de Sousa et al. Journal of the Brazilian Computer
Society (2020) 26:1
https://doi.org/10.1186/s13173-019-0095-5

Journal of the
Brazilian Computer Society

RESEARCH Open Access
Check for
updates

Studying the evolution of exception
handling anti-patterns in a long-lived
large-scale project

Démora B C de Sousa', Paulo Henrique M. Maia?, Lincoln S Rocha' and Windson Viana'”*

Abstract

Exception handling is a well-known technique used to improve software robustness. However, recent studies report
that developers typically neglect exception handling (mostly novice ones). We believe the quality of exception
handling code in a software project is directly affected (i) by the absence, or lack of awareness, of an explicit exception
handling policy and guidelines and (ii) by a silent rising of exception handling anti-patterns. In this paper, we
investigate this phenomenon in a case study of a long-lived large-scale Java Web system in a Public Education
Institution, trying to better understand the relationship between (i) and (i), and the impact of developers’ turnover,
skills, and guidance in (ii). Our case study takes into account the technical and human aspects. As a first step, we
surveyed 21 developers regarding their perception of exception handling in the system’s institution. Next, we
analysed the evolution of exception handling anti-patterns across 15 releases of the target system. We conducted a
semi-structured interview with three senior software engineers, representatives of the development team, to present
partial results of the case and raise possible causes for the found problems. The interviewed professionals and a second
analysis of the code identified the high team turnover as the source of this phenomenon, since the public procurement
process for hiring new developers has mostly attracted novice ones. These findings suggest that the absence of an
explicit exception handling policy impacts negatively in the developers’ perception and implementation of exception
handling. Furthermore, the absence of such policy has been leading developers to replicate existing anti-patterns and
spread them through new features added during system evolution. We also observed that most developers have low

skills regarding exception handling in general and low knowledge regarding the design and implementation of
exception handling in the system. The system maintainer now has a diagnosis of the major causes of the quality
problems in the exception handling code and was able to lead the required measures to repair this technical debt.

Keywords: Case study, Exception handling, Exception handling anti-patterns

Introduction

Exception handling (EH) is a forward error recovery tech-
nique used to improve software robustness by provid-
ing means to structure fault-tolerance activities into the
software source code [1, 2]. Exception model abnormal
situations, detected at run time, which disrupt the nor-
mal control flow of a programme. When an exception
is detected, the normal control flow is interrupted and
the exceptional control flow begins. From this point for-
ward, the EH mechanism takes control of a programme

*Correspondence: windson@virtual.ufc.br
Federal University of Ceara, Av. Humberto Monte, 60440-593, Fortaleza, Brazil
Full list of author information is available at the end of the article

@ Springer Open

execution and starts a search for a proper handler to
deal with such abnormal situation [3]. Widely adopted
programming languages, such as Java, C#, and Python,
provide constructs devoted to structure the exceptional
control flow, specifying in the source code where and how
exceptions can be raised, propagated, and handled [4].
However, despite its importance, EH is commonly
neglected by developers. It is claimed as the least under-
stood, documented, and tested part of a software system
[5-8]. Recent studies have investigated the relationship
between EH code and software maintainability [4], evolv-
ability [9], architectural erosion [10], robustness [11], bug
appearance [12], and defect-proneness [13]. They provide
pieces of evidence that the quality of EH code may impact

© The author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-019-0095-5&domain=pdf
http://orcid.org/0000-0002-8627-0823
mailto: windson@virtual.ufc.br
http://creativecommons.org/licenses/by/4.0/

de Sousa et al. Journal of the Brazilian Computer Society

on the overall software quality. Moreover, researchers
pointed out EH anti-patterns (e.g., Catch and Do Nothing
and Destructive Wrapping) as a source of software failures,
named exception handling bugs [12, 14, 15].

Based on previous studies [5, 9, 10, 15-17], we are con-
vinced that the quality of EH code produced in a software
project is directly affected by two aspects: an absence (or
lack of awareness) of an explicit EH policy and guidelines,
and a silent raising of EH anti-patterns. The former may
lead developers to decide on their own, in an ad hoc way,
how to design and implement the EH code. Therefore, this
can cause, for instance, an architectural erosion problem,
with respect to EH [10, 16]. Without a systematic code
review process, the appearance of EH anti-patterns will
only be avoided by the developers’ skills, knowledge, and
consciousness concerning the importance of EH code to
the overall software quality [5].

Thus, to gather evidence that corroborates our belief,
we conducted a case study on a long-lived large-scale
Java Web system of a Public Education Institution (here-
after called institution) in a developing country, which has
about 64,3471 lines of code, 4590 classes, and more than
46 people involved in its maintenance and evolution. We
aimed at answering the following research questions:

e RQ1. What perceptions does the development team
of a large-scale system have about EH?

e RQ2. What and to what extent EH anti-patterns can
be found in a large-scale system and how they evolve
over time?

o RQ3. What factors contribute to the dissemination of
EH anti-patterns in a large-scale system?

In our previous study of this Java Web System [18],
we examined the research questions RQ1 and RQ2. To
answer RQ1, we surveyed the project team members
responsible for designing and developing the exceptional
flows of the analysed target system. In this online sur-
vey, we collected information concerning the team’s skills,
knowledge, and perception about the EH design, imple-
mentation, and importance in the institution and in the
project itself. Next, to answer RQ2, we perform a source
code analysis in 15 releases of the target system to identify
the occurrence, types, and the number of EH anti-patterns
added in each release.

In this paper, we went a step forward to answer the
research question RQ3. The interview results revealed
situations that could be the cause of XSA’s exception han-
dling problems. Hence, we decided to investigate them
deeply by adding a third unit of analysis in our case study.
The key points to be investigated were (i) the development
team turnover, (ii) the inexperience of novice develop-
ers, and (iii) the developers’ awareness of EH anti-pattern
insertion. For instance, we dive into the understanding
of the team turnover impact in the EH quality by re-

(2020) 26:1

Page 2 of 24

analyzing the XSA code and applying a code statistic anal-
ysis. In addition, we analysed the programmers’ knowl-
edge concerning the EH anti-patterns further with the
aim to investigate whether they were inserting or remov-
ing EH anti-patterns because they were unaware of them.
For that, we applied a new online instrument to see if
developers of the XSA system know the most recurring
anti-patterns in the source code they implement. Finally,
we improved the related work section and almost all the
paper’s figures and graphics.

To answer RQ3, we performed a set of actions. Firstly,
we carried out a semi-structured interview with a project
committee composed of the three most expert software
architects. In the occasion, we presented the results of
R1 and R2 to them. Secondly, we tracked down the
changes made by the developers in the source code to
analyse which group of professionals (experienced and
novice ones) added and removed more anti-patterns in the
system’s source code. Finally, we applied an online quiz
aiming at evaluating developers’ capability to recognise
EH anti-patterns from code snippets extracted from the
studied system.

Our findings indicated that the majority of develop-
ers of the target institution believes in the importance
of exception handling. However, they face obstacles dur-
ing development activities, such as lack of documenta-
tion, lack of EH policy, and the absence of automated
tools to detect bad EH practices. Several anti-patterns
were detected in the system code. Catch Generic, Generic
Throws, Destructive Wrapping, and Catch and Do Nothing
EH anti-patterns are responsible for the largest number of
violations. Catch Generic EH anti-pattern corresponds to
more than 70% of all found violations, unlike the results
presented in other studies [12, 15, 19]. The interviewed
architects pointed the absence of a team dedicated to
software quality inspection in the institution, the high
team turnover, the inexperience of developers to work
with large systems, and the replication of anti-patterns
as the source of this phenomenon. The results from the
code change analysis and the online quiz provide evi-
dence supporting the claim of the developer’s experience
impacts in the inclusion and dissemination of EH anti-
patterns in the target system. In short, we have observed
that inexperienced developers are more prone to insert
EH anti-patterns and less able to recognise them.

The remainder of this paper is organised as follows.
In the “Background” section, we present the theoreti-
cal background. Next, in the “Research methodology”
section, we describe the research methodology followed
in this study. The “Unit of analysis 1: developer’s per-
ception about EH” section, “Unit of analysis 2: EH code
analysis” section, and “Unit of analysis 3: cause and effect
analysis” section details the unities of analysis investi-
gated in the case study. The “Overall discussion” section

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

presents the overall discussions and the “Threats to
validity” section the validity threats. The “Related work”
section is devoted to related works, and the “Final remarks
and future work” section concludes the paper.

Background

Java exception handling

In Java programming language, “an exception is an event,
which occurs during the execution of a programme, which
disrupts the normal flow of the programme’s instructions”
[20]. When an error occurs inside a method, an excep-
tion is raised. In Java, the raising of an exception is called
throwing. Exceptions are represented as objects follow-
ing a proper class hierarchy and can be divided into two
categories: checked and unchecked. Checked exceptions
are all exceptions that inherit, directly or indirectly from
Exception class, except those ones that inherit, directly
or indirectly, from Error or RuntimeException
classes, named unchecked ones. Checked exceptions rep-
resent exceptional conditions that a robust software
should recover from. Unchecked exceptions represent an
internal (RuntimeException) or an external (Error)
exceptional conditions that a software usually cannot
anticipate or recover from. In Java, only handling of
checked exceptions is mandatory, while the handling of
unchecked exceptions is not.

When an exception is raised, the execution flow is
interrupted and deviated to a specific point where
the exceptional condition is handled. In Java, excep-
tions can be raised using the throw statement, sig-
nalled using the throws statement, and handled in the
try-catch-finally blocks. The “throw new E()”
statement is an example of throwing the exception E.
The “public void m() throws E,T” shows how
throws is used in the method declaration to indicate the
signalling of exceptions E and T.

The try block is used to enclose the method calls that
might throw an exception. If an exception occurs within
the try block, that exception is handled by an excep-
tion handler associated with it. Handlers are associated
to a try block by putting a catch block after it. A try
block can be associated with multiples catch blocks.
Each catch block catches a specific exception type and
encloses the exception handler code. The £inally block
is optional, but whether declared always executes when
the try block finishes, even if an exception occurs. The
coding of cleanup actions within the finally block is
recognised as a good practice.

Exception handling anti-patterns

Several studies have identified and characterised EH code
anomalies, referring to them using their own nomen-
clature such as bug patterns [21], inappropriate coding
patterns [22], bad smells [23, 24], and anti-patterns [14].

Page 3 of 24

Barbosa et al. [19] identify software failures caused by
such kind of code anomalies. They named them as excep-
tion faults or exception handling faults, since they are
related to defining, throwing, propagating, and document-
ing exceptions. Ebert et al. [12] propose a taxonomy to
classify this kind of faults, which they called exception
handling bugs. They improve the definition of Barbosa
et al., stating that EH bugs are those that occur when
an exception is defined, thrown, propagated, handled, or
documented in the cleaning action of a protected region
where it is launched; when it should have been thrown or
dealt with, but it has not.

Yuan et al. [21] found in their study that approximately
92% of catastrophic failures comes from non-fatal errors
signalled by the software itself. In addition, 35% of such
failures were caused by empty handlers, wrong actions in
generic handlers, and handlers with comments suggesting
the need for further implementation and correction (e.g.,
“FIXME” and “TODO”).

