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Abstract
Image segmentation is an important step in many computer vision and image
processing algorithms. It is often adopted in tasks such as object detection,
classification, and tracking. The segmentation of underwater images is a challenging
problem as the water and particles present in the water scatter and absorb the light
rays. These effects make the application of traditional segmentation methods
cumbersome. Besides that, to use the state-of-the-art segmentation methods to face
this problem, which are based on deep learning, an underwater image segmentation
dataset must be proposed. So, in this paper, we develop a dataset of real underwater
images, and some other combinations using simulated data, to allow the training of
two of the best deep learning segmentation architectures, aiming to deal with
segmentation of underwater images in the wild. In addition to models trained in these
datasets, fine-tuning and image restoration strategies are explored too. To do a more
meaningful evaluation, all the models are compared in the testing set of real
underwater images. We show that methods obtain impressive results, mainly when
trained with our real dataset, comparing with manually segmented ground truth, even
using a relatively small number of labeled underwater training images.
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Introduction
The segmentation of underwater images presents many applications in areas such as
subsea inspection and biological research. Even a simple background subtraction, if it
has a high accuracy, can be an important part of more complex tasks, such as animal
counting [1, 2], image restoration, and robot obstacle avoidance [3, 4]. With that pur-
pose, the segmentation method must be able to segment underwater images that are in
the wild, and not in a controlled environment. As the main example, a technique that
simply divide the input image in two classes, background and foreground, provides a valu-
able information for an algorithm that is responsible for an underwater robot obstacle
avoidance, since it can show the regions of the image where there are possible objects to
collide. However, underwater images exhibit some particular characteristics which make
their handling more difficulty, including blurriness, reduced contrast, and distorted col-
ors [5, 6]. Because of this, standard segmentation algorithms cannot be directly applied to
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underwater images. Thus, the purpose of this paper is to explore two of the state-of-the-
art deep learning segmentation architectures, together with restoration and fine-tuning
techniques using underwater segmentation datasets also made available through this
paper.
Convolutional neural networks (CNNs) are the current state of the art in image segmen-

tation [7]. Thus, an evident solution to the problem of underwater image segmentation
is the adaptation of state-of-the-art segmentation architectures to deal with underwater
images. However, deep CNNs generally require more than thousands sample images to be
properly trained. As the manual segmentation of images is a labor-intensive task, build-
ing a dataset as large as those usually used in other deep learning problems would take
a considerable amount of time and resources. To overcome this problem, there are a few
possible strategies.
The first one is to pre-train the network on the segmentation of non-underwater images

and then fine tune it using a smaller dataset of manually labeled real underwater images.
This approach is known as transfer learning [8]. Another approach is to use simulated
data, which allows a larger number of training samples, but results in a less realistic
dataset. Finally, we can try to pre-process the input to remove the effects of underwater
degradation before segmenting it with a CNN trained with non-underwater images. We
evaluated all these strategies in state-of-the-art image segmentation CNN architectures.
In this paper, we propose four datasets, mainly one composed of real manually anno-

tated underwater images, to train deep CNN architectures to the task of underwater
image segmentation. Furthermore, we present several deep learning solutions based
on two state-of-the-art segmentation architectures, using different pre-processing and
pre-training steps. All the setups are trained in each developed dataset, and after, the con-
sequent models are evaluated using the ground truth of the real testing set as reference.
To the best of our knowledge, we are the first work to use a CNN approach to under-
water image segmentation in the wild. But the main contribution, which is what allow
the use of CNN, is our dataset of real underwater images in the wild and their respective
ground truths, which is made publicly available. We hope this dataset helps researchers
to evaluate and improve underwater segmentation methods.
The remainder of the paper is organized as follows: the “Related work” section shows

the related works in the areas of underwater image segmentation and image segmentation
using CNNs; the “Methodology” section presents the proposed methodology; the “Exper-
imental results” section evaluates the obtained results. Finally, we summarize the paper
contributions and draw the future research directions in the “Conclusion” section.

