
Journal of the
Brazilian Computer Society

Lima et al. Journal of the Brazilian Computer
Society (2019) 25:7
https://doi.org/10.1186/s13173-019-0088-4

RESEARCH Open Access

Product line architecture recovery with
outlier filtering in software families: the
Apo-Games case study
Crescencio Lima1,2* , Wesley KG Assunção3, Jabier Martinez4, William Mendonça3, Ivan C Machado1

and Christina FG Chavez1

Abstract

Software product line (SPL) approach has been widely adopted to achieve systematic reuse in families of software
products. Despite its benefits, developing an SPL from scratch requires high up-front investment. Because of that,
organizations commonly create product variants with opportunistic reuse approaches (e.g., copy-and-paste or
clone-and-own). However, maintenance and evolution of a large number of product variants is a challenging task. In
this context, a family of products developed opportunistically is a good starting point to adopt SPLs, known as
extractive approach for SPL adoption. One of the initial phases of the extractive approach is the recovery and
definition of a product line architecture (PLA) based on existing software variants, to support variant derivation and
also to allow the customization according to customers’ needs. The problem of defining a PLA from existing system
variants is that some variants can become highly unrelated to their predecessors, known as outlier variants. The
inclusion of outlier variants in the PLA recovery leads to additional effort and noise in the common structure and
complicates architectural decisions. In this work, we present an automatic approach to identify and filter outlier
variants during the recovery and definition of PLAs. Our approach identifies the minimum subset of cross-product
architectural information for an effective PLA recovery. To evaluate our approach, we focus on real-world variants of
the Apo-Games family. We recover a PLA taking as input 34 Apo-Game variants developed by using opportunistic
reuse. The results provided evidence that our automatic approach is able to identify and filter outlier variants, allowing
to eliminate exclusive packages and classes without removing the whole variant. We consider that the recovered PLA
can help domain experts to take informed decisions to support SPL adoption.

Keywords: Software product lines, Product line architecture, Variability, Product line architecture recovery

Introduction
Software product line (SPL) is a widely adopted approach
for developing and managing a family of software prod-
ucts. SPLs leverage systematic software reuse, since a set
of products, designed for a specific domain or market
segment, share common parts [1]. By adopting SPLs, com-
panies achieve benefits such as reduced time-to-market,
planned delivery of products, homogenization of the qual-
ity of the products, easier maintenance, and evolution of

*Correspondence: crescencio@gmail.com
1Federal University of Bahia, Ademar de Barros - Campus de Ondina, Salvador,
40170-110, Brazil
Full list of author information is available at the end of the article

variants while meeting specific customer or market needs
[2, 3].
Despite its benefits, SPL adoption requires high up-

front investments, the return-on-investment is usually
conditioned to a deep knowledge of the domain/market
segment, and its evolution in themid- and long-term. This
also makes SPLs more suitable for mature domains where
the variability of the systems is well established. However,
this is not the scenario where the great majority of soft-
ware companies are included. Usually, many companies
rely on less sophisticated reuse approaches, focusing on
immediate needs of their customers, without taking into
account systematic reuse with long-term vision.
These less sophisticated reuse approaches are collec-

tively called opportunistic reuse, or ad hoc reuse [4, 5],

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-019-0088-4&domain=pdf
http://orcid.org/0000-0002-0286-2056
mailto: crescencio@gmail.com
http://creativecommons.org/licenses/by/4.0/

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 2 of 17

that includes techniques such as clone-and-own or copy-
and-paste reuse. Opportunistic reuse provides short-term
benefits; however, once the design quality is not consid-
ered as a factor during or after reuse, it results in extensive
refactoring and contributes to maintenance owes, leading
to unanticipated behavior, violated constraints, conflict in
assumption, fragile structure, and software bloat [6].
Due to the benefits of systematic reuse and because

of the problems of opportunistic reuse, re-engineering of
existing products to SPLs has been receiving attention
from industry and academia [7, 8]. An industrial survey
pointed that around 50% of the companies that adopt SPLs
do not start from scratch, but rather start with a set of
existing variants [9].
One challenge on re-engineering existing system vari-

ants into SPLs is that, by using the opportunistic reuse,
some variants become highly unrelated to their predeces-
sors. Because of the need of a significant modification in
the variant to accommodate a specific functionality, or the
inclusion of new developers in the development process,
certain variants are transformed in outliers [10]. Out-
liers certainly fulfill their purpose of providing customized
functionalities for a specific scenario; however, since they
are maintained and evolved as part of a family of prod-
ucts, outliers become problematic because of erroneous
relations might be identified, more detailed knowledge of
the implementation might fade away, or the expert in the
variant may leave the development team. Furthermore,
analogously to the architecture of single systems, drift and
erosion [11] can happen in a family of products as a whole,
making more difficult the re-engineering of the variants
into SPLs.
To develop an SPL, a fundamental step is to define the