In this study, we adopt the term EH anti-patterns to
refer to the EH code anomalies. However, it is important
to notice that there is no sufficient evidence on a causal
relationship between the presence of such anti-patterns
in the source code and software failure occurrence. In
fact, the presence of anti-pattern can lead to maintain-
ability problems, such as architectural degradation and
technical debt. In that sense, Correa et al. [25] says that
an anti-pattern describes a solution to a recurrent prob-
lem that generates negative consequences to a project. An
anti-pattern can be a result of either not working a better
solution or using a good solution in a wrong context.

Padua and Shan [15] identified the prevalence of EH
anti-patterns in open source projects. They found that
some of these problems have more occurrence than oth-
ers; however, all were found in at least 3 of the 9 Java
projects taken into account in the study. These anti-
patterns were considered starting points for the inspec-
tion carried out in our study. Table 1 gives a brief descrip-
tion of some of these EH anti-patterns.

Existing static code analysis tools can detect these anti-
patterns. Some of these tools are already available on the
market and widely used. Researchers have also developed
other tools with more specific purposes. For example,
the PMD! tool is a source code analyser available for
several languages. It detects possible bugs, unused code,
unnecessary code duplication, and complexities. Also, it
can identify the presence of 15 exception handling anti-
patterns. In our case study, we analysed the presence
of those 15 EH anti-patterns. We used three criteria to
choose them: the risks that they bring to the system,
the frequency that they usually occur, and the fact that
they should be detectable by a tool. Moreover, even with

https://pmd.github.io/

https://pmd.github.io/

de Sousa et al. Journal of the Brazilian Computer Society

(2020) 26:1

Table 1 Exception handling anti-patterns [15]

Anti-pattern

Meaning

Unhandled Exceptions

Unreachable Handler

Catch Generic

Destructive Wrapping

Catch and Do Nothing

Dummy Handler

Ignoring Interrupted Exception

Throw withing Finally

Generic Throw

Exception handling does not
capture all possible exceptions
thrown in a try block.

Exception handling code will never
run.

Exception handling captures many
low-level exceptions by setting a
high-level exception.

The developer propagates an
exception as if it were another one.
It causes loss of information
regarding the original exception.

Catch block code is empty.

The Exception handling code has
no actions to recover errors.

Caught exception is ignored in the
catch block.

The code throws an exception
within a finally block.

The code throws a generic
exception.

relatively simple anti-patterns, as we reported above, lit-
erature results showed that they might impact the system
execution and code maintenance.

Research methodology

Main objectives

Our case study has the intention of evaluating the qual-
ity of the EH code of a long-lived large-scale Java Web

Page 4 of 24

system, which is maintained by a team of 46 profes-
sionals. The system owner institution provides insuffi-
cient documentation on the EH of its system. Based on
previous studies, we know the absence of an EH pol-
icy can generate doubts during development activities
and, consequently, interfere with the system’s ability to
recover from faults. The main goal of our case study is
to investigate and confirm, in an exploratory research,
whether or not this situation actually happens in prac-
tice. To do that, it is essential to comprehend the way
Web developers understand their own EH code and to
confront such code against standard EH code quality
rules.

Case study organisation

The studies of Ebert et al. [12], Shah et al. [5], and Bar-
bosa et al. [19] have served as a source of inspiration to
design our case study. It followed the case study method-
ology described by Runeson et al. [26]. We split the study
into three units of analysis according to the research
questions presented in the “Introduction” section.

Figure 1 depicts these units, showing the origin of
the collected data and listing some of the acquisition
methods employed in the study. The first unit captures
developers’ perceptions concerning EH, how they deal
with it in daily activities, and how EH is supported by
the institution (e.g., proper checking tools and available
documentation). Through an online survey, we inter-
viewed professionals who deal directly with the planning
and development of the exceptional flows of the target
system.

try{

eile();

catch ‘
1 p

Data Source

Data Source

n Software Engineers/

Developers Source Code

Methods Methods

:;j Online Survey Code Analysis

~ Tools

Fig. 1 Case study structure: exception handling in the XSA system

Context: A Large Scale Java Web System in a Public Education Institution

Cause and Effect Analysis

AN
u—_J

Data Source

Source Code Documentation

Software Engineers/

Developers
Methods
Code Analysis i Documentation
- Tools — " Checking
R 5%

Software Architects

Online Survey ‘J Interview

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

The second unit of analysis was designed to investi-
gate how the EH is used in practice. Thus, we used a set
of tools to inspect the code of the system under analy-
sis. The third unit aims at answering the questions that
arose with the analysis of the data collected in previous
units. We tried to establish a cause-effect relationship
from the triangulation of data from the code and the
development team knowledge. These answers were help-
ful to better understand the case study context, making
clearer the relationship between exception handling qual-
ity and development team knowledge, source code, system
documentation, and administrative issues (e.g., developer
team turnover).

Subject system

The target system is a Web-based system, which has more
than 20,000 active users in a Public Education Institu-
tion. It is a management system implemented in JEE (Java
Enterprise Edition) using a set of frameworks, such as
JSE, Struts, and Hibernate. The institution acquired it in
2010. It was then adapted, expanded, and, nowadays, a
division of the institution maintains it. They have at least
46 professionals involved in the process of system main-
tenance and evolution (e.g., coding and analysis). Several
segments of the institution use the studied software, since
it is vital to the institution activities. For security and
confidentiality purposes, the system name will remain
anonymous throughout the paper, being called only as the
XSA system. The system encompasses a broad scope of
the institution needs (e.g., resource management, people
organisation, and academic data administration).

The XSA system has four layers: presentation, appli-
cation, domain/business, and infrastructure/data access.
This structure separates responsibilities and also groups
modules with similar purposes. The software division
splits the XSA system maintenance into 11 projects. The
developers work on teams dedicated to maintain and
develop modules on each project. Software analysts lead
the development teams and mediate the communication
with customers. The development process of each group
is independent. Thus, they can use agile methodologies
(most used), Waterfall model, or choose not to use any of
them (ad hoc way).

The XSA system has brief documentation about EH.
This documentation provides the following information:

The hierarchy of custom system exceptions;
How to use utility methods to notify the development
team and the final user when exceptional events
occur;

e How to handle exceptions at the business layer.

However, there is no guidance to the developer about
where and how to handle Java language exceptions and

Page 5 of 24

other existing custom exceptions. Therefore, it is inferred
that exceptions can be thrown and handled by any module
and flow between layers without restrictions.

In the case study, we also analysed the evolution of anti-
patterns throughout 15 releases of XSA system. The first
release, which dates from 2010, represents the system in
its initial stage, without changes made by the target insti-
tution of this study. In fact, the institution purchased this
initial version from another company. From 2011, when
the system customisation began, we consider semi-annual
releases, until the end of 2017 (the most recent release at
the time this paper was written). Table 2 shows data from
some of these releases.

We decided to investigate the presence of EH anti-
patterns in XSA due to frequent complaints from its
users, which received messages from Unhandled Excep-
tions during system execution. Besides, some members
of the XSA development team had already reported to
us the desire to investigate the exception handling of
the system. Monitoring the use of the system for 25
days, we noticed the presence in the system log of 2927
exceptions. From these exceptions, the XSA code did not
catch 2634 exceptions, on average, 106 per day. The ten
exceptions with the highest number of occurrences repre-
sented 95.22% of the total recorded. Eight of them were of
the RuntimeException type. For the most part, these
exceptions correspond to general exceptions, program-
ming errors related to improper object access, database
query errors, and connection problems. The most expres-
sive in quantity was the NullPointerException.
Only a tiny percentage of the exceptions (1%) cor-
responded to exceptions from the system hierarchy.
So, our study could give the first insights into this
problem.

We identified the presence of anti-patterns in each class,
package, module, layer, and project of the 15 XSA releases.
Also, we analysed the contribution of each developer in
the insertion and removal of anti-patterns in two XSA
releases (2015 and 2017). For privacy reasons, some data
are not public and are not available in this paper. We chose

Table 2 Evolution of XSA system metrics

Data 2010 2011 2014 2017
Total lines of code 455819 476645 532685 650261
Packages 258 266 275 326
Source folders 28 29 30 35
Number of classes 3260 3368 3548 4625
Number of methods 47019 48711 53405 64307
Number of interfaces 66 70 77 115
Catch block lines of code 5874 6098 6943 8375
Number of handlings 3407 3545 4024 4835

de Sousa et al. Journal of the Brazilian Computer Society

to present only aggregated information or anonymized
data in the paper, trying to preserve the comprehension of
the studied phenomenon.

The XSA system is a customisation of a Web system
used in 58 other public institutions in our country. In total,
the customisations of the XSA system have a base of over
500 thousand active users. The case study presented in
this paper focuses on specific customisation adopted at a
particular institution. However, the results of this research
may also motivate to investigate if a similar problem does
not occur in the other 58 customisations. The analysis of
the presence of EH anti-patterns in XSA may also inter-
est developers and EH researchers working on Java Web
systems with an analogous context of the XSA case study
(e.g., Web teams that use JSF and Struts, public organisa-
tions with high turnover). Actually, some researchers have
already pointed out the presence of EH anti-patterns and
their relationship with bugs in Java Web systems, occur-
ring to a lesser or greater extension [12, 15, 19]. Our case
study goes further by investigating the quantitative and
qualitative aspects of the EH anti-patterns’ presence and
their evolution in the XSA code, giving other perspectives
of analysis.

Unit of analysis 1: developer’s perception about EH
The first unit seeks to understand the human aspect
of exception handling involved in XSA. We interviewed,
from an online survey, the people who deal directly with
the planning and development of the XSA’s EH flows.
This unit was intended to gather information about the
developers/analysts perception regarding:

The importance degree of EH in their point of view;
Their impression concerning the EH code quality of
XSA system;

Their self-declared knowledge on EH coding; and
Their satisfaction with their skills and knowledge of
EH.

Subjects

The target audience for this unit of analysis was the soft-
ware engineers of XSA system: both programmers and
analysts of the institution. Those people have distinct roles
in the system development cycle, such as system code
developer, requirement analyst, database administrator,
tester, and project manager. They perform one or more of
those roles during maintenance cycles. The software engi-
neers deal with the development of Java Web systems (i.e.,
the XSA system and other smaller systems). Java is the
predominant technology in the institution. The project
management tool Redmine? assists their development
cycles.

2https://www.redmine.org/

(2020) 26:1

Page 6 of 24

Materials and methods

We elaborated an online survey based on Ebert et al. [12]
and Shah et al. [5] works. Before applying it, we vali-
dated the online form with three experienced software
architects. The online survey® contains:

® 2 questions that address the respondent’s experience
on software development;

e 26 Likert scale survey questions related to exception
handling (e.g., quality of EH code in XSA, its
documentation);

® 2 questions about general concepts of exception
handling;

® 2 open questions regarding the use and perceptions
of exception handling; and

e 1 statement for the instrument evaluation.

Procedure

XSA developers received an email with our online survey.
In that email, we presented our research goals and guar-
anteed data anonymity and its exclusive use for academic
purposes. For interpreting the results, we summarised the
per cent of respondents who agreed or disagreed to the
questionnaire’s items, discarding the neutral answers.

Results

The online survey obtained 21 responses (53.84% of the
professionals involved in system development). A signifi-
cant part of them started working in the institution in the
last 3 years (66.7%). Most respondents have been work-
ing with Web development for less than 6 years, about
61.9% of them. The rest of them is more expert (over 7
years of Web development experience). However, 61.9% of
them consider themselves experts with respect to the soft-
ware development in general. 52.3% of the professionals
declared they do not feel confident with the tools and the
programming languages used in the institution.