Related work
Deep learning-based segmentation

In recent years, convolutional neural networks have become the state-of-the-art in the
area of image segmentation, including high-level semantic segmentation. In [9], a texture
segmentation and classification method based on features extracted by image classi-
fication CNNs trained on the ImageNet ILSVRC [10] dataset is proposed, achieving
state-of-the-art performance on several datasets. Besides that, in [11], an end-to-end
pixel-wise semantic segmentation using fully convolutional networks is performed. The
main advantage of these models over standard CNNs is that they lack fully connected
layers, allowing them to operate on inputs of variable size without the need to mod-
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ify the network’s architecture. Following, the Mask R-CNN [12], that is an extension of
the Faster R-CNN [13], objects detection architecture, achieving state-of-the-art instance
segmentation results. The current state of the art in the PASCAL VOC1 semantic seg-
mentation challenge is the DeepLab neural architecture [14], which has DeepLabv3+ [15]
as the newest version, which outperforms other networks in the semantic segmenta-
tion task. The success of these architectures in their respective segmentation tasks leads
us to believe that CNNs are the most promising approach to achieve good underwater
segmentation results.

Underwater image segmentation

Several approaches have been applied to the problem of underwater image segmenta-
tion. In [16], segmentation of underwater images technique is presented, using CLAHE
histogram equalization followed by histogram thresholding. In [17], the underwater seg-
mentation is performed by measuring the Mahalanobis distance between each pixel and
the background color estimated from sample background images. In [18], a Particle
Swarm Optimization (PSO) is used to maximize the entropy for underwater image seg-
mentation. The same technique is adopted by [19] and [20], but using C-means to cluster
the pixels. In [21], the underwater images are filtered with median filter, segmented them
with K-Means clustering, and the image features are extracted using HOG, and then, used
to classify the segments with an SVM classifier. Using a similar strategy, a novel solution
[22] improve the selection of initial centroids of K-Means, which leads to better results,
while increasing the computational cost. Also being a newer solution, in [23] an active
contour strategy is used, minimizing an energy function to get the segmentation mask of
the object in the underwater image. Already, in [24], a deep learning technique is used, in
which a fully convolutional network is used to perform frame by frame fish segmentation
in underwater videos. They use a weakly-labeled dataset of videos whose ground truth is
derived from a motion-based background subtraction (BGS) technique [25] rather than
manual annotations. The authors evaluate the precision and recall of their model in fish
detection, but not the quality of the segmentation masks on a per pixel basis. In [26], a
candidate object region is extracted from the image based on the presence of artificial
light estimated from optical features. The region is segmented using parametric kernel
graph cuts [27]. The main drawback of this method is to rely on the presence of artificial
light in the image and therefore will not work properly in situations where the only source
of illumination is natural light.
While these methods are able achieve to segment in certain situations, they still rely on

heuristics or weakly labeled data. Inspired by the success of deep learning architectures in
several difficult computer vision tasks, we aim to develop a more general solution, based
on a reliable, manually labeled small set of training images.

Methodology
The most straightforward approach to obtain powerful underwater image segmentation
solution is to train a state-of-the-art segmentation CNN architecture with underwater
images. Themain obstacle to this approach, however, is that, to the best of our knowledge,
no public adequate underwater segmentation dataset exists. The manual segmentation of

1http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6

http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?challengeid=11&compid=6
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underwater images is a relatively simple, but labor-intensive process. Therefore, it would
be extremely impractical to create a dataset as large as those usually used to train deep
CNN architectures from scratch, as such models generally require thousands of samples
to be properly trained.
We can circumvent this problem by pre-training the network using a large semantic seg-

mentation dataset of non-underwater images and performing fine tuning using a much
smaller dataset composed of manually segmented underwater images. The idea is low
level features learned during the initial training help the network in the segmentation of
underwater images. So, some datasets can be proposed, even with a relatively small num-
ber of images, to train deep leaning segmentation models and to be used as a benchmark
for comparison.
In the next sections, we present the proposed datasets created using both real and sim-

ulated images in the wild. Furthermore, we introduce the adopted neural architectures
and the training process.

