Skip to main content

Evolutionary TBL template generation


Transformation Based Learning (TBL) is a Machine Learning technique frequently used in some Natural Language Processing (NLP) tasks. TBL uses rule templates to identify error-correcting patterns. A critical requirement in TBL is the availability of a problem domain expert to build these rule templates. In this work, we propose an evolutionary approach based on Genetic Algorithms to automatically implement the template generation process. Additionally, we report our findings on five experiments with useful NLP tasks. We observe that our approach provides template sets with a mean loss of performance of 0.5% when compared to human built templates


  1. Eric Brill. Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging.Computational Linguistics, 21(4):543–565, 1995.

    Google Scholar 

  2. Eric Brill and Philip Resnik. A rule-based approach to prepositional phrase attachment disambiguation. InProceedings of COLING’94, Kyoto, Japan, 1994.

  3. Maria Claudia de Freitas, Julio Cesar Duarte, Cícero Nogueira dos Santos, Ruy Luiz Milidiú, Raúl P. Rentería, and Violeta Quental. A machine learning approach to the identification of appositives. In Jaime Simão Sichman, Helder Coelho, and Solange Oliveira Rezende, editors,IBERAMIASBIA, volume 4140 ofLecture Notes in Computer Science, pages 309–318. Springer, 2006.

  4. Cícero Nogueira dos Santos and Claudia Oliveira. Constrained atomic term: Widening the reach of rule templates in transformation based learning. In Carlos Bento, Amílcar Cardoso, and Gaël Dias, editors,EPIA, volume 3808 ofLecture Notes in Computer Science, pages 622–633. Springer, 2005.

  5. John H. Holland.Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, 1975.

    Google Scholar 

  6. Beáta Megyesi. Shallow parsing with pos taggers and linguistic features.Journal of Machine Learning Research, 2:639–668, 2002.

    MATH  Article  Google Scholar 

  7. Ruy Luiz Milidiú, Julio C. Duarte, and Cícero Nogueira dos Santos. Tbl template selection: An evolutionary approach. In Daniel Borrajo, Luis A. Castillo, and Juan M. Corchado, editors,CAEPIA, volume 4788 ofLecture Notes in Computer Science, pages 180–189. Springer, 2007.

  8. Miloslav Nepil. Learning to parse from a tree-bank: Combining tbl and ilp. In Céline Rouveirol and Michèle Sebag, editors,ILP, volume 2157 ofLecture Notes in Computer Science, pages 179–192. Springer, 2001.

  9. Lance Ramshaw and Mitch Marcus. Text chunking using transformation-based learning. In David Yarovsky and Kenneth Church, editors,Proceedings of the Third Workshop on Very Large Corpora, pages 82–94, New Jersey, 1995. Association for Computational Linguistics.

  10. Roberto Cavalcante Ruy Luiz Milidiú, Julio Cesar Duarte. Machine learning algorithms for portuguese named entity recognition. In Solange Oliveira Rezende and Antonio Carlos Roque da Silva Filho, editors, FourthWorkshop in Information and Human Language Technology (TIL’06) in the Proceedings of International Joint Conference, 10th Ibero-American Artificial Intelligence Conference, 18th Brazilian Artificial Intelligence Symposium, 9th Brazilian Neural Networks Symposium, IBERAMIA-SBIA-SBRN, Ribeirão Preto, Brazil, October 23–28, 2006, 2006.

  11. Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the conll-2000 shared task: chunking. InProceedings of the 2nd workshop on Learning language in logic and the 4th conference on Computational Natural Language Learning, pages 127–132. Association for Computational Linguistics, 2000.

  12. Cícero Nogueira Santos. Aprendizado de máquina na identificação de sintagmas nominais: o caso do português brasileiro. Master’s thesis, IME, Rio de Janeiro — RJ, fevereiro 2005.

    Google Scholar 

  13. Garnett Wilson and Malcolm Heywood. Use of a genetic algorithm in brill’s transformation-based part-of-speech tagger. In Hans-Georg Beyer, Una-May O’Reilly, Dirk V. Arnold, Wolfgang Banzhaf, Christian Blum, Eric W. Bonabeau, Erick Cantu-Paz, Dipankar Dasgupta, Kalyanmoy Deb, James A. Foster, Edwin D. de Jong, Hod Lipson, Xavier Llora, Spiros Mancoridis, Martin Pelikan, Guenther R. Raidl, Terence Soule, Andy M. Tyrrell, Jean-Paul Watson, and Eckart Zitzler, editors,GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 2, pages 2067–2073, Washington DC, USA, 25–29 June 2005. ACM Press.

    Chapter  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ruy Luiz Milidiú.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Milidiú, R.L., Duarte, J.C. & Santos, C.N.d. Evolutionary TBL template generation. J Braz Comp Soc 13, 39–50 (2007).

Download citation

  • Issue Date:

  • DOI:


  • Machine Learning
  • Genetic Algorithms
  • Transformation Error-Driven Based Learning