52.4% of the respondents reported they do not usu-
ally document code elements related to EH. By separating
developers into two groups (novices and experts), we
realise that none of the novices (< 3 years of experi-
ence) claims to document the exceptional handling code.
In contrast, 43.75% of experts reported documenting the
EH code. Practically, all developers agree that the insti-
tution does not have clear EH guidelines or policies for
its systems. 85.7% of them claim they have observed the
impact of EH errors on end user activities. Also, 76.2% of
them agree that users have already reported EH errors to
the institution.

Only 14.3% of developers say that they use software
quality checking tools (e.g., for checking the presence
of code smells). None of the novices use these tools.

3The online survey instrument is available at http://twixar.me/qjGn.

https://www.redmine.org/
http://twixar.me/qjGn

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

Page 7 of 24

Number of Classes

Fig. 2 Frequency of Anti-Patterns per classes in 2017.2 release

Number of Violations

One interpretation is the reported errors may be a con-
sequence of the low adherence of these checking tools
throughout the development cycle. Only 28.57% of the
respondents are satisfied with the way they deal with
EH. Finally, everyone believes that EH in XSA must be
improved and they pointed out the need to establish EH
institutional policies.

Unit of analysis 2: EH code analysis

The second unit of analysis focuses on the technical aspect
of EH in XSA. We used a set of tools (e.g., PMD and Java-
Parser) to extract information concerning the EH from
XSA source code. In previous work, researchers evaluated
EH by considering distinct aspects of software quality,
highlighting those relevant to the evaluation of the EHin a
system, such as anti-patterns, bugs, and general principles
of EH. In this unit of analysis, our choice was to seek the
presence of anti-patterns in 15 releases of the XSA system.
We also analysed the evolution of code metrics related to
XSA’s EH implementation.

Materials and methods

For our analysis of anti-patterns evolution, we extracted
metrics and searched for the presence of anti-patterns.
For this, we developed a project in the Java language,
named VbR (Violations by Repository). That application
uses the RepoDriller* tool, which provides access to
source code for versions through the XSA Git repository.
Test codes were not considered in the analysis.

For anti-pattern identification, we adopted the PMD
tool since it detects a higher amount of EH anti-patterns
listed in Table 1. We used PMD with its default rulesets
for EH, without any additional customisation. VbR exe-
cutes PMD scripts to find the presence of them. Other
metrics, such as the number of catch blocks and throwing,

*https://github.com/mauricioaniche/repodriller

were extracted using the JavaParser® tool. VbR also gen-
erates output files in CSV (Comma-Separated Values) to
facilitate the analysis and plotting of charts.

The term violation will be used henceforward to indi-
cate the occurrence of an EH anti-pattern, since the tool
detects them by using code rules that we defined.

Results

Current release

In the current version, we found 3423 occurrences of
anti-patterns. These violations affect 974 classes of the
system (21%). Figure 2 shows the distribution of these
occurrences in classes files that have at least one anti-
pattern. Sixty-seven per cent of the affected classes have
a maximum of 2 violations. However, XSA has also some
outliers, such as a class that has 99 anti-patterns. This class
has over 4000 LoCs and 100 catch blocs.

Figure 3 shows the distribution of affected files with
anti-patterns in the 2017 release. The view layer and the
data access layer have the highest percentages of code files
with violations, with quantities greater than 30% and 35%,
respectively. The view layer has an essential role to avoid
the presentation of internal problems of the system to the
end users. Defects on the EH in the view layer may affect
this role negatively.

Table 3 presents the results for each EH anti-pattern
in the 2017 release. The anti-pattern related to catch-
ing generic exceptions (namely Catch Generic) is the
one that has more violations in the XSA system. We
considered only Java language-defined generic excep-
tions, such as Exception, RuntimeException, and
NullPointerException. The results shows that
more than 70% of violations for this anti-pattern and
50.51% of the EH blocks matches with this anti-pattern. It
is important to mention that the occurrence of this anti-

Shttp://javaparser.org/

https://github.com/mauricioaniche/repodriller
http://javaparser.org/

de Sousa et al. Journal of the Brazilian Computer Society

(2020) 26:1

Page 8 of 24

Business

View

Layer

util

Other

0% 25%

B Class Files With Violations

Fig. 3 Anti-patterns violations for each layer in 2017.2 release

M Class Files Without Violations

50% 75% 100%

pattern can lead to serious robustness problems such as
the swallowing of relevant exceptions and the implemen-
tation of inefficient handling mechanisms [24].

Catch and do Nothing is the fourth anti-pattern with the
highest number of violations. It is a recognised mainte-
nance risk since it turns the code debugging difficult and
causes loss of original error information [12]. However,
in comparison with the most violated one, it is numerically
much lower, since it affects only 2.38% of the EH

Table 3 Anti-patterns find in the 2017.2 release

Anti-Pattern Violations Affected Handlers
or Throwing
PMD - Anti-Patterns
Catch Generic 2440 50,51%
Throws Generic 495 2,60%
Destructive Wrapping 215 4,45%
Catch and Do Nothing 115 2,38%
Throw within Finally 41 0,85%
Wrong Exception Thrown 17 0,35%
Relying on getCause() 5 0,10%
Dummy Handler 4 0,08%
Error in the Definition of Exception 0 0,00%
Class
PMD - Other Types of Violations
AvoidRethrowingException 43 0,89%
EmptyFinallyBlock 18 0,37%
AvoidThrowing 14 0,29%
NewlnstanceOfSameException
EmptyTryBlock 2 0,04%
ExceptionAsFlowControl 0 0,00%
AvoidCatchingThrowable 0 0,00%

implemented in XSA. The Java code snippets (Table 4)
are examples of anti-patterns found in the XSA during the
static code analysis.

Anti-pattern evolution

The XSA system had an increase in its number of
classes and LoC (Lines of Code) between 2010 and 2017
(from 455,819 to 650,261). Table 2 shows that XSA is in

Table 4 Examples EH anti-patterns found

//Example of Destructive Wrapping

try {

if(con = null) con.close();

} catch (SQLException e) {

throw new DataException(e.getMessage());
}

//Example of Catch Generic

try {

cal = CalendarHelper.getCalendar(getCurrentUser());
} catch (Exception e) {

e.printStackTrace();

defaultHandle(e);

}

//Example of Throws Generic

public Object method(HttpServietRequest req)
throws Exception {

GenericDataAccess dao = getGeneric();

Object obj = getCommandClass().newlInstance();
/..

return obyj;

}

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1 Page 9 of 24
6000 B number of java files 4 violations
4625 4708
5000 4272 4419 447
4100 4167 4174 .
3834 3838 3844
4000 3723 3741 - . .
- (e sian Sies 247 28 X BE
Dose 2975 2979 2985 3088
3000
2000
1000
0
Q\va 6\0 Q\\.V ﬂé&'\ N Q\%V\ & Q\b:.\ Q\bly Q\(';.\ & Q'\@ $® @0 N !
Fig. 4 Evolution of XSA system anti-patterns
constant maintenance and customisation, which explains T E) = #violationsln(§, T) 1
.) . VtoH(T,§) = 1)
its growth. Regarding EH, we observed the following #handlersin(Y)
growth percentages: 41.91% for implemented handling #violationsin(E, T)
: . violationsIn
blocks and 38.64% for exception throwing. The source VEoT(Y, &) = ’)

code expansion also included a proliferation of EH anti-
patterns.

It is important to notice the number of violations can
lead to misinterpretation of the phenomenon since the
size of XSA has increased considerably. For instance, Fig. 4
shows the XSA evolution comparing the number of Java
files and the violation occurrences. Their growth was
quite similar, 31.70% for the number of violations and
32.54% for the number of Java files (i.e., . java files). In
this way, we study some ratios between the number of
rules violated and code metrics, see Egs. (1) and (2), where
& is an anti-pattern and Y is the XSA source code.

#throwsIn(Y)

VtoH (1) is the ratio of the number of violations of
an anti-pattern per number of handlers implemented in
XSA. Similarly, VtoT (2) ratio is calculated by dividing the
number of violations per number of throws in XSA.

Figure 5 details the evolution of the four most found
anti-patterns. Catch and do Nothing anti-pattern had 80
violations in the 2010 release and 115 in the 2017 counter-
part, representing an increase of 43.75%. The Destructive
Wrapping anti-pattern grew 115% between the 2010 and
2017 releases, having the number of violations jumped
from 100 up to 215 in 2017.

Destructive Wapping Catch and Do Nothing B Generic Throw Generic Catch
3500
3000 P 215
150 150f 1594 163f 207ff 2094 210
2] , 1254 129 1294 1294 1> 4 1osd 10of maof o
S 2500 n24f 124 saill reall teardl 1054 108 11
S 100 82
£ 2000
2
o< 1500
o 2440
@ 2306)| 2333}| 2355)| 2369,
9 1000 ool 2000) 2056] 2089) 2200) 22034 2209} 22 2271} 2280
£
S 500
=z
0
N S L A v A v N Vv N Vv N v N Vv
NS RN A R N R N P N R U
DA R S S A - . . D Y. .
Release
Fig. 5 Evolution of the four most found anti-patterns. a Signallings affected by Generic Throw. b Catch blocks affected by Generic Catch. € Catch
blocks affected by Catch and Do Nothing. d Catch blocks affected by Destructive Wrapping

de Sousa et al. Journal of the Brazilian Computer Society

(2020) 26:1

Page 10 of 24

A)

2017.2 W

2017.1

2016.2 N

2016.1 NS

2015.2

2015.1 IS

2014.2 IS

2014.1

2013.2 I
2013.1 I
2012.2 I
2012.7 I
2011.2 IS
2011.1 I
2010.2 I

B)

201728

20171 M

2016.2 .

2016.1 (NS

2015.2 I
2015.1
2014.2 IS

2014.1

2013.2 I
2013.1 I
2012.2 I
2012.1 .
2011.2
2011.1 .
2010.2 I

C)

2017.2
2017.1
2016.2 I
2016.1 I
2015.2
2015.1
2014.2
20747 I

D)

2017.2 I
2017.1 I
2016.2 I
2016.1 I
2015.2 I

2015.7

2014.2 I

2014 I

250% 275% 3,00% 325%

VtoT

50,00% 52,50% 5500% 57,50%
VtoH

Fig. 6 Anti-patterns evolution in the XSA releases. a Signalings affected by generic throw. b Catch blocks affected by generic catch. ¢ Catch blocks
affected by catch and do nothing. d Catch blocks affected by destructive wapping

2013.2 2013.2
2013.1 . 2013.1
2012.2 . 2012.2
2012.1 — 2012.1
2011.2 — 2011.2
20111 — 2011.1 I
2010.2 EE—— 20102
200% 220% 240% 260% 2,50% 300% 3,50% 4,00% 4,50%
VtoH

VtoH

Figure 6 shows the evolution of four ratios. We observed
an increase in the VtoH ratio regarding the anti-patterns
Catch and do Nothing and Destructive Wrapping, spe-
cially between 2014 and 2017 and a decrease in the other
two anti-patterns. The decrease of the most recurrent
anti-patterns on the system (Catch Generic and Throws
Generic) is a positive factor. A possible cause is the adop-
tion of practices, such as implementation of specialised
handlers and the signalling of specific exceptions, which
contributed to an adequate development of error recovery
activity. However, Catch Generic is still present in 50% of
the handlers. Also, other anti-patterns continue to grow in
XSA (even its ratios).

