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Abstract

Computerized adaptive testing (CAT) based on item response theory allows more accurate assessments with fewer
questions than the classic paper and pencil (P&P) test. Nonetheless, the CAT construction involves some key questions
that, when done properly, can further improve the accuracy and efficiency in estimating the examinees’ abilities. One
of the main questions is in regard to choosing the item selection rule (ISR). The classic CAT makes exclusive use of one
ISR. However, these rules have differences depending on the examinees’ ability level and on the CAT stage. Thus, the
objective of this work is to reduce the dichotomous test size which is inserted in a classic CAT with no significant loss
of accuracy in the estimation of the examinee’s ability level. For this purpose, we analyze the ISR performance and
then build a personalized item selection process in CAT considering the use of more than one rule. The case study in
Mathematics and its Technologies test of the ENEM 2012 shows that the Kullback-Leibler information with a posterior
distribution (KLP) has better performance in the examinees’ ability estimation when compared with Fisher information
(F), Kullback-Leibler information (KL), maximum likelihood weighted information (MLWI), and maximum posterior
weighted information (MPWI) rules. Previous results in the literature show that CAT using KLP was able to reduce this
test size by 46.6% from the full size of 45 items with no significant loss of accuracy in estimating the examinees’ ability
level. In this work, we observe that the F and theMLWI rules performed better on early CAT stages to estimate
examinees’ proficiency level with extreme negative and positive values, respectively. With this information, we were
able to reduce the same test by 53.3% using the personalized item selection process, called ALICAT, which includes
the best rules working together.

Keywords: Computerized adaptive testing, Item response theory, Fisher information, Item selection rule, Item
selection method

Introduction
The evaluation of students has always been very impor-
tant in the learning process. In computer-assisted educa-
tion, learning systems can generate tests that help students
to identify if they have achieved an appropriate level of
knowledge [1]. An example of such system is the com-
puterized adaptive testing (CAT). CATs are computer-
administered tests that efficiently reduce the number of
items (questions) while maintaining a good estimation of
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the respondent’s ability level [2]. In classic CAT, a ques-
tion is initially selected and, for each new question, the
student’s ability level is estimated. If the stopping criterion
is not met, another question is selected.
There are several ways to assess the examinees’ ability

level. A recently used model is the item response theory
(IRT) [1, 3, 4]. This theory includes a set of mathematical
models that attempts to determine the probability of an
examinee to correctly answer a given question, consider-
ing the item’s characteristics and the examinee’s abilities
[5]. This is the model adopted, for example, by the Brazil-
ian High School-level exam, called Exame Nacional do
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Ensino Médio (ENEM), to compute the students’ overall
performance [6].
The IRT-based CATs provide more accurate tests [2]

because it is possible to identify the student’s ability level
and thus select a sequence of items that fits the user’s
knowledge [7]. CATs have several advantages over the
paper and pencil (P&P) test format [8]. One is the possi-
bility to accurately estimate the examinees’ latent abilities,
considering a reduced number of questions [9, 10].
However, the construction of CATs involves a num-

ber of key features, such as choosing the test initializa-
tion method, the stopping criteria, and the item selection
rule (ISR) [9]. In addition, depending on the scenario,
CATs can use, along with the ISRs, some mechanism
to control item exposure, or some kind of content bal-
ancing [11]. An appropriate choice of such key features
can improve accuracy and efficiency to estimate the
examinee’s abilities, especially in relation to the ISRs
[11–14].
The item selection process considered in the classic

CAT construction involves choosing only one ISR [15].
However, these rules have advantages and disadvantages
depending on the examinees’ ability level and the ongoing
test stage, i.e., the number of questions that have already
been selected.
This paper presents a novel approach for the CAT con-

struction, denominated ALICAT (personALIzed CAT),
which aims to customize the item selection process. This
customization is done by dynamically choosing an ISR
based on the student’s performance and the actual stage of
the test. The goal of this proposal is to reduce the length
of dichotomous tests—which considers only correct and
incorrect answers—that are embedded in a CAT environ-
ment, with no significant loss of accuracy in estimating
the examinees’ abilities. To achieve that goal, we analyze
the performance of different ISRs to properly customize
the selection process of items, considering the use of more
than one ISR.