Datasets

There are some datasets for specific underwater task, e.g., fish detection and classifica-
tion2,3. However, these dataset are not compatible with our problem of underwater image
segmentation in the wild, since they are focused in fishing. Thus, we created our datasets4.
NAUTEC UWI Real—Our Real Underwater dataset is composed of 700 underwater

images in the wild collected from the Internet. The images were manually segmented
in foreground and background pixels. We randomly use 400 images for training and
300 for testing. Three sample images from the dataset and their respective ground truth
can be seen in Fig. 1. The dataset contains images acquired in several water conditions,
illumination, and places, containing images in both benthic and pelagic zones without dif-
ferentiating one from another. There are naturally and artificial lit images. Furthermore,
divers, marine life, and many underwater objects are present in these images acquired in
the wild. This dataset is available in an additional material of this work.
Manually segmenting underwater images is a labor-intensive, time-consuming task.

Because of this, our real underwater dataset is relatively small. The use of simulated
images can increase the amount of training data, which can be created by simulating
the effects of underwater degradation on non-underwater images whose segmentation
labels are available. These effects can be created according to the Jaffe-McGlamery opti-
cal model [29, 30], as adopted in [31]. We adopted a simplified version of the model where
the forward scattering is neglected since the backscattering is the principal responsible
by the image degradation [32]. We also use a set of real underwater image patch from
a backscattering area that provide us medium parameters. These simulated effects are
similar to those presented by Duarte et al. [33].
However, the model requires the availability of the image’s depth map.While we believe

outdoor scenes would be more adequate as they are closer to subsea images, we are forced
to base our simulation on indoor images. To the best of our knowledge, there are no
publicly available outdoor datasets with high-quality depth maps. Despite the obvious
differences between indoor and underwater scenes, the network is expected to learn how

2NOAA dataset - https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
3Ocean Networks Canada - https://www.oceannetworks.ca/crowd-truthing-experiment
4NAUTEC UWI datasets - https://1drv.ms/f/s!ApAbq4UfbfzjhzE6ttiTtxdpMg9i

https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
https://www.oceannetworks.ca/crowd-truthing-experiment
https://1drv.ms/f/s!ApAbq4UfbfzjhzE6ttiTtxdpMg9i
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Fig. 1 Images from our real underwater dataset and their corresponding label. Background pixels are shown
in black and foreground pixels are shown in white. The top image is originally from the supplementary
material of [28]

to perform the segmentation of objects obscured by underwater degradation in a more
general way by using these data. This capability of the network to learn the attenuation
effect generated by the light traveling in the water can be achieved using this simulated
dataset [31].
We use NYU Depth V2 [34] as the basis of our simulated data. This dataset provides

images with segmentation labels and high-quality depth maps. We modified the original
segmentation labels by considering pixels labeled as wall, roof, floor, etc., as background
and pixels labeled as objects as foreground. We create three additional datasets using this
data:
NAUTEC UWI Sim200: This dataset is composed of 200 simulated images with

relatively low turbidity. A simulated image of this dataset is present in the left of Fig. 2.
NAUTEC UWI Mixed: This dataset is the union of the Sim200 and Real Underwater

datasets.
NAUTEC UWI Sim1000: This dataset is composed of 1000 simulated underwater

images with four additional levels of increasing simulated underwater turbidity in rela-
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Fig. 2 An indoor image from NYU-Depth dataset [34] simulated with five incremental levels of underwater
turbidity. These images are in the NAUTEC UWI Sim1000 dataset. Left image is also present in the dataset
NAUTEC UWI Sim200

tion to the Sim200. An image from this dataset with its five levels of turbidity is shown in
Fig. 2.

Network architectures

Designing a deep learning architecture from scratch is an arduous and time-consuming
task. Thus, we evaluated two well-known semantic segmentation architectures in this
work: SegNet [7] and DeepLabv3+ [15]. The evaluated datasets for inland images have
been previously described. We have used 10% of the training dataset for validation.