Figure 7b exhibits an absolute increase in the number
of anti-patterns detected over the years for each XSA
layer. This information reveals that developers have not
refactored the EH code sufficiently, which indicates the
existence of a technical debt. The view layer remains the
one with more violations, followed by the data access, and
business layers. Grouping all the violations in the 15 ver-
sions, we obtain that the generic exception handling and
the launching of generic exceptions correspond to, respec-
tively, 61.86% (12,279) and 32.42% (6437) of the violations
in the view layer. In the data access layer, the generic

exception handling accounts for 93.50% (15,929) of the
violations.

Figure 7a shows the ratio of the number of violations
to the number of Java files for each layer. There is no
steady growth in these rates for all layers. In fact, the data
layer demonstrates a decrease of 12.61% in this ratio (from
2.95 to 2.58 in the last release). We noticed a different
behaviour for the other layers, since there was an increase
in the rate: view (3.02%), business (35.11%), and util (67%).

Unit of analysis 3: cause and effect analysis

In the third unit, we started trying to attest a cause-
effect relationship using data triangulation from the code
analysis and the development team knowledge. Firstly,
we interviewed a project committee composed of three
experienced software engineers. From the insights and
comments of this interview, we improved our code analy-
sis by seeking pieces of evidence of the causes pointed out
by the project committee (e.g., team turnover). We present
this process and its results in this section.

Semi-structured interview
The purpose of this interview was to provide a better
understanding of the case study results. Also, we aim at

A)

6.00

206 295 298
L e

302 293 294
B e

294

.. 260

256 256 255 259 260 259 259
5.00 - - -

120 120 120 115 116 116 116 115 116 115 116
113 115 116 17 LT - ey =

et S
044

052 053 053 053 054 056 055

0.52 0.53

——. e

052 053
044
RGBT

039 042
i =

035 B 0408 0,41 - 0,45 0.51-# 0.51 -8 0,51 " 0.60-% 0.64 -8 0.65-8 0.63-8. 059 -8 0.59-8- 056 -8 05

] 8

g8 8§

o
S
a
&

20121
20122

g 9 g
g R g

-e- Business -a-View -4-Dao

R
g R

20152
20161
20162
20171
20172

-u- Util

Fig. 7 Evolution of anti-pattern violations per layer. a Evolution of #violations per #Java file (PMD) and b #violations in each layer (PMD)

3500
200! 1449
1406
o 1316 1317 1323 1339 1345 1349 1359 1381 139?_ s
60 1241 1252 g e eecpememmcteneloo=®" p—— -
o 1160 1216 1252___ .
250 160 _Ja---a-
1500 1272
1144 1148 1157 1209 1214 1237
0 1046 1061 078 1110 113 1113 139 14 114 117 1209 1214 7

994

s
- TR SRR
(R LS 2

1000

151 182 182 202 203 203 210 219 219 220 229

149
- P e
32- -“39 ‘41--‘43 i 52 ==l 52 = *52 o=t §6=0-70 =072~ '.73 =8 7328 74==0 74~ '.79

- o - o - o - - o -
S

141 182

0
o m] < < “ P

s 9 3
§ 8 8 B 8 B B ® & & & ¥

-o- Util -m-Business -a-Dao -e- View

2
B
<
g
&

2017.

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

identifying motivation causes and the context that pro-
duced these results in the XSA system.

Subjects

We conducted a semi-structured interview with a project
committee composed of the three most experienced soft-
ware architects of XSA. The interviewees have taken
several roles since the XSA system was deployed in the
institution, such as software analyst, project manager, and
development team leader.

Materials and methods

The interview was organised and conducted by three
researchers, all co-authors of this paper. The interview fol-
lowed a semi-structured format (i.e., an interview guide®).
We analysed the interview results following six steps pro-
posed by Creswell [27]. We transcribed the interview,
structuring it according to the interview guide. We re-read
the transcript and marked the text with codes that refer to
the content of the sentences or paragraphs (e.g., exception
handling policy, developer experience, and development
cycle). Then, we analysed the created codes and grouped
them, summing up a total of 27 codes that were gath-
ered in 6 categories, which were previously proposed by
Creswell [27].

Procedure

The interview was a unique 2-h meeting with the three
subjects and the researchers. We recorded the interview
and transcribed it for further analysis. The interview had
four phases:

e Phase 1: Presentation about the research, its
objectives, and structure;

e Phase 2: Presentation and discussion of results
obtained from the online questionnaire (unit of
analysis 1);

e Phase 3: Presentation and discussion of metrics
collection results and presence of anti-patterns in the
system (unit of analysis 2);

e Phase 4: Suggestions and evaluation of interview’s
format and content.

One researcher conducted the semi-structured inter-
view. She showed the study data and presented ques-
tions about this data to the project committee. These
questions were about particular practices and experi-
ences of that development environment, such as the
staff routine, the materials used, and the developers
experience. The other researchers took notes, clari-
fied doubts, and asked unplanned questions to the
interviewees.

6 The interview guide is available at http://twixar.me/KqGn

Page 11 of 24

Results

The interview played a fundamental role in the under-
standing of the motivating context of the case study
findings. Among them, participants cited the lack of doc-
umentation as one of the major problems faced by devel-
opers. They state this issue is also causing the presence
of EH anti-patterns in the system. Without it, a devel-
oper does not have an understanding of the architecture
and the custom exceptions that are part of the XSA
exceptional flow. Developers underuse these exceptions.
Respondents believe that the team has no clear view on
the use of this type of exception and in which situations
they should apply them. Interviewees concluded that this
lack of knowledge may be leading developers to neglect
the exception handling code.

There are no policies for EH in the institution. Respon-
dents pointed out the process of developing excep-
tional flows is seen as an informal and empirical one.
This reactive behaviour is found when EH is classi-
fied as a low-priority activity [5]. Respondents recalled
that other code policies and software processes have
already been debated and adopted by the institution.
They sought to improve the overall quality of the
XSA system code, but EH has never been seen as a
problem.

According to the interviewees, the lack of experience of
the novice developers has a direct impact on the quality
of the EH code. Frequently, newcomers have just finished
their undergraduate and are in their first job. Therefore,
they have no experience in the development of large-scale
systems or with the EH for Java Web. The interviewees
listed some behaviours adopted by this profile of develop-
ers, such as the following:

e Developers print the exception stack-trace on the
system screen to show the occurrence of an
exceptional situation. After, they do not complete the
catch code since the main flow is correct running;

¢ Novices find more important displaying information
about the exception than to seek appropriate
handling;

e Developers replicate existing practices in code, even
those that are not suitable, such as the Empty Catch
Blocks or Catch Generic;

e These developers do not know what actions to
implement in the catch block. They choose to throw
general exceptions;

e Their implementation practices make it difficult to
understand their code with nested treatments and,
sometimes, without specific handling actions;

e Generally, they are more concerned with finishing
the code to be executed. Therefore, they implement
the mandatory handlers required by the Java language
without thinking about the ideal recovery actions.

http://twixar.me/KqGn

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

After presenting the EH anti-pattern concept, inter-
viewees quickly identified their occurrence in the XSA
system. Spontaneously, respondents listed the follow-
ing issues: Lack of Documentation, Destructive Wrap-
ping, Catch Generic, Generic Exception Throwing, Dummy
Handler, Empty Catch Blocks, and Unhandled Exceptions.
However, the number of violations found during our study
surprised the interviewees. They expected stabilisation of
these problems or modest growth. Respondents did not
expect high number of these issues. Nevertheless, after a
few minutes, one of the interviewees stated that the high
value of violations should be expected. Since developers
did not fixed them, it was reasonable that they would
continue to be reproduced over the years.

Regarding the possible effects of the EH anti-patterns’
presence, the interviewees mentioned the prevalence of
Destructive Wrapping makes it difficult finding the origi-
nal cause of the error. Therefore, the effort spent to find
and fix some kinds of bugs increases. Useful information
remains between the various rows of the log files. Devel-
opers need more effort to fetch the original error stack-
trace, which impacts in solving the problem that causes it.
This situation is stressed when developers write incom-
plete and useless information in the log files. Besides, the
system does not have a clear policy about the Unhandled
Exceptions, and therefore, the developers do not know
when and what strategy should be employed. Sometimes,
exceptions end up being passed on to the end user.

The interviewees connected the evolution of EH anti-
patterns to the replication of bad practices already existing
in the original code. Once the XSA documentation is
incomplete and not up-to-date, developers are guided by
the existing source code itself. They become, therefore,
replicators of existing behaviours. Another possible cause
pointed out is the process that drives the code importing
during the implementation of new modules. They think
this process is a possible conveyor of bad practices since

Page 12 of 24

it consists in the adaptation of features coming from an
external environment.

The interview results reveal situations that could be the
cause of XSA system exception handling problems. So,
we decide to investigate them deeply for confirming their
relationship with the results presented in unit 02. The key
points to be investigated were as follows:

e Development team turnover;
e The inexperience of novice developers; and
e Developers’ awareness of EH anti-pattern insertion.

The following subsections detail the study of these
assumptions.

Turnover
Hypothesis: The high turnover of developers makes it dif-
ficult for them to become proficient in the XSA code and,
consequently, mastering EH code.

Our goal was to gather information on team turnover
and try to quantify its impact on XSA development.

Materials and methods

The hypothesis has the team turnover as a central issue
in the EH anti-patterns’ presence. Therefore, it was nec-
essary to obtain data on hiring and leaving members
of the development team. The system that manages the
XSA human resources, holder of the turnover data, made
it possible to understand how this phenomenon occurs.
From there, the list of employees, with the date of admis-
sion and withdrawal, has been obtained since 2010.

Results

Figures 8 and 9 show some data concerning the team
turnover confirming its strong presence in our case study.
In 2011, the institution started the process of XSA pur-
chase and adaptation. At that time, the team had 15 active
professionals. The number of developers grew 73.33%

21

14

2014

. Active Developers

Fig. 8 Development team turnover per release

2017

@ New Developers

. Remained Developers . Developers Who Quit

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1 Page 13 of 24
80,00% 50
61,54%
40
60,00%
30
- o @
g 40,00% 31,58% 3
£ i 20 E
2 21,95% R
o 9 15,00%
20,00% 13,33% 11,76% ° 10
5,26%5,00% 6,52%
0,00%0,00% ' 2,38% 213%
0,00%
Semester
Fig. 9 Development team turnover per semester

before the seventh release (2014.1), and 76.92% before
the 2017 current version. Throughout the period analysed
in our case study, the institution hired 43 professionals,
and 12 others changed their jobs. The average turnover
per semester was 14.16% with a median of 9.14% and a
standard deviation of 16.59%.

According to Chatzipetrou et al. [28] “the turnover rate
for a period of time is calculated by dividing the num-
ber of the employees who left during that period, by the
average number of employees in that period” Using this
definition, we computed the turnover rate of XSA devel-
opment team. By doing so, we took the studied period
from 2011 to 2017 into account, resulting in a turnover
rate of approximately 30%.