Background
In this section, we present a brief introduction of the theo-
ries used in this paper and themain concepts involving the
configuration of a CAT. Finally, some details of the ENEM
test are explained, justifying its use in the case study of this
work.

Computerized adaptive testing
Computer-based adaptive tests, also known as test-
generating systems, are computer-administered tests that
efficiently reduce the number of items while maintaining
a good diagnosis of the examinee’s performance [2]. This
tool emerged as an alternative to the conventional classi-
cal test theory (CTT) exams applied in paper and pencil
format [16].

CAT systems are composed of five main components:
bank of items (BI), initialization criteria, ISR, method to
estimate the examinee’s ability level, and stopping cri-
teria [17]. Compared to conventional tests, the main
advantages of CATs are (i) the generation of faster and
shorter tests; (ii) the possibility of test application in flex-
ible hours; (iii) since each student receives a unique set
of items, it is much more difficult for the examinee to
cheat; (iv) better control of the exposure of questions; (v)
more accurate examination; (vi) the possibility of imme-
diate feedback; and (vi) a reduction of the number of
items without reducing the precision in estimating the
examinee’s ability level [1, 9, 18].
It should be noted that the key questions found in CAT

are [9] as follows: (i) How to choose the first question
given that, initially, nothing is known about the examinee?
(ii) How to choose the next item after the response of the
current item? (iii) How to choose the ideal time to stop the
test?
These questions justify the existence of different mod-

els that support the construction of the CAT, which can
meet each one in a particular way. Some examples of these
models are the sequential probability ratio test [19], the
combination of granularity hierarchies and Bayesian net-
works [20], measurement decision theory [21], and IRT.
However, IRT is the most widely used model in CAT
systems [1, 3, 4].

Item response theory
The IRT consists of mathematical models that establish
the probability of an examinee to hit a given question,
given the item’s characteristics and the examinee’s abili-
ties [5]. One of the great advantages of the IRT is that
the computation of the examinee’s ability level and the
item parameters (difficulty and discrimination) are inde-
pendent of the sample of items [22]. This allows the com-
parison of populations if tests have some common items
or the comparison between individuals from the same
population that have been submitted to totally different
tests.
In this paper, we employ the logistic model with three

parameters (ML3) for calculating the probability of cor-
rect or incorrect response to dichotomous items. In this
model, the probability of user j, with ability θj, to correctly
answer the item i can be calculated by:

Pi
(
θj

) =P
(
Uji = 1|θj

) = ci + (1 − ci)
1

1 + exp−D.ai.(θj−bi)
,

(1)

where

• Uji is a variable that assumes the value 1 when the
examinee j answers the item i correctly and 0
otherwise;



Jatobá et al. Journal of the Brazilian Computer Society            (2020) 26:4 Page 3 of 13

• bi is the difficulty parameter of the question;
• ai is the discriminating power that each question has

to differentiate the examinees who master, from
those who do not master, the evaluated ability in item
i [6]. The value of ai is proportional to the derivative
of the curve tangent at the inflection point at point bi.
Low values of ai indicate that the item has little
power of discrimination, that is, students with quite
different abilities have similar probabilities to hit the
question. For very high values, students are separated
into two groups: those with abilities below bi and
those above bi;

• ci is the guessing probability of item i, i.e., the
probability that a participant will hit the correct
answer randomly and not by mastering the required
ability [6];

• θj is the latent ability of user j ; and
• D is a constant scale factor. Usually, the value 1.7 is

used so that the logistic function gives results similar
to the normal function [23].