SegNet

The SegNet is a fully convolution encoder-decoder semantic segmentation architecture,
as shown in Fig. 3. Its encoder network is topologically identical to the 13 convolutional
layers in the VGG16 [35] image classification network. The main advantage of the Seg-
Net over competing segmentation architectures is the reduction in memory use provided
by its decoder network architecture. We choose to evaluate the SegNet because it is a
classical image segmentation architecture based on CNNs.
We run 50,000 training iterations with a batch size of 5 using the Adam optimization

algorithm [36] with a learning rate of 1.5 × 10−4, β1 = 0.9, β2 = 0.999 and ε = 10−8.
The network is initialized using random weights. Furthermore, we also pre-trained the

Fig. 3 SegNet encoder-decoder architecture [7]
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weights using the dataset PASCAL VOC dataset [37]. As our objective is to segment
underwater images in foreground and background, we ignore the class information and
simply consider pixels labeled as any of the 20 Pascal VOC classes to be foreground. We
use 10,582 images for training and 300 for validation in the pre-training step. In this case,
we resize the inputs to a width of 480 × 360 pixels and train until the convergence.
The network parameters are also trained using underwater images. We evaluate the

network using the previously described underwater datasets for 50,000 iterations using
the same hyperparameters.

DeepLabv3+

As the most deep learning segmentation architectures, DeepLabv3+ is an encoder-
decoder network; moreover, it is fully convolutional and, currently, one of the top ranked
architectures in the PASCAL VOC segmentation challenge. The main idea behind the
architecture is to preserve spatial information by reducing the number of strided pooling
operations. Furthermore, atrous convolutions compensate the reduction in the receptive
field. Another adopted technique is the detection of objects at multiple scales by paral-
lel atrous convolutions at different sampling rates. All these characteristics are showed in
the DeepLabv3+ architecture, as shown in Fig. 4. We choose the DeepLab architecture
because it is the state-of-the-art in semantic segmentation.
Training a large architecture such as Deeplab from scratch is difficult, specially when

the amount of available data is limited. Differently from Segnet that is initialized in using
random weights, we start the training by initializing the model with Xcpetion [38] back-
bone weights. We also pre-trained the model on the PASCAL VOC dataset for 20,000
iterations with a batch size of 8, randomly cropping the inputs to the size of 513×513.We
employ common data augmentation methods, such as input scaling and mirroring. We
use SGD with a momentum of 0.9 and polynomial learning rate decay with a base learn-
ing rate of 10−4 and power = 0.9. Weight decay is set to 4 × 10−5. Finally, we train the
model using the previously described underwater datasets for 20000 iterations using the
same training setup.

Fig. 4 DeepLabv3+ encoder-decoder fully convolutional architecture [15]



Drews-Jr et al. Journal of the Brazilian Computer Society           (2021) 27:12 Page 8 of 14

Experimental results

We evaluate our models on the remaining 300 randomly selected images from the real
underwater dataset that were not presented in the training step. The results are evaluated
using the standard mean Intersection over Union (mIoU) metric. We also take the raw
network output, with no additional post-processing.
For the sake of a fair comparison, we also evaluate the networks using a state-of-the-art

underwater image restoration algorithm as a pre-processing step. Our idea is to reduce
the effects of the water that makes the segmentation difficult. We adopted the Under-
water Dark Channel Prior method (UDCP) [39] and the Underwater GAN (UGAN) [40]
before segmenting the image with the models trained only on the PASCAL VOC dataset.
Although the pre-processing using restoration methods sounds a promising idea, mainly
with UGAN, the results are not competitive.
We do not present a comparison with underwater segmentation methods. All of them

use classical methodologies that are unable to segment the underwater images in a proper
way. We found the results of these methods to not be even remotely competitive to the
results obtained using deep neural network.
Table 1 shows the mIoU accuracy for all evaluated models. Figures 5, 6, and 7 show

qualitative underwater segmentation results.
The results show a CNN approach is a viable approach to the task of underwater image

segmentation even though a limited amount of training images. The best network is
achieved using a DeepLab architecture trained using ourNAUTECUWI Real underwater

Table 1 Results of our underwater segmentation models, averaged over the 300 test images