We judged that the target institution presents a high
team turnover during the period observed in our study
based on (i) the historical turnover rate of the institution
itself and (ii) the turnover rates reported in previous work.
On the one hand, regarding (i), before 2011, the institu-
tion team turnover rate was very low, close to 0% in several
years. Thus, if we compare this historical rate with the
one we assess during the period we had studied (30%),
we can see that the turnover rate got considerably higher
in the XSA team. This phenomenon was due both to the
replacement of people who left the institution and due to
the expansion of the size of the team. On the other hand,
previous studies [28—30] that had considered the team
turnover rate as an indicator to evaluate issues concern-
ing to costs, risk, and developer satisfaction suggests that
a turnover around 30% is considered high.

The institution that maintains XSA hires profession-
als through public procurement process. These jobs are
attractive for beginners. However, they end up leaving
for other companies after a short time. These novice
developers have a proper level of foundation skills, which
is required to succeed in the public tender process.

However, they have a lack of development experience with
both the Java language and the XSA system itself. The
institution has purchased the XSA system and evolved
it to meet their particular needs. However, most of the
professionals engaged in the XSA evolution were newly
hired. 66.7% of them are in the institution for a maximum
of 3 years, which is a period after the XSA acquisition.
Therefore, knowledge about EH has not been properly
documented and passed on to new developers.

The inexperience of novice developers
Hypothesis: Novice developers are responsible for insert-
ing most of the EH anti-patterns.

Previous research has pointed out that novices do not
see exception handling as a priority activity. To confirm
or refute the impact of novices on the insertion of anti-
patterns, we analysed the 2 years that contained the most
substantial number of professionals newly hired by the
institution, 2015 and 2017.

Materials and methods

We considered two groups of developers, novices, and
experts in that analysis. We, then, computed all the
changes included in the system and calculated the quan-
titative of anti-patterns added by each professional. To
do this, we developed a programme in Java and used the
RepoDriller and PMD tools, which respectively gave us
access to the system revisions and the anti-patterns added
in each one. We consider novices the developers with less
than 2 years of experience in the institution; the experts
are those who have more than 3 years of work in the
institution.

Procedure
We run RepoDriller and performed data compilation and
aggregation. For statistical significance tests comparing

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1 Page 14 of 24
Table 5 Comparison novices vs experts
Data Number Violation Violation Java Insertions/ Java Exclusion/ Java Exclusion Insertion
exclusions insertions changes changes changes mean mean
Experts - 2015 7 31 20 277 7.22% 11.19% 443 2.86
Novices - 2015 7 Il 46 559 8.23% 1.97% 157 6.57
Experts - 2017 14 56 140 1794 7.80% 3.12% 4,00 10.00
Novices - 2017 6 12 177 920 19.24% 1.30% 2.00 29.50

the two groups (i.e., experts and novices), we used the
Wilcoxon-Mann-Whitney test due to the small size of the
samples.

Results

After the analysis, we confirmed that the novice program-
mers inserted more EH anti-patterns than the experienced
ones. Also, experts remove more anti-patterns than the
novice ones. Table 5 shows a comparison of these absolute
values, and the rate of inserted and removed violations to
changed Java files in 2015 and 2017.

In 2015, 14 people changed Java system files. The group
of experts (7 people) added 20 violations, while the group
of novices (7 people) added 46 violations. Novices mod-
ified more Java files, meaning they were more prone to
errors. Also, some of the novices added most of the viola-
tions. In fact, two of them did not add any violations (see
Fig. 10). The average rate of inserted violations to changed
Java files is very close between the two groups (7.22%
and 8.23%, respectively). When we performed significance
tests, we observed these differences are not statically sig-
nificant (Mann-Whitney U = 22, ny = 7, np = 7,
p < 0.05 two-tailed).

Regarding the exclusion of anti-patterns, in 2015, the
group of experts removed 31 violations. The group of
novices that year deleted only 11 violations even having
modified more Java files. Also, one of the experts did
almost 50% of violation exclusions. The average rate of
removed violations to changed Java files is very differ-
ent between the two groups (11.19% and 1.97%, respec-
tively). However, when we performed significance tests,
we observed these differences are not statically significant
(Mann-Whitney U = 20, m; = 7,ny = 7,p < 0.05
two-tailed).

In 2017, 20 people changed the system’s Java files. The
group of experts, now composed of 14 people, has added
140 violations. The group of novices, consisting of 6 peo-
ple, included 177 violations. A very high value given the
differences in size between the groups. Another interest-
ing fact is that the experts removed 56 violations and the
novices, only 12 (see Fig. 11). Three of the novices imple-
mented at least 1 EH anti-pattern for each four Java file
changes. The average rate of inserted violation to Java file
changes is higher in the novice group (19.84%) than in
the expert group (7.8%). When we performed significance

tests, we observed these differences are statically signifi-
cant (Mann-Whitney U = 12, n; = 20,1y = 6, p < 0.05
two-tailed).

These results corroborates the suspicion of project com-
mittee members, which indicates a significant impact of
team turnover and the experience of developers in the
insertion of violations. This novice developers’ behaviour
is similar to that presented in the work of Shah et al.
[5]. The authors identified that beginners replicate EH
already structured in the code, throw general exceptions,
and use the exception handling without recovery actions.
However, as our study revealed, experts also continue
to contribute negatively to this scenario. In addition to
improving the skills of novices, other measures need to be
performed with all team members.

Developers’ awareness of EH anti-pattern insertion
Hypothesis: Developers are not aware they are inserting
EH anti-patterns in XSA since they do not know most of
these EH anomalies

Our goal was to analyse programmers’ knowledge con-
cerning the EH anti-patterns further. We wanted to inves-
tigate if they are inserting or not removing such violations
because they are unaware of them.

Materials and methods

To collect data, we created a second questionnaire’. The
online instrument was intended to see if developers of the
XSA system know the most recurring anti-patterns in the
source code they implement. The study of Palomba et al.
[31] served as the basis for the questionnaire construction.
The Palomba et al. also aimed to investigate developers’
perceptions about the relationship between bad smells
and low-quality planning or implementation.

The instrument elaboration had as an essential step the
selection of source code that represented the use of the
anti-patterns. We included the most recurring EH anti-
patterns in the XSA system. Besides, we have also included
anti-patterns related to the use of Generic Exceptions,
Catch Generic, Destructive Wrapping, Throws Generic,
and Wrong Exception Thrown. After selecting codes, we
have prepared the first version of the form. Questions to
identify the respondents profile were also included, such

7EH knowledge questionnaire is available at http://twixar.me/nrGn

http://twixar.me/nrGn

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

Page 15 of 24

B Violation Exclusions [Insertions
Expert 1
Expert 2
Expert 3
Expert 4
Expert 5
Expert 6
Expert 7

N
N
N
N

0

N

\
Nov

Fig. 10 Comparison novices vs experts—2015

s without Violations

Java Chang

50% 735%

100%

as their experience and their questionnaire evaluation
itself.

To fill out the questionnaire, the respondent should
review the code snippet of the issue and report any imple-
mentation problem or exception design. If he encountered
any problems, the form displayed a page where he should
describe the anomaly faced. If the developer did not find
an error, another code appeared to be evaluated by him.
The instrument has five code snippets, only four of them
had an EH anti-pattern.

Procedure

Before applying it, two researchers from the Soft-
ware Engineering area evaluated the instrument. They
answered the questions and provided feedback on the
form for its clarity and format. From their feedback, we

created a new version of the instrument. Finally, before
being sent to developers, we conducted a pilot test with a
developer of the institution to find out if the questionnaire
was suitable for the target audience. From the pilot study,
we also established the time required to answer it.

Results

The online form received 14 responses (30.43% of the pro-
fessionals involved in system development). During the
analysis, we separated the respondents who were able
to perceive the existence of exception handling prob-
lems (the first stage of the question) and the developers
who were able to classify the anti-pattern correctly. These
results are seen in Fig. 12. The EH anti-pattern least
perceived by the developers was the Destructive Wrap-
ping. Only 42.86% of the respondents perceived it, and

B Violation Exclusions @ Insertions

Expert 1
Expert 2
Expert 3
Expert 4
Expert 5
Expert 6
Expert 7
Expert 8
Expert 9
Expert 10
Expert 11
Expert 12
Expert 13
Expert 14
Novice 1
Novice 2
Novice 3
Novice 4
Novice 5
Novice 6

0% 25%

Fig. 11 Comparison novices vs experts—2017

Java Changes without Violations

100%

de Sousa et al. Journal of the Brazilian Computer Society

(2020) 26:1

Page 16 of 24

Detructive
Wrapping

Throws Generic

Catch Generic

Wrong Exception
Thrown

Number of Respondents

M Perceived \ Identified M Perceived \ Not Identified B Not Perceived

Fig. 12 Anti-pattern perception

4 6 8

only 21.43% could classify it correctly. The least identified
anti-pattern was the Wrong Exception Thrown. Only one
respondent was able to recognise it. Almost half of the
respondents classified Catch Generic and Throws Generic,
about 42.86% and 57.14%, respectively.

To analyse the answers, we separated the developers
again in novices (less than 2 years) and experts (3 or
more years) according to the time of experience in the
institution. The purpose of this classification was to ver-
ify whether the time in the institution could have some
influence on the recognition of anti-patterns. The code

used in the questionnaire was similar to that found in the
XSA system, so, this analysis could give us more insights.
On average, 42.86% of the expert answers identified
anti-patterns against 21.43% of the beginner responses.
Figure 13 shows the differences between the two
groups.

Replication of bad practices from the original system
Hypothesis: The XSA system, likewise other systems with
the same origin, has several anti-patterns because they
already existed in the original system.

Novices

Detructive Wrapping
Throws Generic
Catch Generic

Wrong Exception

Experts

Detructive Wrapping
Throws Generic
Catch Generic

Wrong Exception

M Perceived\ldentified

M Perceived\Not Identified

B Not Perceived

Fig. 13 Anti-pattern perception, experts vs novices

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

Page 17 of 24

60,00%
53,06%
40,00%
20,00%
o o
3,759391% 2,51%.12% 2.76%.19%
0,00%
Handlers / Handlers / Throws / Handlers /
Destructive Catch and Do Throws Catch Generic
Wrapping Nothing Generic
B xsA B XxsB

Fig. 14 Comparison between anti-patterns from similar systems

The XSA system has been acquired from another insti-
tution. As presented in the unity of analysis 2, the system
already had several anti-patterns originally. Those bad
practices could be a target of replications, as pointed
out by the participants of the semi-structured interview.
Therefore, we aimed at investigating whether environ-
ments originated or customised from the same system
contained similar problems related to exception handling.

Procedure

The approach used in this analysis consisted of comparing
the percentage of anti-patterns existing in XSA with the
percentage presented in other versions derived from the
same initial system. The maintaining institution of XSA

had access to the source code of a similar system, but only
until the version generated in late 2015. Therefore, the
comparison took place with the 2015.2 version of XSA.

Results

With the generated data, we obtained the results pre-
sented in Figs. 14 and 15. The system used in the compar-
ison was named XSB in order to ease the comprehension.
Some percentages were generated to enable comparisons,
such as the following:

e The number of treatments per the amount of
Destructive Wrapping, Catch and Do Nothing, and
Catch Generic violations; and

A)
DAO
Util
View
Business

Others

0 0,002 0,004

W xsA W xsB

0,006 0,008

B)
DAO
util
View
Business
Others

0 1 2 3
W xsA W xsB

Fig. 15 Comparison of similar system anti-patterns with regard to LoC and number of files. a #Violations per#LoC and b #violations per #Java file

de Sousa et al. Journal of the Brazilian Computer Society

e The amount of flags per the number of Throws
Generic violations.