The item selection rule
Choosing an ISR directly influences the efficiency and
accuracy in estimating the ability of CAT respondents
compared to P&P tests [24]. However, whether in CAT or
P&P, accuracy is low at the early stages, when few ques-
tions have been answered [12]. Hence, higher accuracy
depends on choosing a proper item selection criterion
[11–14].
There are two well-established general approaches for

selecting items in CATs: (i) information-based and (ii)
Bayesian [25]. The first selects the item that providesmore
information about the estimation of a specific ability level
and the second selects items based on prior and posterior
distributions of estimation of a specific ability level [26].
The Fisher information (F) [27] technique is an exam-

ple of an information-based ISR. An alternative is the
Kullback-Leibler information (KL) [28], which is also
based on information and is a general measure for the dis-
tance between two distributions [29]. According to [12],
the F rule is more accurate to estimate the ability level
of average users in the early stages of CATs if compared
to the maximum posterior weighted information (MPWI)
[30] and Kullback-Leibler information with a post distri-
bution (KLP) [28], which are Bayesian rules. On the other
hand, according to [11], the MPWI and KLP strategies
have better results than the F rule for extreme ability levels
(very high or very low values).
There are also studies that indicate that the maximum

likelihood weighted information (MLWI) [31] and MPWI
rules present a better general performance, in compari-
son with the F rule [29–31]. These results were obtained
in applications that are inserted in the context of dichoto-
mous tests. In addition, these applications do not make

use of item exposure controls or content balancing con-
trols.
To build the proposed CAT, in this paper, we per-

form a systematic analysis of the different aforementioned
ISRs. In this analysis, we aim to investigate whether the
application of an ISR is more appropriate than another,
considering the examinees’ ability level and the test stage.

Ability estimation
There are many methods to estimate the examinees’ abil-
ity level such as maximum likelihood estimator (MLE),
expected a posteriori (EAP), Bayes model (BM), maxi-
mum a posteriori estimator (MAP), and weighted likeli-
hood estimator (WL). Since in this work the method for
the estimation of abilities was EAP, we explain this method
next, but before we need to explain MLE.
The MLE [27] computes the examinee’s ability estima-

tion θ̂ that maximizes the following function:

LI
(
θj

) =
I∏

i=1
Pi

(
θj

)Uji Qi
(
θj

)1−Uji , (2)

where Pi is the probability of user j to correctly answer
item i (Eq. 1), Qi is the probability of an incorrect answer
of item i (Qi = 1 − Pi), and I is the test length.
The EAP [32] estimator is an alternative estimator. This

estimator computes the mode of the posterior mean:

θ̂EAP =
∫ +∞
−∞ θ f

(
θj

)
LI

(
θj

)
dθj

∫ +∞
−∞ f

(
θj

)
LI

(
θj

)
dθj

, (3)

where f (θj) is the prior distribution.

The National High School Exam
The National High School Exam (ENEM) is a P&P exam
promoted by the Brazilian National Institute for Educa-
tional Studies and Research Anísio Teixeira (INEP) [33]. It
was created in 1998, but was reformulated in 2009, where
it was used as a selection criterion for entry to universities
[34].
The ENEM uses the concept of competencies, which

translates into skills, knowledge, and attitudes to solve
each problem situation. The exam is structured in five
tests. One of the tests is the writing test, and the others
are structured in four macro-areas, which are Nature Sci-
ences and their Technologies; Human Sciences and their
Technologies; Languages, Codes and their Technologies;
and Mathematics and its Technologies [35].
The test items are dichotomous with the possibility of

multiple choice questions, and to calculate the partici-
pant’s score, the exam began to adopt the IRT in 2009. The
logistic model used by IRT is the three-parameter model
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(ML3). Each of the four tests has 45 items, and the calcu-
lation of the respondents’ ability level is estimated by the
EAP method.
Following, we define our proposed CAT and, subse-

quently, we describe our research method.