product line architecture (PLA). PLA represents the archi-
tecture of a family of products describing common and
variable components of the SPL. With the goal of re-
engineering existing products into SPLs, one of the initial
steps is to recover the architecture considering the family
of products. While architecture recovery techniques have
been largely studied for single systems [12], recovery tech-
niques for families of systems have been overlooked [8]
despite their importance in SPL adoption.
During the recovery of a PLA from existing prod-

ucts, the analysis and integration of outliers will demand
additional effort for architects and engineers. Each out-
lier includes too much noise in the common structure,
requires specific analysis, and complicates architectural
decisions. To overcome this problem, in a previous work,
we present a cost-effective PLA recovery strategy that
identifies and filters outliers [13]. The main character-
istics of our previous work are as follows: (i) it is an
automatic approach for the identification of the minimum
subset of cross-product architectural information for an
effective PLA recovery. The assumption is that efficient

and comprehensive PLAs obtained through architec-
ture recovery can be automated by “pruning” the set of
variants’ architectures, and (ii) in our previous evalua-
tion, we took into account real-world variants created by
means of clone-and-own strategy. Concretely, we used 20
open-source variants of medium-size Java games known
as Apo-Games in the SPL research community [14].
In this study, we extend our previous work [13] as

follows:

• Further details of the proposed approach are
described.

• An illustrative example considering a real-word set of
system variants is presented.

• We introduce a guideline to support of the PLA
recovering process.

• Inclusion of 14 Apo-Games new variants (nine
desktops and five mobiles) in addition to the 20 ones
of our previous study.

• An in-depth analysis of the results is presented.

Our approach supports the automation of the PLA
recovery and the identification of outlier variants. We
propose the improvement of the recovered PLA by com-
bining threshold analysis with outlier filtering and metric
analysis. The results obtained with the Apo-Games case
study reveal that a real-world project has outlier vari-
ants, there is a correlation between the size of the variant
and the existence of exclusive implementation elements,
and the filtering of outliers has a positive impact on the
recovered PLA, mainly in the high level of abstraction,
namely in package representation. Furthermore, the anal-
ysis of desktop and mobile variants of the same game
allows identification of variability and commonalities in
implementations for different platforms.
The remainder of the paper is organized in sections

that present background information (the “Background”
section), describe our approach to PLA recovery (the
“Proposed approach” section), the experimental study
conducted (the “Study design” section), and the study
execution and analysis (the “Results” section), pro-
vide interpretation and answers to research questions
(the “Discussion” section), discuss related work (the
“Related work” section), and present concluding
remarks and recommendations for future work (the
“Concluding remarks” section).

Background
In this section, we provide background and definitions
needed for the rest of the paper.

Apo-Games projects
The Apo-Games1 is a set of medium-sized games that
have been implemented based on the clone-and-own
approach. The Apo-Games has been proposed as a

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 3 of 17

good candidate for research in the context of reverse
engineering of variability [14]. Apo-Games evolved over
time because of the inclusion of new games and adap-
tations. These games are composed of Java desktop
and Android applications (Android applications are Java-
based programs targeting mobile devices). Java desktop
has evolved since 2007 until 2014. In 2012, the develop-
ment of Android games started. In this work, we deal
with the Java games of the Apo-Games repository2 [14].
The source code for each game ranges from 2.5 KLOC
to 46.7 KLOC. These games are medium-sized projects
and together sum up to an overall size of 178.2 KLOC. In
addition, we also deal with variants available as Jar files.
Further details of Apo-Games variants are described in
the section “Study design.”

Product line architecture
Variability at the architectural level can be a complex
concept that should be addressed across all the software
life cycle [15]. So far, architectural variability has been
addressed in the SPL domain [15, 16]. To address variabil-
ity in SPL projects, the notion of PLA [17] was introduced
to capture the core design of all products including com-
monalities and variability of several product instances
[18]. In other words, PLA is a special type of architecture
that describes commonality (core assets) and variability
(varying assets), so it plays a crucial role to develop fami-
lies of products as it is the basis for the architectures of all
SPL products within the family [2]. At the same time, PLA
supports the variability management in the design process
allowing high level abstraction for its comprehension and
common understanding at the organizational level [11].

Architecture views
Kruchten [19] proposed the 4+1 architectural model to
represent software architecture from different viewpoints.