The results show that the XSA and XSB systems have
close percentages. In addition, the same types of viola-
tions are more recurrent in both systems. Quantitatively,
the XSB system has 693 additional violations. This diver-
gence occurs because the code growth in the XSB system
is greater than the increase in violations. Hence, we can
conclude that by including new exception handling, devel-
opers responsible for the XSB system insert fewer viola-
tions than the team responsible for XSA. Despite this, we
observed that there was no exception handling prioritisa-
tion, since the amount of anti-patterns is greater than in
the original version of 2010, shared by both systems.

However, it should be emphasised that the quantitative
comparison presented in this subsection is not sufficient
to contrast how different teams deal with the exception
handling. Thus, it is possible for a team to be more active
in changing exceptional flows than another, for example,
by modifying EH of system modules, refactoring some
components, increasing the amount of anti-pattern in
other components, or replacing instances of the excep-
tions used, even if this does not affect the final amount
observed in Figs. 14 and 15. Consequently, there is no
way to see if the anti-patterns existing in the initial ver-
sion affected the development of the systems or even if
they were replaced by other instances of the same anti-
patterns. A historical analysis of the systems would be
required to detect such practices. Unfortunately, no access
to the XSB system modification history has been obtained.
Therefore, Assumption 05 was only partially verified.

Overall discussion

After performing the case study, we can conclude that,
answering RQ1, XSA professionals consider the Exception
Handling an essential and necessary feature. Even novice
developers expressed this opinion. Despite these answers
in the online survey, the code analysis revealed many anti-
patterns in the system’s source code. In this section, we
point out possible interpretations of this phenomenon.
We also contrast our findings with previous work results.

Case study peculiarities
Regarding RQ2, the Generic Catch anti-pattern is the most
expressive among those detected in the XSA code. Its
significant number of occurrences is a peculiarity not evi-
denced in other works. For instance, Padua and Shan [15]
identified an average of 31.9% of handlers affected by this
anti-pattern. Some studies showed the number of bugs
caused by this bad smell does not have a significant value
[12, 19].

In the study of Padua and Shang [15], the anti-pattern
Generic Throw is also not among the most recurrent.

(2020) 26:1

Page 18 of 24

However, we found several occurrences of this anti-
pattern in XSA code. They represent 14.42% of the vio-
lations in the and PMD tool. This anti-pattern also con-
tributes to the proliferation of Generic Catches in the
code.

Regarding the evolution of the system, Nogueira et al.
[32] show a decrease in anti-pattern violations when com-
paring the first and last software releases. They affirmed
refactoring tends to exchange empty handlers by spe-
cialised handlers. However, the XSA system is not yet
following this trend. The anti-pattern occurrences have
grown again since 2014 (see Fig. 5).

Lack of documentation issues

The organisation that maintains the XSA has an incom-
plete and not up-to-date architecture documentation. A
set of policies for implementing EH are not available in
the institution. The developers mentioned these prob-
lems both in the online survey and in the semi-structured
interview. This phenomenon is not a peculiarity of XSA.
Similarly, 80% of the respondents from the Ebert et al. [12]
survey claim EH policies are lacking in the organisations
in which they work. It is notorious these guidelines have
an essential role to play in influencing the choice of appro-
priate EH implementation [5]. However, its neglect is still
latent.

From a general perspective, XSA system developers
report they are not adept at documenting EH design and
code. Inadequate documentation of EH is already a known
issue [12]. It impacts the developers’ understanding of the
consequences of not offering adequate EH [21]. Also, it
has implications in their comprehension of the type of
exceptions thrown by a method [14].

EH policy, turnover, and skill issues
By analysing all the data extracted from the three units,
we can confirm some assumptions concerning RQ3. We
believe the absence of EH policies and guidelines are the
leading causes to EH anti-pattern dissemination in XSA.
The lack of static analysis tools to monitor the EH anti-
patterns insertion plays a crucial role too. However, not
less important, the high team turnover and, consequently,
developers’ inexperience with XSA, strongly contribute to
the growth and dissemination of EH anti-patterns in XSA.
Sometimes, novice developers have also poor skills in
Web development with Java. This high team turnover
is also a problem in other similar public institutions.
Thus, diagnosing the EH status and proposing possible
actions to minimise them may help other organisations to
improve the quality of their systems.

Threats to validity
Internal validity. The unit of analysis 1 considers only
the information provided in the online questionnaire. This

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

method of collection may have bias depending on the
interest of the respondents. However, the results of the
second and third units of analysis validated some col-
lected by the unit of analysis 1 (e.g., the occurrence of
anti-patterns in the view layer, the absence of explicit EH
policies, and the developers’ knowledge about EH bad
practices).

Another threat to validity concerns the percentage
of online survey and quiz respondents, about 53% and
30.43%, respectively. To deal with this threat, we use the
interview to perform data triangulation with the answers
given by survey respondents and data from the source
code change analysis. Additionally, this percentage of
responses is quite similar to the achieved in similar studies
in the literature.

This work does not analyse all aspects relevant to EH
(e.g., the situation in which developers add anti-patterns
to the code, the XSA tests, and the training received by
the developers). We also did not inspect all existing anti-
patterns. The analysis tools we use in the study limit the
breadth of the case study. However, these limitations did
not prevent the achievement of the objectives. We have
been able to understand the state of implementing the EH
in a real system, presenting its vulnerabilities and its pos-
sible causes from the insights of the professionals engaged
in its development.

External validity. As a case study, this research fits into
a particular context. We did not select the participants
randomly. They work in the same development environ-
ment and share experiences (training, documentation,
code, and work difficulties). This context makes it difficult
to generalise the results obtained for other public institu-
tions and companies that develop software. For example,
organisations with more code regulation and inspection,
or those that use other programming languages for Web
application development, may produce distinct results.

Finally, it is important to mention that the lack of guide-
lines and a global policy for exception handling design and
implementation might have a different impact on systems
with different architectures and implemented using one or
multiple programming languages.

Construction validity. The online forms, answered
without our help, may not have been well understood
by responders. To mitigate this threat, we performed
several trials with other researchers and software devel-
opers to validate the comprehensibility of each ques-
tion, the organisation, and time needed to fill the
questionnaire.

Another threat concerns the VbR, the tool we devel-
oped to gather information about XSA evolution and team
turnover. To mitigate this threat, we developed such a
tool on top of well-tested libraries, such as JavaParser
and RepoDiriller, giving us some guarantees of reliability.
Besides, looking at reducing the chances of bias, VbR uses

Page 19 of 24

a well-tested and widely adopted open source tool, PMD,
for the EH anti-pattern detection.

Related work

In this section, we present the main related work to
this research. Those researches have an emphasis on the
exception handling analysis. They use as data sources both
the software developers’ opinion and artefacts that either
belongs to the system development cycle, such as source
code, identified bug reports, and documentation.

We selected the related studies using the Snowballing
literature review [33], applying both backward and for-
ward analyses. The inclusion criteria were (i) studies
should analyse the exception handling with respect to
real software development cycle elements and (ii) studies
should have been published between 2010 and 2018.
The exclusion criterion was that studies whose main
contribution is the proposition of tools, techniques, and
methods. There were selected papers whose title satisfies
the following search string:

exception AND (“handling” OR “handler”) AND (“case
study” OR “empirical study” OR “exploratory study”)

Figure 16 shows the snowballing results. The initial
selection of studies resulted in 11 papers. After analysing
the title and applying the inclusion and exclusion criteria,
we removed five papers, thus resulting in six papers in the
initial set. Those remaining six pages were input to the
first iteration of the Snowballing. The backward analysis
found 10 new papers, while 12 new studies were identi-
fied in the forward counterpart. From the new set of 22
papers, only 12 papers satisfied the inclusion and exclu-
sion criteria. With those 12 papers, we started the second
Snowballing iteration, in which four papers were found
in the backward analysis and eight studies were selected
in the forward analysis. After applying the inclusion and
exclusion criteria to those 12 papers identified, only three
papers were included. At the end of the Snowballing
process, our result set consisted of 21 studies.

After that, we separated the studies according to the
source of the data collected by the authors and classi-
fied them in the following categories: developer-centric
studies (human aspect), with two studies, software-
centric studies (technical aspect), containing 14 studies ,
and hybrid studies (includes both human and technical
aspects), which included five papers. In the next subsec-
tions, we detail the most cited work in each of the three
categories in which they were classified.

Developer-centric studies

The work in [34] addresses the perception of developers
and organisations about bugs in the exception handling.
It was used as an online questionnaire, answered by 154

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1 Page 20 of 24
___________ StartSet _ _Merationl _ ____ lteration2
Backwerd Forward Backward Forward
11
Evaluated Papers 10 12 o 4 8
! i |Evaluated| |Evaluated | Evaluated | |Evaluated
P Papers Papers Papers Papers
6 { =
Papers Included | | | 3 :
’ 12 Papers Included ‘ 1 3 Papers Included ‘
5 3 P |
Papers Excluded | 10 Papers Excluded | | 9 Papers Excluded |
Fig. 16 Snowballing results

programmers and researchers with experience in Java, to
collect the information. The authors’ main conclusions
are (i) the exception handling code are rarely tested and
documented, (ii) experienced professionals tend to be
more critical with respect to the quality of the exceptional
behaviour code, and (iii) developers use the exception
handling to implement fault tolerance strategies and to
improve the code quality.

Two studies to capture both novices and experi-
enced developers’ view about the exception handling are
described in [5]. In total, 15 Java developers participated in
a semi-structured interview. According to the results, less
experienced developers try to avoid exception handling
or just to imitate existing practices in the code, thus not
devoting time to handle exceptions properly. On the other
hand, experienced developers see exception handling as
an integral and inseparable part of the software develop-
ment process and also use it to provide better feedback
about the runtime errors, to prevent data corruption, and
to control the system execution flow.

The studies in [5] and [34] aimed at understanding the
developers’ perception of exception handling. They pro-
vided a better understanding of the human side regarding
the exception handling and inspired new studies, such as
this one.

Software-centric studies
The authors of [14] conducted a study to understand the
approaches used in exception handling in Java libraries by
analysing their exception flows. In addition, posts in bug
reporting systems regarding exception handling were also
inspected and linked to the analysed flows. The authors
found out that most of the analysed libraries do not
document RuntimeExceptions. Exception handling anti-
patterns were detected in 25% of the analysed code and
more than 20% of the reported problems of the most
popular libraries were related to exception handling.

To verify whether the exception handling can be consid-
ered risky is the main objective of [35]. For this, it analysed

the defect density in classes of the Eclipse IDE and excep-
tion handling metrics extracted from its source code. The
results reveal a decline in the amount of defects during
the software evolution. However, the defects associated
with the exception handling continued to grow over the
6 years considered in the research. The opposite happens
with defects not related to exception handling.

The authors in [4] conducted a study to understand
the relationship between programme evolution and its
robustness. The research focuses on the evolution of
exception handling in systems developed in Java and C#.
The analysis of the exceptional flows is carried out with
the use of metrics that indicate the changes made between
releases of the same system and its impact. Among these
metrics, we can cite the number of Unhandled Exceptions
along the execution flow, which provides an indication of
system robustness. The authors conclude that the excep-
tion handling in Java systems undergoes more modifica-
tions over time. Nonetheless, they have fewer scenarios
that negatively impact their robustness. Conversely, the
exception handling in C# systems seems to be more frag-
ile, indicating a greater amount of Unhandled Exceptions
in the verified scenarios.

