Article  Google Scholar 

  11. 11.

    Instituto Brasileiro de Geografia e Estatística — IBGE. Available from: 〈http://www.ibge.gov.br〉. Access in: 03/2009. [In Portuguese]

  12. 12.

    Ramos JAS, Esperança C and Clua EWG. A Progressive Vector Map Browser.Proceedings of X Brazilian Symposium of Geoinformatics; 2008. Sociedade Brasileira de Computação. p. 127–138.

  13. 13.

    Resig J.John Resig — Processing.js. Available from: 〈http://ejohn.org/blog/processingjs/〉. Access in: 03/2009.

  14. 14.

    JSON.org. Available from: 〈http://www.json.org/〉. Access in: 03/2009.

  15. 15.

    MapTools.Shapefile C Library V1.2. Available from: 〈http://shapelib.maptools.org/〉. Access in: 03/2009.

  16. 16.

    Burrough PA and McDonnell RA.Principles of geographical information systems. New York: Oxford University Press; 1997.

    Google Scholar 

  17. 17.

    McMaster RB. Automated Line Generalization.Cartographica 1987; 24(2):74–111.

    Google Scholar 

  18. 18.

    Open Geospatial Consortium Inc.Welcome to the OGC Website. Available from: 〈http://www.opengeospatial.org/〉. Access in: 03/2009.

  19. 19.

    Douglas DH and Peucker TK. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature.The Canadian Cartographer 1973; 2(10):112–122.

    Google Scholar 

  20. 20.

    Python Software Foundation.Download Python Software. Available from: 〈http://www.python.org/download/〉. Access in: 03/2009.

  21. 21.

    Casanova M, Câmara G, Davis C, Vinhas L and Queiroz G.Bancos de dados geográficos. Curitiba: Editora MundoGEO; 2005. [In Portuguese]

    Google Scholar 

  22. 22.

    Ramos JAS.Navegador de Mapas Vetoriais com Atualização Progressiva. Rio de Janeiro: Universidade Federal Fluminense; 2008. Technical report.

    Google Scholar 

  23. 23.

    Samet H.Foundations of Multidimensional and Metric Data Structures. San Francisco: Morgan-Kaufman; 2006.

    MATH  Google Scholar 

  24. 24.

    McMaster RB and Shea KS.Generalization in digital cartography. Washington, D.C.: Association of American Geographers; 1992.

    Google Scholar 

  25. 25.

    Chim JHP, Green M, Lau RWH, Va Leong H and Si A. On caching and prefetching of virtual objects in distributed virtual environments.MULTIMEDIA ’98: Proceedings of the sixth ACM international conference on Multimedia; 1998; New York, NY, USA, 1998. p. 171–180

  26. 26.

    Abel DJ and Smith JL. A data structure and query algorithm for a database of areal entities.Australian Computer Journal 1984; 16(4):147–154.

    Google Scholar 

  27. 27.

    Hershberger J and Snoeyink J. Speeding Up the Douglas-Peucker Line-Simplification Algorithm.Proc. 5th Intl. Symp. on Spatial Data Handling; 1992. p. 134–143.

  28. 28.

    TrollTech.Qt Cross-Platform Application Framework. Available from: 〈http://trolltech.com/products/qt/〉. Access in: 03/2009.

  29. 29.

    University of Minnesota.UMN MapServer. Available from: 〈http://mapserver.gis.umn.edu〉. Access in: 03/2009.

  30. 30.

    UserLand Software Inc.XML-RPC Homepage. Available from: 〈http://www.xmlrpc.com〉. Access in: 03/2009.

  31. 31.

    Stroe ID, Rundensteiner EA and Ward MO. Scalable Visual Hierarchy Exploration.DEXA ’00: Proceedings of the 11th International Conference on Database and Expert Systems Applications; 2000. London, UK: Springer-Verlag; 2000. p. 784–793.

    Google Scholar 

  32. 32.

    Doshi PR, Rundensteiner EA and Ward MO. Prefetching for Visual Data Exploration.DASFAA ’03: Proceedings of the Eighth International Conference on Database Systems for Advanced Applications; 2003; Washington, DC, USA. IEEE Computer Society. p. 195

    Google Scholar 

  33. 33.

    Burghardt D, Neun M and Weibel R. Generalization Services on the Web — A Classification and an Initial Prototype Implementation.Proceedings of the American Congress on Surveying and Mapping — Auto-Carto; 2005. p. 257–268.

  34. 34.

    World Wide Web Consortium. HTML 5. Available from: 〈http://dev.w3.org/html5/spec/Overview.html〉. Access in: 03/2009.

  35. 35.

    World Wide Web Consortium.W3C — The World Wide Web Consortium. Available from: 〈http://www.w3.org/〉. Access in: 03/2009.

  36. 36.

    Yahoo! Inc.Yahoo! Maps. Available from: 〈http://maps.yahoo.com〉. Access in: 03/2009.

Download references

Author information

Affiliations

Authors

Additional information

A previous version of this paper appeared at GEOINFO 2008 (X Brazilian Symposium on Geoinformatics)

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Ramos, J.A.S., Esperança, C. & Clua, E.W.G. A progressive vector map browser for the web. J Braz Comp Soc 15, 35–48 (2009). https://doi.org/10.1007/BF03194500

Download citation

Keywords

  • vector maps
  • map browsers
  • progressively transmitting
  • level of detail
  • client-server architecture