Fig. 1 The 4+1 view model, extracted from [19]

The model is organized in five views, as depicted in Fig. 1:
logical, development, process, physical, and the fifth view
combines the former ones as a means to illustrate and
explain the overall architecture.
Despite the importance of software architecture in the

context of software development, the variants created by
using opportunistic reuse seldom provide formal and up-
to-date architectural representations that explicitly show
system organization. Such information is only present in
implementation artifacts, i.e., source code.
The Apo-Games variants we deal with in this work

fit the aforementioned scenario (absence of explicit rep-
resentations of the architecture apart from the devel-
opment view). Since the extracting process is based
on the games’ source code, we focus on the develop-
ment view of the 4+1 architectural model for represent-
ing the recovered PLA and identifying the architectural
variability. The development view, at the top right
corner of Fig. 1, is a model that represents soft-
ware components as collections of source code arti-
facts (e.g., classes and packages) and software connectors
as relations between these components (e.g., imports,
calls, uses).

Architecture recovery
Software architecture recovery (SAR) processes are orga-
nized into three main categories [20]: (i) bottom-up, start
with low-level knowledge to recover architecture; (ii) top-
down, start with high-level knowledge aiming to discover
the architecture; and (iii) hybrid, combining the previous
two.
In this paper, we use bottom-up processes to recover

PLAs. We create a source code model (low-level knowl-
edge) for the PLA. Then, we raise the abstraction level, by
providing a representation for the PLA using the develop-
ment views.

PLAmetrics
PLA metrics aims to asses certain qualities of the PLA.
In this work, we decided to use four metrics: SSC and
SVC (taken from the PLA metrics proposed by Zhang
et al. [21] focusing on structural components), and RSC
and RVC (similar to the previous ones but focusing on
the relations between components). Their definitions are
provided below.
Structure similarity coefficient (SSC) is used to measure

the similarity between PLA components, while structure
variability coefficient (SVC) is used to measure the struc-
ture variability of the PLA. Given Cc, the number of
common components in the PLA, and Cv, the number of
variable components, SSC and SVC are defined as follows.

SSC = |Cc|
|Cc| + |Cv| SVC = |Cv|

|Cc| + |Cv|

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 4 of 17

Relation similarity coefficient (RSC) is used to measure
the similarity between PLA relations, and relation vari-
ability coefficient (RVC) measures the variability of PLA
relations. Given Rc, the number of common relations in
the PLA, and Rv, the number of variable relations, RSC
and RVC are defined as follows.

RSC = |Rc|
|Rc| + |Rv| RVC = |Rv|

|Rc| + |Rv|

The SSC and SVC metrics are highly related given that
the sum of SSC and SVC will be always 1. Values close to
1 for SSC means that there are few optional components,
and values close to 0 means that the PLA of the different
variants does not have many components in common. We
can draw similar conclusions regarding the RSC and RVC
metrics because the same relationship happens between
them.

Proposed approach
Figure 2 presents the proposed automatic PLA recov-
ery approach. Our approach has generic steps and can
be implemented to work on different contexts. In the
implementation presented in this work, we deal with Java
projects, then some specific tools were used for this con-
text.
First, in 1©, we select the input variants source code.

Examples of input candidates are SPL products, systems
from the same domain, and projects implemented using
clone-and-own strategy. Then, in the information extrac-
tion 2©, we extract the structural information of each
variant. Our implementation relies on the Stan4J3 tool,
but for other contexts, different tools that collect struc-
tural information can be used. To allow the identifica-
tion of the common and variable packages and classes,

in 3©, we pre-process information of variants to elimi-
nate nomenclatures or prefixes specific for a single game
variant. For instance, in the ApoBot variant, we changed
ApoBotPlayer to Player because it allows us to iden-
tify the variants’ common components. These preparatory
refactorings were already proposed in the literature as a
way to align variants and facilitate the migration [22].
As a result, in 4©, we export the extracted informa-

tion in Trivial Graph Format (TGF) files [23]. We use
these files as an input for the variability identification 5©.
This step is composed of two sub-tasks, namely thresh-
old analysis 6© and formal concept analysis 7©, designed
to identify and filter the outliers. For the threshold anal-
ysis 6©, the goal is to provide the reduction of exclusive
components (packages or classes) without eliminating the
whole outlier variants (variants with a considerate num-
ber of exclusive components). For this step, we extended
the PLAR tool [24] to eliminate the components below a
defined threshold value. Formal concept analysis (FCA)
7© generates an auxiliary representation to support bet-
ter understanding of the implementation among variants.
In our context, this representation is obtained with the
Bottom-Up Technologies for Reuse (BUT4Reuse)4 tool
[25].
In 8©, we present the outputs of the PLA recovery

approach: metrics, report, design structure matrix (DSM),
development view (packages and classes), and concept
lattice.
Figure 3 shows the PLA recovery inputs and outputs

organized in three layers. At the bottom layer (layer 0),
the source code provided as input allows the extraction
of structural information. As outputs of the PLA recovery
approach, the middle layer (layer 1) raised the abstraction
level using the information of classes, and the top layer
(layer 2) gathered the classes in packages. In layer 2, we
provided one consolidated package diagram of the PLA.