The work in [6] intended to show which methods with
undocumented exceptions are responsible for application
failures. The authors analysed several stack traces related
to failures in Android applications to identify the meth-
ods responsible for them. They also looked at the Android
API source code and catalogued methods that have doc-
umented exceptions. From the collected data, they found
that 69% of the methods involved in failures did not have
their exceptions documented. Moreover, only 18% of pub-
lic or protected methods had such documentation and
24% of the methods found in the stack traces launched
generic exceptions, such as RuntimeException and Null-
PointerException, which were not documented on the
interfaces.

The authors in [19] tried to understand which types
of either exceptional failures or failures due to misuse or

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

lack of exception handling occur in systems. The authors
identified releases of Hadoop and Tomcat Apache sys-
tems related to lack of exception handling. Almost 41%
of the faults were classified in the category “Information
Swallowed”, which contains faults caused by the lack of
adequate information of an exception, also encompassing
the anti-pattern known as Destructive Wrapping.

The papers discussed in this subsection are studies that
use several elements such as source code, system logs,
and reported bugs to understand how developers use
exception handling in practice. In addition, they expose
the exception handling deficiencies and its impact in the
involved systems. Since they focus on software, they do
not present the developers’ perceptions and the difficul-
ties found in development environments that interfere in
the exception handling quality. These aspects, however,
are investigated in our work.

Hybrid studies

The authors in [36] investigated the use of exception han-
dling mechanisms in C++ in order to understand how
developers use them for error recovery in the midst of
other activities required in the software development.
They investigated the practices implemented in the source
code of 65 open-source projects by means of static anal-
yses provided by a proprietary tool. They found out that,
on average, only 0.03% of the code is intended for recovery
actions, that the most thrown exception is of type Run-
timeException and that 16.71% of the handlers are empty.
In addition, they conducted an online search to cap-
ture the understanding and perception of C++ developers
about exception handling. Most respondents agreed that
developers often avoid handling exceptions due to, among
other reasons, performance issues and lack of knowledge
about how to use these elements.

An analysis of reported errors of two systems, Tomcat
and Eclipse, with the objective of better understanding the
causes, severity, frequency, and difficulty of solving these
bugs, is shown in [12]. Additionally, through an online
questionnaire, they tried to understand the perceptions
that the developers of the analysed systems and other
institutions have about exception handling and its related
bugs. At the end, the authors concluded that organisa-
tions often do not institutionalise policies for exception
handling, since they rarely have specific tests or documen-
tation for that purpose. They also found that exception
handling bugs are rarely reported, and the main causes of
such bugs are the lack of exception handling, exceptions
that should be (but are not) thrown, and programming
errors in catch blocks.

Finally, the authors in [37] investigated when reported
stack traces may express circumstances in which there
are a greater likelihood of bugs in exception handling in
Android applications. Among the findings, they highlight

Page 21 of 24

that the majority cause of the stack trace problems were
related to programming bugs (e.g., NullPointerExcep-
tion, IllegalArgumentException, RuntimeException), 65%
of application failures were related to runtime exceptions,
and only one was documented with the tag @throws.

Discussion

The studies presented in this section propose approaches
or distinct analysis methods to help the comprehension
of exception handling usage in both systems and develop-
ers’ view. Their main contributions focus on four topics:
(i) exception handling anti-patterns [4, 8, 14, 15, 32, 38],
exception handling defects [19, 35, 39], developers’ per-
ception [5, 34, 40], and exception handling evolution
[41, 42]. Some of those studies [12, 36, 38] also have
interception with other topics since they cross-check the
information collected from different sources.

The developers’ perception was assessed through online
questionnaires [34, 36-38] and semi-structured inter-
views [5, 40]. In general, the researches aimed at under-
standing how developers use the exception handling, what
approaches are used, the differences between novices
and experienced developers, what they understand about
exception handling bugs and how they use exception han-
dling in Android and Swift applications.

There have been found anti-patterns in different
domains, such as both desktop and server applications,
and programming libraries [8, 15], as well as in different
programming languages [4, 15]. There were used manu-
ally source code inspection, scripts to automate the detec-
tion of anti-patterns, and several releases of the system in
order to analyse the evolution of anti-patterns [4, 8, 32].

Similarly, the reported defects were associated to the
inadequate use of exception handling. The data were col-
lected through bug reports and the system releases. The
authors of those researches categorised bugs [12, 19] and
identified whether classes that handle exceptions are more
defect prone [39, 43]. They also investigated when using
exception handling is risky by calculating defect density
metrics [35] and found out situations with more likelihood
to have bugs [35]. Furthermore, the lack of exception doc-
umentation has also been analysed as a possible cause of
application failures.

The evolution of the exception handling was perceived
by observing its constructs (¢ry, catch, throws), the use of
customised exceptions, and anti-patterns throughout the
analysed system releases. Those information were neces-
sary to understand the development of the portion of code
destined for exceptional flows [36] and which changes
impact the exception handling [8]. In addition, there was
investigated how the exceptional interfaces evolve [42],
whether the developers use more customised exceptions
as they acquire more knowledge about the project [41],
and how normal and exceptional code changes are related

de Sousa et al. Journal of the Brazilian Computer Society

to exception handling failures in Java, C# e Android appli-
cations [4, 44].

We noticed that the hybrid researches, which inves-
tigate both human and technical aspects regarding EH,
produce a better comprehension of the investigated phe-
nomena and bring results that are more powerful and
better justified than those that adopt only one strategy.
Also, few studies had access simultaneously to the code
and the professionals involved in the development of the
same system. Hence, we chose that approach since a study
carried out closer to the real environment that originated
the investigated phenomenon can elucidate its causes bet-
ter and produce positive effects in this environment (e.g.,
improving the quality of the future releases of the system).

Finally, a few papers focused on the presence and evolu-
tion of anti-patterns in the development of Web systems,
which is the main topic of this work. Another critical
difference of our work is the study and analysis of the
impact that the team turnover has in the production and
correction of exception handling anti-patterns.

Final remarks and future work

The exception handling is typically associated with the
software capability to recover itself from abnormal occa-
sions. However, despite its importance, EH is commonly
neglected by developers, causing several undesired situ-
ations in software usage (e.g., unfriendly error messages,
system fail). Previous studies show that EH problems
come from human or technical aspects. In this realm, this
work aimed at comprehending how software engineers of
a public institution perceive the EH. Also, we wanted to
discover the technical situations faced in that real envi-
ronment, which affect the quality of the EH in a particular
large-scale system.

We conducted a case study with a large-scale Web sys-
tem. The online survey showed developers are aware of
EH importance even without an explicit EH policy in the
institution. However, as the code analysis revealed, many
EH anti-patterns were found, and they are not a novelty
in the system. We can conclude that recognising the EH
importance was not enough to avoid the insertion and
proliferation of anti-patterns in the system code.

Our findings and the beliefs of the project committee
indicate team turnover has an essential impact on the
insertion of EH anti-patterns. Data from the code analy-
sis during the years 2015 and 2017 showed that novices
inserted more EH anti-patterns. They also remove less EH
violations than experts. In the case of 2017, we also found
that there is a significant difference between the groups
concerning the ratio of violations to Java files changes.
However, as our research revealed, experts also continue
to contribute negatively to this scenario. In addition to
improve the skills of novices, the adoption of practices and
tools that support a better development and maintenance

(2020) 26:1

Page 22 of 24

process is required (e.g., EH policies, conformance check-
ing of these policies by a quality team).

Our case study offers insights and confirms the impact
of team turnover and EH skills in EH anti-pattern dis-
semination in XSA. Nonetheless, other studies should
confirm if this phenomenon occurs systematically or it is
a particularity of XSA.

As future research work, we intend to address the cre-
ation of guidelines for EH documentation and policies for
Java Web systems. This aims at improving the develop-
ers’ comprehension of how the EH should be used in a
large-scale system. Furthermore, we intend to analyse the
impact of EH training and code analysis tool adoption
in the evolution of XSA’s EH anti-patterns, because the
absence of those activities may also be contributing to the
presence of EH anti-patterns.

Finally, another interesting future work could be to
study a way to support the refactoring of the Catch
Generic anti-pattern (the most prevalent in XSA), point-
ing out the benefits and possible drawbacks to conduction
such global system refactoring.

Acknowledgements

We acknowledge the XSA’s maintenance institution for giving us access to
their code. We also are glad to the software engineers that helped us in this
case study investigation.

Authors’ contributions

DBCde S is the main author of this research, which presents the result of her
Computer Science Master dissertation. WV and LSR were their Master Degree
supervisors, which also analysed the research data and written most of the
sections of the paper. PHMM contributed on identifying insights from the data
triangulation and on writing the manuscript. All authors read and approved
the final manuscript.

Funding
The research has not received any external funding.

Availability of data and materials

The datasets generated and analysed during the current study are not publicly
available due to the fact XSA is a third-party system with a critical role in its
institution. However, the data analysis is available from the corresponding
author on a reasonable request.

Competing interests
The authors declare that they have no competing interests

Author details
'Federal University of Ceara, Av. Humberto Monte, 60440-593, Fortaleza, Brazil.
2State University of Ceara, Av. Dr. Silas Munguba, 60741-000, Fortaleza, Brazil.

Received: 12 February 2019 Accepted: 29 December 2019
Published online: 27 January 2020

References

1. Garcia AF, Rubira CM, Romanovsky A, Xu J (2001) A comparative study of
exception handling mechanisms for building dependable
object-oriented software. J Syst Softw 59(2):197-222

2. Shahrokni A, Feldt R (2013) A systematic review of software robustness.
Inf Softw Technol 55(1):1-17

3. BuhrPA, Mok WYR (2000) Advanced exception handling mechanisms.
IEEE Trans Softw Eng 26:820-836

4. Cacho N, Barbosa EA, Araujo J, Pranto F, Garcia A, Cesar T, Soares E, Cassio
A, Filipe T, Garcia | (2014) How does exception handling behavior evolve?

de Sousa et al. Journal of the Brazilian Computer Society

20.

21.

22.

23.

