Skip to main content

A new approach for regularized image interpolation

Abstract

This paper presents a non-iterative regularized inverse solution to the image interpolation problem. This solution is based on the segmentation of the image to be interpolated into overlapping blocks and the interpolation of each block, separately. The purpose of the overlapping blocks is to avoid edge effects. A global regularization parameter is used in interpolating each block. In this solution, a single matrix inversion process of moderate dimensions is required in the whole interpolation process. Thus, it avoids the large computational cost due to the matrices of large dimensions involved in the interpolation process. The performance of this approach is compared to the standard iterative regularized interpolation scheme and to polynomial based interpolation schemes such as the bicubic and cubic spline techniques. A comparison of the suggested approach with some algorithms implemented in the commercial ACDSee software has been performend in the paper. The obtained results reveal that the suggested solution has a better performance as compared to other algorithms from the MSE and the edges preservation points of view. Its computation time is relatively large as compared to traditional algorithms but this is acceptable when image quality is the main concern.

References

  1. [1]

    M. Unser, A. Aldroubi, and M. Eden. B-Spline Signal Processing: Part I- Theory.IEEE Trans. Signal Processing. 41(2): 821–833, Feb. 1993.

    MATH  Article  Google Scholar 

  2. [2]

    M. Unser, A. Aldroubi, and M. Eden. B-Spline Signal Processing: Part II-Efficient Design and Applications.IEEE Trans. Signal Processing. 41(2): 834–848, Feb. 1993.

    MATH  Article  Google Scholar 

  3. [3]

    M. Unser. Splines A Perfect Fit For Signal and Image Processing.IEEE Signal Processing Magazine, Nov. 1999.

  4. [4]

    P. Thevenaz, T. Blu and M. Unser. Interpolation Revisited.IEEE Trans. Medical Imaging. 19(7): 739–758, July 2000.

    Article  Google Scholar 

  5. [5]

    W. K. Carey, D. B. Chuang and S. S. Hemami. Regularity Preserving Image Interpolation.IEEE Trans. Image Processing. 8(9): 1293–1297, Sept. 1999.

    Article  Google Scholar 

  6. [6]

    J.K. Han and H. M. Kim. Modified Cubic Convolution Scaler With Minimum Loss of Information.Optical Engineering. 40(4): 540–546, April 2001.

    Article  MathSciNet  Google Scholar 

  7. [7]

    H. S. Hou and H. C. Andrews. Cubic Spline For Image Interpolation and Digital Filtering.IEEE Trans. Accoustics, Speech and Signal Processing. vol. ASSP-26, No.9, pp. 508–517, Dec. 1978.

    MATH  Google Scholar 

  8. [8]

    T. M. Lehman, C. Conner and K. Spitzer. Addendum: B-Spline Interpolation in Medical Image Processing.IEEE Trans. Medical Imaging. 20(7): 660–665, July 2001.

    Article  Google Scholar 

  9. [9]

    B. Vrcelj and P.P. Vaidyanathan. Efficient Implementation of All-Digital Interpolation.IEEE Trans. Image Processing. 10(11): 1639–1646, Nov. 2001.

    MATH  Article  Google Scholar 

  10. [10]

    T. Blu, P. Thevenaz and M. Unser. MOMS:Maximal-Order Interpolation of Minimal Support.IEEE Trans. Image Processing. 10(7):1069–1080, July 2001.

    MATH  Article  Google Scholar 

  11. [11]

    E. Meijering and M. Unser. A note on Cubic Convolution Interpolation.IEEE Trans. Image Processing. 12(4):477–479, April 2003.

    Article  MathSciNet  Google Scholar 

  12. [12]

    T. Blu, B. Thevenaz and M. Unser. Linear Interpolation RevitalizedIEEE Trans. Image Processing. 13(5): 710–719, May 2004.

    Article  MathSciNet  Google Scholar 

  13. [13]

    G. Ramponi. Warped Distance For Space Variant Linear Image Interpolation.IEEE Trans. Image Processing. vol. 8, pp. 629–639, 1999.

    Article  Google Scholar 

  14. [14]

    S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, and F. E. Abd El-Samie. Adaptive Image Interpolation Based on Local Activity Levels. the 20th National Radio Science Conference, (NRSC’2003), Cairo, March 18–20, 2003.

  15. [15]

    S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie. A New Edge Preserving Pixel-by-Pixel (PBP) Cubic Image Interpolation Approach. 21th National Radio Science Conference, (NRSC’2004), Cairo, March 16–18, 2004.

  16. [16]

    S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie, “A New Approach For Adaptive Polynomial Based Image Interpolation” Accepted for publication in the International Journal of Information Acquisition.

  17. [17]

    S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie. An Adaptive Cubic Convolution Image Interpolation Approach. Submitted for publication,Journal of Machine Graphics and Vision, July 2005.

  18. [18]

    M. Unser, A. Aldroubi. A General Sampling Theory for Nonideal Acquisition Devices.IEEE Trans. Signal Processing. 42(11):2915–2925, Nov. 1994.

    Article  Google Scholar 

  19. [19]

    W. Y. V. Leung, P. J. Bones. Statistical Interpolation of Sampled Images.Optical Engineering. 40(4):547–553, April 2001.

    Article  Google Scholar 

  20. [20]

    J. H. Shin, J. H. Jung, J. K. Paik. Regularized Iterative Image Interpolation And Its Application To Spatially Scalable Coding.IEEE Trans. Consumer Electronics. 44(3): 1042–1047, August 1998.

    Article  Google Scholar 

  21. [21]

    S. E. El-Khamy, M. M. Hadhoud, M. I. Dessouky, B. M. Salam, and F. E. Abd El-Samie. Optimization of Image Interpolation as an Inverse Problem Using The LMMSE Algorithm.Proc. of IEEE MELECON’2004, Dubrovnik, Croatia, May 12–15, pp. 247–250, 2004.

  22. [24]

    H.C. Andrews and B.R. Hunt, Digital Image Restoration.Englewood Cliffs, NJ: Prentice-Hall, 1977.

  23. [25]

    2005 ACD Systems, ACD, http://www. acdsystems.com/products/acdsee, 9-21-2005.

Download references

Author information

Affiliations

Authors

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

El-Khamy, S.E., Hadhoud, M.M., Dessouky, M.I. et al. A new approach for regularized image interpolation. J Braz Comp Soc 11, 65–79 (2005). https://doi.org/10.1007/BF03192383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03192383

Keywords

  • Image Interpolation
  • Regularized Interpolation
  • Cubic Spline
  • Bicubic
  • Laplacian