The ALICAT approach
In the standard CAT approach, only one ISR is used to
select the sequence of questions. However, depending
on the respondent’s ability and the ongoing stage of the
test, the performance of the selection rules can vary con-
siderably [11, 12, 29–31]. That said, our proposal is to
personalize the item selection process, choosing an ISR
dynamically, considering the respondent’s performance in
fulfilling the test and the current stage of the test.
The ALICAT approach chooses the proper selection

rule based on the users’ answer pattern. If a given
user correctly answers the first p questions, then for
the next q items the ALICAT selects the ISR with
the best performance to estimate the scores for users
with high-level abilities. On the other hand, if a user
answers wrongly the first p questions, the ALICAT
does the opposite. In this case, for the next q ques-
tions, it selects the ISR with the best performance for

users with low-level abilities. In any other case, the
selected rule is the one with the best average performance
(see Fig. 1).
In Fig. 1, variable i represents the number of selected

items. Variables p and q (with p < q) represent the test
moment at which another ISR, different from the one that
started the test, can be selected. In the figure, the squares
in blue contain the test moment at which different rules
are selected.
The strategy to re-use the best general rule after apply-

ing q items is due to the fact that, as the test grows, the
performance of all rules tends to remain similar [12].
Consequently, considering a given test scenario, to exe-

cute the ALICAT approach, it requires identifying the ISR
that presents the best average performance with all users,
the best performance with users that have high ability
level, and the best performance with users that have low
ability level. Following, we describe how we defined these
selection rules.

Researchmethod
In this section, we describe the data and the item bank.
Also, we elucidate the processes of conducting and eval-
uating the comparative study of the item selection rules.

Fig. 1 Flowchart of the ALICAT approach
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Finally, we present the configuration and evaluation form
of the ALICAT approach.

Data and item bank
We used the data from the 2012 ENEM exam, which are
public and have been taken from the transparency portal
[36]. We choose this year in order to compare some of our
results with the obtained results by Spenassato et al. [37].
The data model is composed of a set of randomly

selected dichotomous responses. Each answer u can con-
tain only two possible values, which are 1 for correct and
0 for incorrect, such that u ∈ {0, 1}, characterizing our
distribution as a Bernoulli one.
As an assumption to be used throughout the text, we

accept that our sample is independent and equally dis-
tributed, since the responses from different individuals are
independent.
The initial sample comprised 1,000,000 respondents

from the pink version of the Mathematics and its Tech-
nologies test. The values of a, b, and c parameters of the 45
items were taken from [37]. These parameters served as a
basis for estimating the examinees’ ability level.

Examinees’ ability estimation
To estimate the examinees’ ability level, we used the soft-
ware ICL [38] and the method for the estimation of
abilities was the expected a posteriori (EAP), the same one
used in [37]. The scores estimated for the complete test of
45 items that correspond to the P&P test are called true
scores and represented by θ . In time, let us define here θ̂ as
the respondent’s partial estimated score, which is assessed
during the CAT execution.
Then, the computed true scores were ranked in 10

groups between − 2 and 3.5 (see Table 1). The first goal
was to understand the behavior of the estimation step. The
lowest and highest θ values were, respectively, − 1.716215

Table 1 Sample size and lowest, highest, and average θ for each
true score interval

True θ interval Sample size Lowest θ Highest θ Average θ

[ − 2 ; − 1.5 ] 12193 − 1.716215 − 1.500013 − 1.58

[ − 1.5 ; − 1 ] 121331 − 1.499992 − 1.000002 − 1.19

[ − 1 ; − 0.5 ] 211557 − 0.999995 − 0.500002 − 0.75

[ − 0.5 ; 0 ] 193117 − 0.499994 − 1e−06 − 0.25

[ 0 ; 0.5 ] 163131 1.3e−05 0.499995 0.24

[ 0.5 ; 1 ] 139804 0.500006 0.999997 0.74

[ 1 ; 1.5 ] 95364 1.000001 1.499987 1.23

[ 1.5 ; 2 ] 53275 1.500001 1.999989 1.71

[ 2 ; 2.5 ] 9435 2.000034 2.499647 2.16

[ 2.5 ; 3.5 ] 793 2.500007 3.083216 2.66

and 3.083216. It can be noted that there is a small num-
ber of respondents with high θs (greater than 2) and low
θs (lesser than − 1.5).
As in [37], 500 respondents were randomly selected

from each group, thus obtaining another sample with
5000 respondents. This was important to ensure that all
groups of respondent levels are part of the CAT simulation
stage. From this group of 5000 respondents, we consid-
ered only those who answered at least 40 items, totaling
4979 respondents.