Fig. 2 PLA recovery approach

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 5 of 17

Fig. 3 PLA recovery inputs and outputs

Then, in layer 1, we created a consolidated class diagram
for each package identified in layer 2. For instance, pack-
age A is a mandatory package because it appears in every
Apo-Games project (layer 2). In layer 1, the developer can
check the classes that implemented package A.
Despite of our approach being designed to deal with

possible problems existing in variants, such as the correc-
tions of names in implementation of specific to variants,
the quality of the recovered PLA is based on the quality of
source code input. For example, similar yet different assets
might lead the approach to generate inappropriate results.

PLA recovery guideline

In a previous study, we identified the lack of guidelines
to support practitioners on using existing tools to con-
duct PLA recovery [26]. Based on the evidence obtained
in our studies [13, 26–28], we define a guideline to help
practitioners on using our approach.
Table 1 presents the recovery guideline that documents

steps and rationale for recovering a PLA from a set
of variants developed with the clone-and-own strategy.
We describe the problem and discuss a possible solu-
tion. Then, we define the preconditions to start the PLA
recovery. We mapped the steps to perform the recov-
ery approach, and the results are presented in the post

conditions. We also provided some hints for improving
the PLA recovery, and trade-offs are designed to deal with
outlier variants.

Motivating example
The goal of this motivating example is to illustrate our
PLA recovery approach. Next, we present five Android
Apo-Games variants. We selected these five projects
because they are relatively small for illustrative pur-
poses. The approach steps are presented in the following
subsections.

Variants’ analysis and extraction
We extracted the variants’ architecture using Stan4J tool.
Figure 4 shows the extracted architecture of the five
Apo-Games variants—(a) ApoClock, (b) ApoSnake, (c)
ApoMono, (d) ApoDice, and (e) myTreasure. They are
mobile games developed for the Android devices.
Figure 4a presents the packages and relationships of

the ApoClock game. The numbers in the relationships
describe the level of dependency between the pack-
ages. For instance, there are five relationships between
.apoclock.game and .apoclock.editor, which
means that .apoclock.game calls five classes from
.apoclock.editor. This notion is the same used in
other variants.

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 6 of 17

Table 1 PLA recovery guideline

PLA recovery guideline
Intent: recover the PLA from a set of variants
Problem
It is not uncommon for software companies to adopt SPL using a clown-
and-own strategy, by copying, adding, or removing functions from
existing products [29]. This approach leads to ad hoc product portfolios
of multiple yet similar variants [30]. With the growth of products’ portfolio,
the management of variability and reuse becomes more complex [31]. A
PLA for the SPL could be recovered from its variants and be used to tame
complexity and drive SPL evolution.
However, SAR for SPL requires additional effort to identify the variability
spread on several implemented variants and represent them at the
architectural level. In this context, we may ask:
How dowe recover a software architecture that unveils variability and
commonality for such a portfolio of clone-and-own related variants?
This problem is difficult because:

• Variants may be large and complex.
• Each cloned variant may have evolved independently from others

occasionally becoming an outlier.
Yet, solving this problem is feasible because:

• There are many SAR techniques for single systems.
• You have the source code of a set of variants.
• Good design practices promote the implementation of

well-modularized units.
Solution

Application of the PLA recovery approach in set of variants with the
support of the PLAR tool [24].
Preconditions
1. Set of variants’ source code developed using clone-and-own strategy

available.

Steps

1. Get the variants’ source code.
2. Select an extraction tool to recover the variants’ structural information.
3. Select an adapter to verify the elements names eliminating

information specific to a variant.
4. Perform the variability identification using the PLAR tool support to

automate the process.
5. Analyze the collected metrics, report, and visualization of the

recovered PLA.
6. Run the threshold analysis according to the specified threshold value.
7. [optional]—Go back to step 5 until you reach the desired metric

values.

Post conditions

1. Set of reports, metrics, design structure matrices (DSMs),
development views, and UML diagrams from the recovered PLAs
according to threshold values.

Hints for improving the PLA recovery

• Use the report to identify the elements’ frequency.
• Perform threshold analysis according to the elements’ frequency.

