Skip to main content

A hybrid heuristic for the multi-plant capacitated lot sizing problem with setup carry-over

Abstract

This paper addresses the capacitated lot sizing problem (CLSP) with a single stage composed of multiple plants, items and periods with setup carry-over among the periods. The CLSP is well studied and many heuristics have been proposed to solve it. Nevertheless, few researches explored the multi-plant capacitated lot sizing problem (MPCLSP), which means that few solution methods were proposed to solve it. Furthermore, to our knowledge, no study of the MPCLSP with setup carry-over was found in the literature. This paper presents a mathematical model and a GRASP (Greedy Randomized Adaptive Search Procedure) with path relinking to the MPCLSP with setup carry-over. This solution method is an extension and adaptation of a previously adopted methodology without the setup carry-over. Computational tests showed that the improvement of the setup carry-over is significant in terms of the solution value with a low increase in computational time.

References

  1. A. Aggarwal, J. K. Park. Improved algorithms for economic lot size problems.Operations Research. 41: 549–571, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. A. Armentano, P. M. França, F. M. B. de Toledo. A network flow model for the capacitated lot-sizing problem.Omega. 27: 275–284, 1999.

    Article  Google Scholar 

  3. D. Briskorn. A note on capacitated lot sizing with setup carry over.IIE Transactions. 38: 1045–1047, 2006.

    Article  Google Scholar 

  4. M. Diaby, H. C. Bahl, M. H. Karwan, S. Zionts. Capacitated lot-sizing and scheduling by lagrangean relaxation.European Journal of Operational Research. 59: 444–458, 1992.

    Article  MATH  Google Scholar 

  5. M. Diaby, H. C. Bahl, M. H. Karwan, S. Zionts. A lagrangean relaxation approach for very-largescale capacitated lot-sizing.Management Science. 59: 1329–1340, 1992.

    Article  Google Scholar 

  6. A. Federgruen, M. Tzur. A simple forward algorithm to solve general dynamic lot sizing models with n periods in o(nlogn) or o(n) time.Management Science. 37: 909–925, 1991.

    Article  MATH  Google Scholar 

  7. T. A. Feo, M. G. C. Resende. A probabilistic heuristic for a computationally difficult set covering problem.Operations Research Letters. 8: 67–71, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  8. F. Glover. A template for scatter search and path relinking. In Proceedings of AE ’97:Selected Papers from the Third European Conference on Artificial Evolution, London, UK, pages 3-54, 1998.

  9. M. Gopalakrishnan, K. Ding, J. M. Bourjolly, S. Mohan. A tabu-search heuristic for the capacitated lotsizing problem with set-up carryover.Management Science. 47: 851–863, 2001.

    Article  Google Scholar 

  10. M. Gopalakrishnan, D. M. Miller, C. P. Schmidt. A framework for modelling setup carryover in the capacitated lot sizing problem.International Journal of Production Research. 33(7): 1973–1988, 1995.

    Article  MATH  Google Scholar 

  11. M. Laguna, R. Martí. Grasp and path relinking for 2-layer straight line crossing minimization.Informs Journal on Computing. 11(1): 44–52, 1999.

    Article  MATH  Google Scholar 

  12. S. Lozano, J. Larraneta, L. Onieva. Primal-dual approach to the single level capacitated lot-sizing problem.European Journal of Operational Research. 51: 354–366, 1991.

    Article  MATH  Google Scholar 

  13. J. Maes, J. O. McClain, L. N. Van Wassenhove. Multilevel capacitated lotsizing complexity and lpbased heuristics.European Journal of Operational Research. 53: 131–148, 1991.

    Article  MATH  Google Scholar 

  14. M. C. V. Nascimento, M. C. G. Resende, F. M. B. Toledo. GRASP with path-relinking for the multiplant capacitated lot sizing problem. EuropeanJournal of Operational Research, accepted for publication, 2008.

  15. L. S. Pitsoulis, M. G. C. Resende. Greedy randomized adaptive search procedures.Journal of Global Optimization. 6: 109–133, 1995.

    Article  Google Scholar 

  16. P. Porkka, A. P. J. Vepsäläinen, M. Kuula. Multiperiod production planning carrying over set-up time.International Journal of Production Research. 41(6): 1133–1148, 2003.

    Article  MATH  Google Scholar 

  17. M. Sambasivan, C. P. Schimidt. A heuristic procedure for solving multi-plant, multi-item, multi-period capacitated lot-sizing problems.Asia Pacific Journal of Operational Research. 19: 87–105, 2002.

    MATH  MathSciNet  Google Scholar 

  18. M. Sambasivan, S. Yahya. A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers.Computers and Operations Research. 32: 537–555, 2005.

    Article  MATH  Google Scholar 

  19. K. X. S. Souza, V. A. Armentano. Multi-item capacitated lot-sizing by a cross decomposition based algorithm.Annals of Operations Research. 50: 557–574, 1994.

    Article  MATH  Google Scholar 

  20. C. R. Sox, Y. B. Gao. The capacitated lot sizing problem with setup carry-over.IEE Transactions. 31: 173–181, 1999.

    Google Scholar 

  21. C. Suerie, H. Stadtler. The capacitated lot-sizing problem with linked lot sizes.Management Science. 49: 1039–1054, 2003.

    Article  Google Scholar 

  22. C. S. Sung. A single-product parallel-facilities production-planning model.International Journal of Systems Science. 17: 983–989, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  23. F. M. B. Toledo, V. A. Armentano. A lagrangean-based heuristic for the capacitated lot-sizing problem in parallel machines.European Journal of Operational Research. 175: 1070–1083, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  24. W. W. Trigeiro, L. J. Thomas, J. O. McClain. Capacitated lot sizing with setup times.Management Science. 35: 353–366, 1989.

    Article  Google Scholar 

  25. A. Wagelmans, S. Van Hoesel, A. Kolen. Economic lot sizing: an o(nlogn) algorithm that runs in linear time in the wagner-whitin case.Operations Research. 40: 145–156, 1992.

    Article  MathSciNet  Google Scholar 

  26. H. M. Wagner, T. M. Whitin. Dynamic version of the economic lot size mode.Management Science. 5: 89–96, 1958.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Nascimento, M.C.V., Toledo, F.M.B. A hybrid heuristic for the multi-plant capacitated lot sizing problem with setup carry-over. J Braz Comp Soc 14, 7–15 (2008). https://doi.org/10.1007/BF03192568

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192568

Keywords

  • GRASP
  • path relinking
  • lot sizing
  • multiplant
  • carry-over