CAT configuration
For the assembly of CATs, we use the package catR
[39] from the software R. There was no need to imple-
ment any criterion of item exposure because all evaluated
respondents were submitted to the same 45 items. Also no
restrictions for content balance has been developed as it is
not disclosed which content each question belongs to.
To identify the length of the CATs, we applied the same

methodology used by [37] that is described in the fol-
lowing. This methodology allows finding the number of
questions necessary for a CAT to be able to estimate, with
a certain degree of precision, the respondent’s score. For
this purpose, it is necessary to verify at which point of the
test the accuracy of the θ̂ estimation remains stable.
To verify the stability point, we consider the calcula-

tion of the standard error (SE) using the EAPmethod that
satisfies the following equation:

SEI,j
(
θ̂EAP

)
=

⎡

⎢
⎣

∫ +∞
−∞

(
θj − θ̂EAP

)2
f
(
θj

)
LI

(
θj

)
dθj

∫ +∞
−∞ f

(
θj

)
LI

(
θj

)
dθj

⎤

⎥
⎦

1/2

.

(4)

SE was estimated by the semTheta method available in
the catR, an R package.
Thus, we compute SEI,j that corresponds to the esti-

mated standard error of the respondent j score, after
applying I items. The stability point, for an examinee j, is
the test moment, in which the difference of the standard
error of the examinee score between the applied current
item (SEI,j) and the previous item (SEI−1,j) is less than 1%
of the standard error of his score taking into account the
previous item. Thus, the stability point for the examinee j
is the value of I that satisfies the following equation [37]:

∣
∣SEI,j − SEI−1,j

∣
∣ <

∣
∣0, 01 × SEI−1,j

∣
∣ , (5)

in which variable j represents the evaluated respondent,
ranging from 1 to 4979. Variable I refers to the item, rang-
ing from 1 to at least 40, and at most 45.When the stability
point I is found, the test for examinee j can be completed
with no considerable loss on the accuracy of the score
estimations [37].
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Figure 2 illustrates a hypothetical example of CAT appli-
cation for a respondent with true score equal to 1.1 for
a 45-item test. The value 1 (one) represents that the
user gives a correct response and 0 (zero) represents
a wrong response. The yellow line represents the value
of the difficulty parameter of each sequentially selected
item. We can observe that from item 13, the estima-
tion of the current score (θ̂ ) is already very close to
the true score (θ ). This means that if the behavior of
all the evaluated users was similar, value 13 could be
a good length for the CAT. In the example, this would
represent a reduction of 71.1% of the original 45-item
test.
For each CAT, one of the item selection rules (F, KL,

KLP, MLWI, and MPWI) were applied, with the initial θ̂

set to 0 (zero). In the CAT execution, the stability point of
each respondent was identified. All points were organized
in 10 groups, ranging from − 2 to 3.5. For each group, we
compute the average of the points belonging to the group.
Thus, the CAT length nwas defined by the highest average
in the 10 groups.

Evaluation of the ISRs
We follow the same method proposed in [37] and [12] to
evaluate the ISRs. After computing the maximum length
n of the test for each ISR, they are executed again, now
considering the new fixed length.
To evaluate the performance of the ISRs in the estima-

tion of abilities, we computed the average bias (BIAS),
defined in Eq. 6, and the root mean squared error (RMSE),
defined in Eq. 7, of the score estimation:

BIAS(n) = 1
R

R∑

k=1

(
θ̂n,k − θk

)
, (6)

RMSE(n) =
√√√
√ 1

R

R∑

k=1

(
θ̂n,k − θk

)2
. (7)

In these equations, θk is the true score of the kth respon-
dent, R is the total number of respondents, and θ̂n,k is the
estimated ability value of the kth respondent, after apply-
ing n items. These values were captured in the selection of
the first 30 items and after executing each CAT.