Trade-offs

• The higher the threshold value, the higher will be the elimination of
variable elements.

Application of the PLA recovery
Figure 5 shows the development view (one of the outputs)
of the PLA recovery approach. Moreover, we identified
the variability in the architectural level. In this figure,
the recovered PLA is represented in packages, where the
game, entity, and main are mandatory packages (blue-
filled ellipses) because they are implemented in all the
five variants. On the other hand, editor, highscore,
highscore, userlevels, and level are optional
(red-dashed ellipses) because they are implemented by
only some variants.
Figure 6 presents the recovered design structure matrix

(DSM) that is a different representation for the develop-
ment view. Each line and column represents a package.
For instance, row 1 and column 1 represent the pack-
age editor. This package in the first row calls classes
in the packages entity (column 02) and game (column
03). The relationship between these packages is variable
because they are implemented only by some of the vari-
ants. We used the letter V to indicate the variability, which
is equivalent to the red-dashed lines in Fig. 5. On the
other hand, the relationship from game (row 3) to package
entity (column 02) is mandatory because it is imple-
mented by all the variants. We used the letter M to repre-
sent the mandatory relationships, which is equivalent to
the blue solid lines in Fig. 5.
We highlight that the implementation of mandatory

packages such as the entity, game, and main can
present variation points. In other words, a mandatory
package can implement variable classes. The same hap-
pens when we analyze mandatory classes. Such classes
can present variation points. However, in the case of the
classes, the variability happens in lower level (such as
source code statements inside a method). Our objective is
to identify the variability in a higher level of abstraction.
In this context, the low-level variability did not affect the
structure of the PLA.

Study design
This section describes the evaluation design based on the
goal/question/metric (GQM) approach [32].

Evaluation goal: Evaluating how the proposed approach
supports the cost-effective product line architecture recov-
ery by the identification and filtering of outliers.

Research questions (RQ): Guided by our evaluation
goal, we derived the following research questions.

• RQ1: How similar and how different are the variants?
Since our goal is to deal with outliers, first we need to
figure out the degree of similarity and variability of
the variants to determine which variants are,
potentially, too expensive to be included in the PLA
recovering process.

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 7 of 17

Fig. 4 Extracted information from five Android variants of Apo-Games (Stan4J) - Packages

Fig. 5 PLA recovery with variability representation at packages level

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 8 of 17

Fig. 6 DSM of the PLA with variability representation

– Metric: We relied on the analysis of the Jaccard
similarity 5. The Jaccard similarity measure is
defined as the size of the intersection divided
by the size of the union of the sample sets. In
our case, the sample sets will be the PLA
components of each pair of variants.

• RQ2: Is there any correlation between the size of the
game variants and the existence of outliers? We aim
to investigate which are the characteristics that can
help to identify outlier variants. For instance, are
variant outliers either the bigger or smaller games?
To what extent the variability of a game makes it too
different from other variants?

– Metric: We applied the correlation analysis
between the variants size (lines of code) and
the number of packages and classes exclusive
for a variant. For this analysis, we used the
Pearson correlation coefficient [33].

• RQ3: To what extent eliminating outliers support
recovering better PLAs? We aim to analyze the
quality of the obtained solutions when removing
outliers. The quality of such solutions is evaluated
according to four architectural metrics. Regarding
the implementation level, we want to investigate the
impact of outliers removal in class level and in
package level.

– Metric: We considered the SSC, SVC, RSC,
and RVC metrics, described in the
“Background” section. We collected these
metrics as a result of our approach. We
applied the threshold analysis and collected
the metrics after the threshold cut.

Table 2 presents a summary of the GQMmethod for our
evaluation

Table 2 Describing the study according to GQM

Goal Evaluating cost-effectiveness of the
proposed approach

Purpose Analyze the impact of outliers filtering

With respect to PLA recovering

From the point of view Architects, engineers, and programmers

In the context of SPL extraction from Apo-Games variants

Question Metric

RQ1 Jaccard similarity

RQ2 LOC, number of packages and classes
exclusive to a variant

RQ3 SSC, SVC, RSC, RVC

Case study
To answer the research questions, we considered the Apo-
Games variants as an input for our approach. Initially,
we composed a set of 34 variants, where 25 were from
a repository and nine from the Apo-Game webpage (see
“Background” section). Next, we describe howwe selected
the variants for the both package analysis and class analy-
sis.
For the package analysis, we excluded two variants

because they did not provide information for allowing the
information extraction 2©. Concretely, we identified that
the developer did not use the package structure in the
implementation of the projects ApoCheating and Tutor-
volley. Moreover, for the package analysis, we excluded
ApoDefence variant because most of the source code was
obfuscated by the developer and we did not have access
to the original source code for this variant; however, this
variant is considered in the class analysis.
For the class analysis, we selected 13 variants that were

available as Eclipse projects and four variants with Java
class files. The Jar files were not included in this analy-
sis, because the extraction tool did not support automatic
extraction of classes information based on Jar files.
Table 3 presents the information of the selected vari-

ants. We managed to extract 31 TGF files with package
information and 17 TGF files with class information.