Architect. Pre-processed PASCAL Pre-trained Training data mIoU

SegNet UDCP Yes - 0.415

SegNet UGAN Yes - 0.421

SegNet - No NAUTEC UWI Real 0.825

SegNet - No NAUTEC UWI Mixed 0.805

SegNet - No NAUTEC UWI Sim200 0.522

SegNet - No NAUTEC UWI Sim1000 0.565

SegNet - Yes - 0.444

SegNet - Yes NAUTEC UWI Real 0.796

SegNet - Yes NAUTEC UWI Mixed 0.795

SegNet - Yes NAUTEC UWI Sim200 0.558

SegNet - Yes NAUTEC UWI Sim1000 0.556

DeepLab UDCP Yes - 0.434

DeepLab UGAN Yes - 0.485

DeepLab - No NAUTEC UWI Real 0.689

DeepLab - No NAUTEC UWI Mixed 0.617

DeepLab - No NAUTEC UWI Sim200 0.445

DeepLab - No NAUTEC UWI Sim1000 0.481

DeepLab - Yes - 0.444

DeepLab - Yes NAUTEC UWI Real 0.919

DeepLab - Yes NAUTEC UWI Mixed 0.909

DeepLab - Yes NAUTEC UWI Sim200 0.762

DeepLab - Yes NAUTEC UWI Sim1000 0.751

The model with the highest mIoU is highlighted in boldface
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Fig. 5 Qualitative results obtained using a sample image from the NAUTEC UWI Real underwater dataset on
our networks with different training data

dataset with initial weights of a model pre-trained on the PASCAL VOC dataset. The net-
work obtains ≈ 91.9% mIoU accuracy in a test set composed of 300 underwater images
in the wild.
The segmentation performance is slightly reduced when the real dataset is augmented

with simulated images. Models only trained with simulated data could not produce
satisfactory results, but are still preferable over no fine-tuning at all.
The main reason is our simulated images are based on indoor scenes that is distinct

from the real images of the testing set. The use of simulated images is due to the require-
ment of depth maps that can be only properly obtained in indoor environments, as
described in the “Datasets” section. However, models trained with simulated data per-
form better than the ones trained with real data in images where the background is the
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Fig. 6 Qualitative results obtained using another sample image from the NAUTEC UWI Real underwater
dataset on our networks with different training data

sea floor rather than pure water, such as the sample image shown in Fig. 6. We believe the
simulated dataset present a diverse structure in relation to the background that is similar
to presented in this testing image. Thus, the networks trained with this dataset is able to
segment in a better way than the networks using only real data in this type of test image.
The results of pre-trained DeepLabv3+ are better than the pre-trained SegNet. How-

ever, the results without pre-training in SegNet are better. We believe the main reason for
this is the larger size and complexity of the DeepLab architecture. Larger architectures are
generally more prone to overfitting that imply inferior generalization performance, spe-
cially when the amount of training data is limited. Despite this, the SegNet adopted in this
work lacks in size and complexity to achieve a competitive performance, even given the
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Fig. 7 Qualitative results obtained using a sample image from the NAUTEC UWI Real underwater dataset on
our networks with different training data

relatively small amount of training samples. In addition to that, it is normal that a more
complex network has a higher computational cost, what is also true in this case. When
running the validation process, using a computer with an Intel Core i7-7700K, 16GBRAM
and a NVIDIA GeForce GTX Titan X 12GB, DeepLabv3+ achieve a mean of 10.06 FPS,
already SegNet achieve 16.54 FPS.
Surprisingly, the use of pre-processing with UDCP [39] harmed the segmentation per-

formance of both architectures. However, UGAN [40] improved the performance in
DeepLab segmentation. We believe this happened because UDCP tend to produce some
artifacts that may confuse the network, leading to inaccurate segmentation. Already,
UGAN as a deep learning technique reaches better results in restoration process without
producing to much artifacts that can confuse the network.
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Conclusion
In this paper, we presented a set of datasets to train deep CNN architectures to the task
of underwater image segmentation in the wild. We evaluated the impact of pre-training
and simulated training data on the network performance.We also present a working solu-
tion based on DeepLabv3+ image segmentation architecture achieving a mIoU accuracy
of ≈ 91.9% on a random test set of 300 real underwater images. We prove that this net-
work architecture is able to properly segment with a small number of training images.
Qualitative evaluation leads us to believe that our results are superior to those of tradi-
tional underwater segmentationmethods. Another important contribution is our publicly
available dataset of 700 manually segmented underwater images in the wild and their
respective ground truths. To the best of our knowledge, we are the first work to present a
CNN approach to underwater image segmentation in the wild.
Future work includes the evaluation of other network architectures and generative

adversarial networks [41], which could help in removing small artifacts that are not cor-
rectly penalized by simple loss functions. We also plan to increase the number of images
of our real dataset.
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