Setup and evaluation of the ALICAT approach
After executing the ISR evaluation, it is possible to know
which is the rule with the best general performance to
estimate user scores. The same is true for the ones with
the best performance for users with high and low ability
level. Ability values above or equal to 2.5 are considered
high, and values below or equal to − 1.5 are considered
low. After defining the above rules, it is possible to build
the ALICAT.
The next step is to evaluate the ALICAT performance

and compare it with other CATs that use only one ISR.
This step follows the same process defined for evaluat-
ing the ISRs. After identifying the length of ALICAT, the
tests will be processed again for all respondents in the
sample, but with a fixed number of questions. We com-
pute the values of the BIAS and the RMSE during the test
execution.
Finally, as part of the performance comparison between

ALICAT and CATs that exclusively uses one item selec-
tion rule, we will present graphs as the one in Fig. 3. This
figure contains an example of a comparison between the
true scores and the scores obtained via CAT. It can be seen
in this example that the scores obtained by the CAT had
the same values as the true scores, which would be the
ideal case.

Fig. 2 Example of a CAT with 45 items applied to a respondent with θ = 1.1
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Fig. 3 Ideal scenario. This graph illustrates what would be an ideal
scenario for estimating the respondents’ abilities performed by a CAT.
The red dashed line represents possible score values obtained by the
CAT in relation to the true score

Results
The results were extracted from the execution of each
CAT, considering its respective ISR. We considered their
general performance, as well as their respective stabil-
ity points. Also, the BIAS and RMSE were calculated in
the initial stages and at the end of each CAT. Finally,
the results of the ALICAT setup and execution stages are
presented.

ISR performance in complete test
Table 2 contains the number of respondents (σ ) and the
average number of selected items (x̄) for each θ̂ interval.

Table 2 Stability point identification (average number of selected
itens x̄) and sample size (σ ) for each ISR and for each θ̂ interval

Estimated θ̂ interval F KL KLP MLWI MPWI

σ x̄ σ x̄ σ x̄ σ x̄ σ x̄

[ − 2 ; − 1.5 ] 502 7 48 14 301 8 0 – 0 –

[ − 1.5 ; − 1 ] 439 8 548 8 552 8 3 23 797 8

[ − 1 ; − 0.5 ] 611 10 477 8 740 9 7 17 723 8

[ − 0.5 ; 0 ] 490 14 1047 7 385 13 2544 6 517 9

[ 0 ; 0.5 ] 666 21 629 8 506 14 771 6 585 15

[ 0.5 ; 1 ] 281 19 369 10 708 9 377 7 395 13

[ 1 ; 1.5 ] 665 35 406 21 242 24 166 10 454 18

[ 1.5 ; 2 ] 152 25 554 12 1512 7 35 19 1506 9

[ 2 ; 2.5 ] 1142 19 901 15 3 22 769 14 2 2

[ 2.5 ; 3 ] 31 27 0 – 0 – 307 9 0 –

The values in bold were the maximum lengths defined for
each ISR (denoted by n).With this new value, all ISRs were
re-executed considering the stop criterion set to n.
In general, the KLP andMPWI rules practically failed to

estimate the ability of users with high-level values (θ ≥ 2).
With this, they placed all respondents with true θ greater
than 1.5 in the range [1.5; 2]. At the other end, the MLWI
rule had little success in estimating the ability of users with
low-level values (θ ≤ −0.5).
The selection rule F was the one that selected, on aver-

age, a larger number of items for a given θ̂ group, and the
MPWI was the one that selected the least (n = 35 and
n = 18 items, respectively). Practically all the maximum
averages of the number of selected items were found in
the range [1; 1.5], except for theMLWI selection rule. The
result obtained for rule F is similar to that found in [37],
in which the maximum average of items was 33.
Figure 4 shows the performance of each item selec-