(2020) 26:1

An exploratory study in Java and Ci# applications. In: 2014 [EEE
International Conference on Software Maintenance and Evolution. [EEE.
https://doi.org/10.1109/icsme.2014.25

Shah H, Gorg C, Harrold MJ (2010) Understanding exception handling:
viewpoints of novices and experts. I[EEE Trans Softw Eng 36(2):150-161
Kechagia M, Spinellis D (2014) Undocumented and unchecked:
exceptions that spell trouble. In: Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR 2014. ACM, New York.
pp 312-315

Chang B-M, Choi K (2016) A review on exception analysis. Inf Softw
Technol 77(C):1-16

Oliveira J, Borges D, Silva T, Cacho N, Castor F (2018) Do android
developers neglect error handling? A maintenance-centric study on the
relationship between android abstractions and uncaught exceptions. J
Syst Softw 136(Supplement C):1-18

Osman H, Chis A, Corrodi C, Ghafari M, Nierstrasz O (2017) Exception
evolution in long-lived Java systems. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE.
https://doi.org/10.1109/msr.2017.21

Filho JLM, Rocha L, Andrade R, Britto R (2017) Preventing erosion in
exception handling design using static-architecture conformance
checking (Lopes A, de Lemos R, eds.). Springer, Cham

Cacho N, César T, Filipe T, Soares E, Cassio A, Souza R, Garcia |, Barbosa EA,
Garcia A (2014) Trading robustness for maintainability: an empirical study
of evolving C# programs. In: Proceedings of the 36th International
Conference on Software Engineering — ICSE 2014. ACM Press. https://doi.
0rg/10.1145/2568225.2568308

Ebert F, Castor F, Serebrenik A (2015) An exploratory study on exception
handling bugs in Java programs. J Syst Softw 106:82-101

Sawadpong P, Allen EB (2016) Software defect prediction using exception
handling call graphs: a case study. In: 2016 IEEE 17th International
Symposium on High Assurance Systems Engineering (HASE). IEEE.
https://doi.org/10.1109/hase.2016.13

Sena D, Coelho R, Kulesza U, Bonifacio R (2016) Understanding the
exception handling strategies of Java libraries: an empirical study. In:
Proceedings of the 13th International Workshop on Mining Software
Repositories — MSR "16. [EEE. https://doi.org/10.1145/2901739.2901757
de Padua GB, Shang W (2017) Studying the prevalence of exception
handling anti-patterns. In: 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC). IEEE Press. https://doi.org/10.1109/
icpc.2017.1

Barbosa EA, Garcia A, Robillard MP, Jakobus B (2016) Enforcing exception
handling policies with a domain-specific language. [EEE Trans Softw Eng
42(6):559-584

Barbosa EA, Garcia A (2017) Global-aware recommendations for repairing
violations in exception handling. IEEE Trans Softw Eng PP(99):1-1. https://
doi.org/10.1109/TSE.2017.2716925

de Sousa DBC, Maia PH, Rocha LS, Viana W (2018) Analysing the evolution
of exception handling anti-patterns in large-scale projects: a case study.
In: Proceedings of the VI Brazilian Symposium on Software Components,
Architectures, and Reuse, SBCARS "18. ACM, New York. pp 73-82. https://
doi.org/10.1145/3267183.3267191

Barbosa EA, Garcia A, Barbosa SDJ (2014) Categorizing faults in exception
handling: a study of open source projects. In: 2014 Brazilian Symposium
on Software Engineering. IEEE. https://doi.org/10.1109/sbes.2014.19
Gallardo R, Hommel S, Kannan S, Gordon J, Zakhour S. B. (2014) The Java
tutorial: a short course on the basics, 6th edn. Java Series. Addison-Wesley
Professional, Boston

Yuan D, Luo Y, Zhuang X, Rodrigues GR, Zhao X, Zhang Y, Jain P, Stumm
M (2014) Simple testing can prevent most critical failures: An analysis of
production failures in distributed data-inte nsive systems. In: 11th
{USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14). pp 249-265

Sinha S, Orso A, Harrold MJ (2004) Automated support for development,
maintenance, and testing in the presence of implicit control flow. In:
Proceedings of the 26th International Conference on Software
Engineering. IEEE Computer Society. pp 336-345

Chen C-T, Cheng YC, Hsieh C-Y, Wu I-L (2009) Exception handling
refactorings: directed by goals and driven by bug fixing. J Syst Softw
82(2):333-345

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Page 23 of 24

Coelho R, Rocha J, Melo H (2018) A catalogue of Java exception handling
bad smells and refactorings. In: Pattern Languages of Programs (PLoP),
2018 25th International Conference On. The Hillside Group. http://www.
hillside.net/plop/2018/papers/proceedings/

Correa AL, Werner CM, Zaverucha G (2000) Object oriented design
expertise reuse: an approach based on heuristics, design patterns and
anti-patterns. In: Software Reuse: Advances in Software Reusability.
Springer. pp 336-352. https://doi.org/10.1007/978-3-540-44995-9_20
Runeson P, Host M, Rainer A, Regnell B (2012) Case study research in
software engineering: guidelines and examples, 1st edn.. Wiley
Publishing, Hoboken

Creswell JW (2014) Research design: qualitative, quantitative, and mixed
methods approaches. Sage publications, California

Chatzipetrou P, Smite D, van Solingen R (2018) When and who leaves
matters: emerging results from an empirical study of employee turnover.
In: Proceedings of the 12th ACM/IEEE International symposium on
empirical software engineering and measurement, ESEM '18. ACM, New
York. pp 53-1534. https://doi.org/10.1145/3239235.3267431

Haines VY, Jalette P, Larose K (2010) The influence of human resource
management practices on employee voluntary turnover rates in the
canadian non governmental sector. ILR Review 63(2):228-246. https://doi.
org/10.1177/001979391006300203

Smite D, van Solingen R (2016) What's the true hourly cost of offshoring?
IEEE Softw 33(5):60-70. https://doi.org/10.1109/MS.2015.82

Palomba F, Bavota G, Di Penta M, Oliveto R, De Lucia A (2014) Do they
really smell bad? A study on developers’ perception of bad code smells.
In: 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE. pp 101-110. https://doi.org/10.1109/icsme.2014.32
Nogueira AF, Ribeiro JC, Zenha-Rela MA (2017) Trends on empty
exception handlers for Java open source libraries. In: 2017 IEEE 24th
International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE. pp 412-416. https://doi.org/10.1109/saner.
2017.7884644

Wohlin C (2014) Guidelines for snowballing in systematic literature
studies and a replication in software engineering. In: Proceedings of the
18th International Conference on Evaluation and Assessment in Software
Engineering - EASE "14. ACM Press. https://doi.org/10.1145/2601248.
2601268

Ebert F, Castor F (2013) A study on developers’ perceptions about
exception handling bugs. In: 2013 IEEE International Conference on
Software Maintenance. [EEE. https://doi.org/10.1109/icsm.2013.69
Sawadpong P, Allen EB, Williams BJ (2012) Exception handling defects: an
empirical study. In: 2012 IEEE 14th International Symposium on
High-Assurance Systems Engineering. IEEE. pp 90-97. https://doi.org/10.
1109/hase.2012.24

Bonifacio R, Carvalho F, Ramos GN, Kulesza U, Coelho R (2015) The use of
C++ exception handling constructs: a comprehensive study. In: 2015 IEEE
15th International Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE. pp 21-30. https://doi.org/10.1109/scam.2015.
7335398

Coelho R, Aimeida L, Gousios G, Van Deursen A, Treude C (2017) Exception
handling bug hazards in Android. Empir Softw Eng 22(3):1264-1304
Queiroz FD, Coelho R (2016) Characterizing the exception handling code
of android apps. In: 2016 X Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS). IEEE. pp 131-140.
https://doi.org/10.1109/sbcars.2016.25

Marinescu C (2011) Are the classes that use exceptions defect prone? In:
Proceedings of the 12th international workshop and the 7th annual ERCIM
workshop on Principles on software evolution and software evolution -
IWPSE-EVOL "11. ACM. https://doi.org/10.1145/2024445.2024456

Cassee N, Pinto G, Castor F, Serebrenik A (2018) How swift developers
handle errors. In: Proceedings of the 15th International Conference on
Mining Software Repositories - MSR "18. https://doi.org/10.1145/3196398.
3196428

Osman H, Chis A, Schaerer J, Ghafari M, Nierstrasz O (2017) On the
evolution of exception usage in java projects. In: 2017 |EEE 24th
International Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE. pp 422-426. https://doi.org/10.1109/saner.2017.7884646
Barbosa EA, Garcia A (2011) Analyzing exceptional interfaces on evolving
frameworks. In: 2011 Fifth Latin-American Symposium on Dependable

https://doi.org/10.1109/icsme.2014.25
https://doi.org/10.1109/msr.2017.21
https://doi.org/10.1145/2568225.2568308
https://doi.org/10.1145/2568225.2568308
https://doi.org/10.1109/hase.2016.13
https://doi.org/10.1145/2901739.2901757
https://doi.org/10.1109/icpc.2017.1
https://doi.org/10.1109/icpc.2017.1
https://doi.org/10.1109/TSE.2017.2716925
https://doi.org/10.1109/TSE.2017.2716925
https://doi.org/10.1145/3267183.3267191
https://doi.org/10.1145/3267183.3267191
https://doi.org/10.1109/sbes.2014.19
http://www.hillside.net/plop/2018/papers/proceedings/
http://www.hillside.net/plop/2018/papers/proceedings/
https://doi.org/10.1007/978-3-540-44995-9_20
https://doi.org/10.1145/3239235.3267431
https://doi.org/10.1177/001979391006300203
https://doi.org/10.1177/001979391006300203
https://doi.org/10.1109/MS.2015.82
https://doi.org/10.1109/icsme.2014.32
https://doi.org/10.1109/saner.2017.7884644
https://doi.org/10.1109/saner.2017.7884644
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/icsm.2013.69
https://doi.org/10.1109/hase.2012.24
https://doi.org/10.1109/hase.2012.24
https://doi.org/10.1109/scam.2015.7335398
https://doi.org/10.1109/scam.2015.7335398
https://doi.org/10.1109/sbcars.2016.25
https://doi.org/10.1145/2024445.2024456
https://doi.org/10.1145/3196398.3196428
https://doi.org/10.1145/3196398.3196428
https://doi.org/10.1109/saner.2017.7884646

de Sousa et al. Journal of the Brazilian Computer Society (2020) 26:1

Computing Workshops. IEEE. pp 17-20. https://doi.org/10.1109/ladcw.
2011.19

43. Marinescu C (2013) Should we beware the exceptions? An empirical
study on the eclipse project. In: 2013 15th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing. IEEE. https://
doi.org/10.1109/synasc.2013.40

44. Oliveira J, Cacho N, Borges D, Silva T, Castor F (2016) An exploratory study
of exception handling behavior in evolving android and java applications.
In: Proceedings of the 30th Brazilian Symposium on Software Engineering
- SBES "16. ACM. https://doi.org/10.1145/2973839.2973843

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Page 24 of 24

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1109/ladcw.2011.19
https://doi.org/10.1109/ladcw.2011.19
https://doi.org/10.1109/synasc.2013.40
https://doi.org/10.1109/synasc.2013.40
https://doi.org/10.1145/2973839.2973843

	Abstract
	Keywords

	Introduction
	Background
	Java exception handling
	Exception handling anti-patterns

	Research methodology
	Main objectives
	Case study organisation
	Subject system

	Unit of analysis 1: developer's perception about EH
	Subjects
	Materials and methods
	Procedure
	Results

	Unit of analysis 2: EH code analysis
	Materials and methods
	Results
	Current release
	Anti-pattern evolution

	Unit of analysis 3: cause and effect analysis
	Semi-structured interview
	Subjects
	Materials and methods
	Procedure
	Results

	Turnover
	Materials and methods
	Results

	The inexperience of novice developers
	Materials and methods
	Procedure
	Results

	Developers' awareness of EH anti-pattern insertion
	Materials and methods
	Procedure
	Results

	Replication of bad practices from the original system
	Procedure
	Results

	Overall discussion
	Case study peculiarities
	Lack of documentation issues
	EH policy, turnover, and skill issues

	Threats to validity
	Related work
	Developer-centric studies
	Software-centric studies
	Hybrid studies
	Discussion

	Final remarks and future work
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