Threshold configurations
In the context of this work, a threshold is used to indi-
cate which elements, namely classes and packages, will
not be used as input to recover PLAs. In other words, the
threshold allows us to filter exclusive packages and classes
without eliminating the outlier variants.
To determine the threshold configurations to be taken

into account during the evaluation, we rely on a report
generated by our recovery approach. This report presents
the frequency that each class and/or package exists in

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 9 of 17

Table 3 Apo-Games projects—metrics’ summary

Projects Plat. Year LOC #E #Jr #Ja #T #TJ #P #EP %P #C #EC %C

ApoDefense Desktop 2007 12917 – � � – � – – – 66 56 85%

ApoMushroom Desktop 2007 7789 – � – � – 6 1 16% – – –

ApoSkunkman Desktop 2007 8645 – � – � – 16 6 37% – – –

ApoSheep Desktop 2007 5129 – � – � – 8 0 – – – –

ApoPrism Desktop 2008 8948 – � – � – 11 1 9% – – –

ApoStarz Desktop 2008 6454 – – � � � 11 1 9% 49 8 16%

ApoBot Desktop 2009 5857 – – � � � 8 0 – 48 2 4%

ApoDoor Desktop 2009 7052 – � – � – 7 0 – – – –

ApoPolarium Desktop 2009 8825 – � – � – 9 0 – – – –

ApoSliding Desktop 2009 12032 – � – � – 8 0 – – – –

ApoSoccer Desktop 2009 10736 – � – � – 18 10 55% – – –

ApoWomanInv Desktop 2009 9696 – � – � – 9 0 – – – –

ApoCommando Desktop 2010 9820 � – – � � 5 0 – 72 18 25%

ApoIceJumpR. Desktop 2010 8138 – � – � – 9 0 – – – –

ApoPongBeat Desktop 2010 6591 � – – � � 10 1 10% 79 31 39%

ApoIcarus Desktop 2011 5851 � – – � � 9 0 – 59 15 25%

ApoMarc Desktop 2011 5493 – – � � � 10 2 20% 59 6 10%

ApoMario Desktop 2011 17184 – � – � – 14 2 14% – – –

ApoSlitherLink Desktop 2011 7313 � – – � � 8 0 – 62 8 12%

ApoNotSoSimple Desktop 2011 7558 � – – � � 10 0 – 57 1 2%

ApoRelax Desktop 2011 6688 � – – � � 10 0 – 56 3 5%

ApoSimple Desktop 2011 19558 � – - � � 16 6 37% 104 48 46%

ApoSnake Desktop 2012 6557 – � – � – 10 0 – – – –

ApoSudoku Desktop 2012 5517 � – – � � 9 0 – 41 2 5%

ApoImp Desktop 2012 6432 – � – � – 12 1 8% – – –

ApoClock Mobile 2012 3615 � – – � � 6 1 16% 28 0 –

ApoDice Mobile 2012 2523 � – – � � 5 0 – 19 0 –

ApoSheeptastic Desktop 2012 46704 – � – � – 18 6 33% – – –

ApoSnake Mobile 2012 2965 � – – � � 5 0 – 19 0 –

ApoMono Mobile 2013 6487 � – – � � 5 0 – 26 0 –

myTreasure Mobile 2013 5360 � – – � � 4 0 – 27 0 –

ApoTreasure Desktop 2014 8205 – � – � – 10 0 – – – –

Total - - 178259 13 16 4 31 17 296 38 13% 871 198 26%

LOC lines of code, Plat. platform, #E projects available in Eclipse, #Jr projects available in Jar files, #Ja projects available in Java files, #T TGF file packages, #TJ TGF file classes, #P
number of packages, #EP number of exclusive packages, %P percentage of exclusive packages over the total, #C number of classes, #EC number of exclusive classes, %C
percentage of exclusive classes over the total

the variants. For example, assuming we are dealing with
17 variants, when a class/package X exists in the imple-
mentation of all variants, its percentage of appearance
frequency is 100%. On the other hand, if a class/package
Y is in only one variant, then its appearance frequency
is only 6%.
Based on the report of appearance frequency, we deter-

mine the threshold configurations. Recalling the example
presented in the last paragraph, if we have a threshold

configuration of 6% for the recovering process, means that
class existent in only one variant will not be considered for
constructing the PLA.