tion rule related to the number of questions selected
for each θ̂ group. In most cases, rule F has the high-
est average number of selected items for θ̂ greater than
− 0.5. In contrast, it presents the best performance with
users with θ ≤ − 1.5. The MLWI rule is the best
for θ̂ values between − 0.5 and 1.5 and values greater
than 2.5.
Table 3 shows the results of the BIAS and RMSE mea-

sures. There is evidence that the KL and MPWI rules are
underestimating the ability of the respondents, since they
have negative BIAS. The rules with the lowest RMSE, i.e.,
the ones with the best estimators, are F and KLP.
In general, the most prominent selection rule is KLP,

since it has the lowest BIAS, the second lowest RMSE,
and it allows to reduce the size of the test by 46.6%, with
no significant loss of the respondents’ estimated score,
compared to the complete test with 45 questions.

Performance of the ISRs at the CATs’ early stage
Next, we show the value of the BIAS and RMSE mea-
sures in the selection of the first 30 items during the CAT
execution.
Figure 5 summarizes the results of the BIAS (Eq. 6)

computed at the initial stage of the test for each ISR.
Generally, the performance difference among the rules
gets smaller as the number of questions increases. At the
30th question, for example, all rules have very similar
performance.
The largest difference in BIAS values occurs in the most

extreme groups of θs. For the negative extreme (− 2 ≤
θ < −1), the rule F has a lower BIAS in the first 10 items.
In the positive extreme (2 < θ ≤ 3.5), there was sub-
stantial variation. Although theKL rule performed well on
items 2 and 3, we highlight the performance of theMLWI
rule in that group. For instance, this rule presented a near
zero result from items 4 to 10.
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Fig. 4 Average number of selected items by ISRs for each estimated score interval

With the application of more items, we can observe that
there is a BIAS convergence pattern that remains simi-
lar to the results presented in [12]. But the results were
divergent especially for the F rule in negative extremes.
This can be explained by the difference in the nature of
the tests, by how the CAT was configured and also by the
choice and setup of the abilities’ estimation method.
Figure 6 shows that the RMSE behavior of the differ-

ent ISRs, for the extreme θ values, was similar to that
observed for the BIAS. The F andMLWI rules obtained a
better RMSE for the extreme negative and positive θ val-
ues, respectively. However, the results exhibit the same
divergent features when compared to the results shown in
[12], which were already explained for the BIAS measure.

Configuration and performance analysis of the ALICAT
approach
With the results of the last two subsections, it was pos-
sible to build the ALICAT. This approach is under the
following definitions: The ISR with the general best per-
formance is KLP; the ISR with the best performance for
users with high-level abilities (θ ≥ 2.5) is MLWI; and the
ISR with the best performance for users with low-level
abilities (θ ≤ −1.5) is F. Thus, the ALICAT configuration
modeled in Fig. 1 can be seen as its final version in Fig. 7
for this case study.
With the final design of the ALICAT completed, we exe-

cuted it considering the complete test, the sample of the
4979 respondents, p = 3 and q = 10. The stability point
identified was 21 questions. The results of Table 4 show

that all θ̂ ranges have been contemplated. In addition, the
number of respondents per group is very close to the 500
originally taken from the true θ values.
With the defined stability point, the ALICAT was then

executed again, this time considering the fixed value of
21 questions as a stopping criterion. In this execution, the
value of the BIAS obtained was 0.004 and the RMSE was
0.190. These values are very close to the results of KLP,
which obtained the best general performance.
Figure 8 displays the results of CAT scores versus true

scores considering a complete test. The ALICAT and
the CAT with exclusive use of the KLP rule had sim-
ilar results. The CATs with the KL and MLWI rules
had many divergences in the estimations of scores below
0 (zero). The biggest difference in the MPWI estima-
tions was for θ values lesser than 0 and greater than
2. The main difference between the ALICAT and the
F rule was for θ values closer to 3. While F had an
apparent best performance, it was also the one that
required more items to converge. Altogether, there were
required 35 items, compared to 21 used in the ALICAT
execution.

