Skip to main content

A fast and accurate approach for computing the dimensions of boxes from single perspective images

Abstract

This paper describes an accurate method for computing the dimensions of boxes directly from perspective projection images acquired by conventional cameras. The approach is based on projective geometry and computes the box dimensions using data extracted from the box silhouette and from the projection of two parallel laser beams on one of the imaged faces of the box. In order to identify the box silhouette, we have developed a statistical model for homogeneous-background-color removal that works with a moving camera, and an efficient voting scheme for the Hough transform that allows the identification of almost collinear groups of pixels. We demonstrate the effectiveness of the proposed approach by automatically computing the dimensions of real boxes using a scanner prototype that implements the algorithms and methods describe din the paper. We also present a discussion of the performed measurements, and an error propagation analysis that allows the method to estimate, from each single video frame, the uncertainty associated to all measurements made over thatframe, in real-time.

References

  1. P. Besl.Active Optical Range Imaging Sensors. Advances in Machine Vision, pages 1–63. Springer-Verlag, New York, NY, USA, 1988.

    Google Scholar 

  2. J. Y. Bouguet. Camera calibration toolbox for matlab. http://www.vision.caltech.edu/ bouguetj/ calibjdoc, Jan. 2005.

  3. J. Canny. A computational approach to edge detection.IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6):679–698, Nov. 1986.

    Article  Google Scholar 

  4. M.B. Clowes. On seeing things.Artificial Intelligence, 2:79–116, 1971.

    Article  Google Scholar 

  5. A. Criminisi, I. Reid, and A. Zisserman. Single view metrology.In Proceedings of the 7th IEEE International Conference on Computer Vision (ICCV-99), volume 1, pages 434–441, Kerkyra, Greece, Sept. 1999. IEEE Computer Society.

    Chapter  Google Scholar 

  6. N. R. Draper and H. Smith.Applied Regression Analysis. John Wiley & Sons, New York, 1966.

    Google Scholar 

  7. R. O. Duda and P. E. Hart. Use of the Hough transformation to detect lines and curves in pictures.Communications of the ACM, 15(1):11–15, Jan. 1972.

    Article  Google Scholar 

  8. L. A. R. Fernandes. Um método projetivo para cálculo de dimensões de caixas em tempo real. Master’s thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil, Jan. 2006. (in Portuguese).

    Google Scholar 

  9. L. A. F. Fernandes, M. M. Oliveira, R. da Silva, and G. Crespo. Computing box dimensions from single perspective images in real time. InProceedings of XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI2005), pages 155–162, Natal, RN, Brazil, Oct. 2005. IEEE Computer Society.

    Chapter  Google Scholar 

  10. F. Figueroa and A. Mahajan. A robust method to determine the coordinates of a wave source for 3-D position sensing.ASME Journal of Dynamic Systems, Measurements and Control, 116:505–511, Sept. 1994.

    MATH  Article  Google Scholar 

  11. H. Fuchs, Z. M. Kedem, and B. F. Naylor. On visible surface generation by a priori tree structures. InProceedings of the 7th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH-80), pages 124–133, New Orleans, Louisiana, 1980. ACM Press.

    Chapter  Google Scholar 

  12. J. Gauch. KULM, im age processing system. http://www.ittc.ku.edu/~jgauch/research, Jan. 2003.

  13. R. I. Hartley and A. Zisserman.Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge, UK, 2000.

    MATH  Google Scholar 

  14. T. Horprasert, D. Harwood, and L. S. Davis. A statistical approach for real-time robust background subtraction and shadow detection. InProceedings of the 7th IEEE ICCV-99, FRAME-RATE Workshop, Kerkyra, Greece, Sept. 1999. IEEE Computer Society.

  15. D. A. Huffman. Impossible objects as nonsense sentences. InMachine Intelligence, volume 6, pages 295–324. Edinburg University Press, Edinburg, 1971.

    Google Scholar 

  16. A. Laurentini. The visual hull concept for silhouette-based image understanding.IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2): 150–162, Feb. 1994.

    Article  Google Scholar 

  17. M. Levoy, K. Pulli, B. Curless, S. Rusmkiewicz, D. Koller, L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital Michelangelo project: 3D scanning of large statues. InProceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH-00), pages 131–144, New Orleans, Louisiana, Jul. 2000. ACM Press.

    Chapter  Google Scholar 

  18. H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two projections.Nature, 293:133–135, Sept. 1981.

    Article  Google Scholar 

  19. D.G. Lowe. Three-dimensional object recognition from single two-dimensional images.Artificial Intelligence, 31:355–395, Mar. 1987.

    Article  Google Scholar 

  20. K. Lu. Box dimension finding from a single grayscale image. Master’s thesis, SUNY Stony Brook, New York, 2000.

    Google Scholar 

  21. W. Matusik, C. Buehler, R. Raskar, S. J. Gortler, and L. McMillan. Image-based visual hulls. InProceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH-00), pages 369–374, New Orleans, Louisiana, Jul. 2000. ACM Press.

    Chapter  Google Scholar 

  22. L. Nyland, D. McAllister, V. Popescu, C. McCue, A. Lastra, P. Rademacher, M. Oliveira, G. Bishop, G. Meenakshisundaram, M. Cutts, and H. Fuchs. The impact of dense range data on computer graphics. InProceedings of Multi-View Modeling and Analysis Workshop (MVIEW99), pages 3–10, Fort Collins, CO, Jun. 1999. IEEE Computer Society.

    Chapter  Google Scholar 

  23. J. W. H. Tangelder, P. Ermes, G. Vosselman, and F. A. van den Heuvel. Cad-based photogrammetry for reverse engineering of industrial installations.Computer-Aided Civil and Infrastructure Engineering, 18:264–274, Jul. 2003.

    Article  Google Scholar 

  24. P. Vlahos. Composite color photography. U.S. Patents. 158.477, 1964.

  25. J. H. Vuolo.Fundamentos da Teoria de Erros. Edgard Blcher, São Paulo, SP, Brazil, 1992. (in Portuguese).

    Google Scholar 

  26. E. W. Weisstein. Bivariate normal distribution. http://mathworld.wolfram.com/BivariateNormal-Distnbution.html, Oct. 2005.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Fernandes, L.A.F., Oliveira, M.M., da Silva, R. et al. A fast and accurate approach for computing the dimensions of boxes from single perspective images. J Braz Comp Soc 12, 19–30 (2006). https://doi.org/10.1007/BF03192392

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192392

Keywords

  • Computing dimensions of boxes
  • image-based metrology
  • extraction of geometric information
  • from scenes
  • uncertainty analysis
  • real time