Results and analysis
In this section, we describe the study results. We per-
formed an initial analysis of the variants. Figure 7 shows
a graph where the nodes are the variants and the size
of the nodes are related to the number of packages of

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 10 of 17

Fig. 7 Variants’ architectural similarity graph

each variant. Edges exist between nodes when the Jac-
card similarity between them is higher than zero. This
similarity determines the weight of the edges which is
used by the automatic layout of the graph to approxi-
mate similar variants and to keep off the variants which
are different. On the left side, we observe five vari-
ants of large size (ApoMario, ApoSoccer, ApoSimple,
ApoSkunkman, and ApoSheeptastic) which are dissimilar
among them and among the rest of the variants. We also
observe, on the right side, the same case with six small
variants (ApoMushroom, ApoSnake_Android, ApoMono,

ApoDice, ApoClock, and myTreasure). On the contrary,
around the center of the figure, we can observe some vari-
ants which are quite similar with large similarity weight
represented with the size of the edges.
We performed FCA to automatically obtain the repre-

sentation shown in Fig. 8, which is known as the pruned
concept hierarchy [34]. It allows us to identify that some
variants are overlapped, which shows that there are cer-
tain games with almost the same structure. The ApoBot
and ApoSliding variants on the middle of the figure illus-
trates such a case. By recursively following the arrows

Fig. 8 Excerpt of the concept lattice with variants in the games

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 11 of 17

until the root, we can know that these variants consists
of the packages level, entity, and a set of common
packages for all variants (game, org.apogames.image
etc.).
In addition, we can find the variants ApoIcarus and

ApoSudoku that are grouped in the same concept as they
consist of the same packages, and we can observe how
some variants have packages that are exclusively specific
to one variant (e.g., ApoMario has the packages help and
test which do not appear in any other variant). Both
Figs. 7 and 8 are helpful to understand how similar are
Apo-Games variants among them, to visually identify out-
liers and clusters, and to understand how packages are
distributed among the variants. It is out of the scope of
the paper to evaluate these already existing visualization
paradigms. We presented them as they are helper arti-
facts for the manual analysis during the execution of our
approach.
Figures 9 and 10 show the correlation between lines of

code (LOC) and exclusive variants’ information (packages
and classes implemented for a specific variant). Each point
corresponds to the variants. For instance, we can observe
the variant ApoSheeptastic (shown in Fig. 9 with six exclu-
sive packages on y axis and 46704 LOC on x axis). In
addition, in Fig. 10, we can observe the variant ApoSim-
ple with 48 exclusive classes on y axis and 19558 LOC on
x axis.
Figure 9 shows the correlation between exclusive pack-

ages and the size of the variants, and Fig. 10 shows the
correlation between exclusive classes and the variants’
size. For the analysis of the correlation, we used Pearson
coefficient [33]. The values for this coefficient varies from
-1 (weak correlation) to 1 (strong correlation). The corre-
lation among exclusive packages and variants LOC is 0.53,

Fig. 9 LOC per exclusive variants—packages (cor. 0.53)

meaning that there is a strong correlation. Moreover, the
correlation among exclusive classes and variants’ size is
even stronger, being equal to 0.80.
Table 4 presents the collected metrics for threshold

analysis of packages. We executed the PLA recovery
approach five times according to threshold values based
on a report generated by the PLA recovery approach.
The report identifies the packages and classes according
to their existence in the variants. For instance, when the
package or class is implemented in all the products, the
report informs that this package or class appears in the
implementation of 100% of the variants.
When we eliminated packages exclusive to only one

variant (threshold of 4%), the number of optional pack-
ages dropped from 48 to 19 packages. In other words, it
reduced the variability (“noise”) in the PLA representa-
tion. Moreover, it improved the SSC and SVC metrics’
values. We performed this activity manually in our previ-
ous study [28] and it was time-consuming. By applying the
threshold technique, the time and effort were reduced.
Table 5 presents the collected metrics for thresh-

old analysis of classes. We executed the PLA recovery
approach eleven times according to different thresh-
old values. When we reduced the abstraction level to
classes, we identified a higher granularity in variability
(278 optional classes and only 2 mandatory classes).
As opposed to the analysis of packages, the threshold

technique was not so efficient to reduce the amount of
variability in the PLA representation. The metrics’ val-
ues did not change over the PLA recovery using different
threshold values. We believe that this happened because
of the lower number of mandatory classes.
In the report, we identified some classes that are present