Table 3 BIAS and RMSE for each item selection rule

F KL KLP MLWI MPWI

BIAS 0.030 − 0.002 0.001 0.067 − 0.028

RMSE 0.174 0.273 0.193 0.400 0.294
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Fig. 5 BIAS obtained from the execution of the CATs for each ISR. The BIAS were cataloged by groups of θ for the first 30 items. Groups range from
− 2 to 3.5 (x-axis)
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Fig. 6 RMSE obtained from the execution of the CATs for each ISR. The RMSE were cataloged by groups of θ for the first 30 items. Groups range from
− 2 to 3.5 (x-axis)
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Fig. 7 Flowchart of the final ALICAT configuration after the analysis of the ISRs

Conclusions and future works
The F and KLP rules have good general performances in
the estimation of θ values considering the point of sta-
bility as the stopping criterion. However, KLP required
fewer questions (24 items versus 35 that rule F required)
making it the best option in the overall ISR evaluation.
When investigating the behavior of the ISRs in the ini-
tial moments of the CATs, MLWI and F had the best
performances for positive and negative extreme θ values,
respectively. Based on these results, it was possible to con-
figure and validate the ALICAT method. Its performance
for BIAS and RMSEwas close toKLP; however, it required
only 21 items. This represents a 54.3% reduction over the
45 items in theMath and its Technologies test of the 2012
ENEM exam with no significant loss in ability estimation.
In summary, the ALICAT was able to further optimize

the item selection process by dynamically choosing the
ISR, rather than the fixed strategy of using only one ISR
throughout the test. This improvement in the process of
constructing the computerized adaptive tests represents a
direct reduction in the test’s resolution time. This feature
covers advantages, such as (i) cost reduction for the insti-
tution that is applying the test, because users will spend
less time using the computational resources and the phys-
ical spaces, if these are applied; and (ii) decreased fatigue

and frustration of respondents. These characteristics can
improve the motivation of the respondents in the resolu-
tion of the items, and thus have a better CAT accuracy
to estimate their abilities. This is possible because, among
other aspects, participants will not have to respond to very
easy or very difficult questions related to their level of
knowledge.

Table 4 Number of respondents (σ ) and average selected items
(x̄) for each θ̂ interval in ALICAT’s approach

θ̂ Interval ALICAT

σ x̄

[ − 2 ; − 1.5 ] 495 7

[ − 1.5 ; − 1 ] 471 8

[ − 1 ; − 0.5 ] 626 10

[ − 0.5 ; 0 ] 540 11

[ 0 ; 0.5 ] 507 13

[ 0.5 ; 1 ] 754 9

[ 1 ; 1.5 ] 449 18

[ 1.5 ; 2 ] 100 18

[ 2 ; 2.5 ] 554 21

[ 2.5 ; 3 ] 483 10
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Fig. 8 Comparison between CAT scores (θ̂ ) and true scores (θ )

In the context of this case study, we used only data from
one macro area of the ENEM exam. However, this study
may be extended to other areas of knowledge or to other
tests of a similar nature.
One limitation of this work is the form used to define the

maximum length n of the test. We defined it as the high-
est average value of the stability points for the 10 groups
of θ̂ values. This may decrease the accuracy in estimating
respondents who have a higher point of stability.
A preliminary version of this paper, which does not

include anything about the ALICAT and the performance
evaluation of the ISRs at the CATs’ early stage, was pub-
lished in [40].
For future works, we want to apply the ALICAT in

different educational tests and use different methods for
defining the CAT length and its configuration. In addi-
tion, other methods of item selection can also be verified
in the comparative study of ISRs. Thus, it will allow to val-
idate the effect on the score estimation of the ALICAT
approach in different test scenarios.
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