in 91% of the variants. For this reason, we used a different
strategy to improve the PLA representation. We elimi-
nated the variants with a large number of exclusive classes
to raise the number of mandatory classes and improve
SSC and SVC metrics’ values.
Table 6 presents the combination of eliminating vari-

ants and then applying the threshold.We identified that by
eliminating one variant, the number of mandatory classes
raised from 2 to 19. However, even eliminating 4 vari-
ants with the largest number of exclusive classes, the SSC
and SVC metrics did not change. We identified metric
improvements when we applied the threshold.
Another analysis we could perform with the inclusion of

newApo-Games variants is the identification of variability
and commonalities between desktop and mobile imple-
mentations of a same game. Figure 11 presents the recov-
ered PLA for ApoSnake using the mobile and desktop
variants. Figure 11a shows the core elements implemented
by both variants (main, entity, game, and level), b
shows the exclusive packages implemented by the mobile
variant (editor), and (c) shows the exclusive packages

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 12 of 17

Fig. 10 LOC per exclusive classes (cor. 0.80)

implemented by the desktop variant (packages from the
org.apogames library). We also identified the same
pattern between desktop and mobile implementation in
MyTreasure and ApoTreasure variants.

Discussion
In this section, we interpret the results and discuss the
findings by answering the research questions.

Answering RQ1
Regarding the analysis of how similar and how different
are the variants, the Jaccard similarity measure indicated
that five variants can be considered as outliers, namely
ApoSoccer, ApoSimple, ApoSkunkman, ApoSheeptastic,
and ApoMario, because they are dissimilar among the
other variants. In other words, it will be too costly to
be included in the PLA recovery because they include
a high number of exclusive packages (ApoSoccer = 55%,
ApoSimple = 37%, ApoSkunkman = 37%, and ApoSheep-
tastic = 33%). Unfortunately, it was not possible to
investigate the classes from ApoSoccer, ApoSkunkman,
ApoSheeptastic, and ApoMario because the Java files were

Table 4 Recovered metrics from the PLAs (packages)

TH SSC SVC RSC RVC CO OR CM R

00% 0.04 0.96 0.01 0.99 48 193 2 1

04% 0.1 0.9 0.02 0.98 19 84 2 1

07% 0.2 0.8 0.03 0.97 10 46 2 1

10% 0.2 0.8 0.03 0.97 9 39 2 1

26% 0.2 0.8 0.03 0.97 8 23 2 1

TH threshold, SSC structure similarity coefficient, SVC structure variability coefficient,
RSC relation similarity coefficient, RVC relation variability coefficient, CO
PackageOptional, OR OptionalRelation, CM PackageMandatory, RMandatoryRelation

Table 5 Recovered metrics from the PLAs (classes)

TH SSC SVC RSC RVC CO OR CM R

00% 0.01 0.99 0.00 1.00 278 625 2 0

09% 0.02 0.98 0.00 1.00 80 114 2 0

17% 0.03 0.97 0.00 1.00 68 80 2 0

26% 0.04 0.96 0.00 1.00 54 58 2 0

34% 0.04 0.96 0.00 1.00 51 47 2 0

42% 0.05 0.95 0.00 1.00 46 37 2 0

59% 0.05 0.95 0.00 1.00 37 23 2 0

67% 0.07 0.93 0.00 1.00 27 9 2 0

76% 0.08 0.92 0.00 1.00 24 8 2 0

89% 0.10 0.90 0.00 1.00 18 7 2 0

92% 1.00 0.00 n.a. n.a. 0 0 2 0

Legends: TH threshold, SSC structure similarity coefficient, SVC structure variability
coefficient, RSC relation similarity coefficient, RVC relation variability coefficient, CO
ClassOptional, OR OptionalRelation, CM ClassMandatory, RMandatoryRelation

not available. However, we believe they followed the same
pattern as ApoSimple with a high number of exclusive
classes (46% of the classes).
Moreover, we identified that the mobile variants are dis-

similar (see Fig. 7 on the right side) because these variants
lack the implementation of the package org.apogames.
We believe this happened because of the limitations
imposed by the Android framework.

Answering RQ2
Concerning the correlation between the size of the game
variants and the existence of outliers, the data reveal
that for the Apo-Games case study, the differentiation
among variant implementation increases with their size.
This is confirmed by the correlation between the met-
rics’ LOC and exclusive variants, which correlate highly.
We can explain this correlation with the observation that
larger games usually implement more complex mecha-
nisms and, consequently, are more variable. On the other
hand, smaller games tend to share the same structure
(architecture).
Figure 12 shows the DSMs of the Android (i.e., mobile)

and Java (i.e., desktop) projects side by side. We identi-
fied that five packages (editor, entity, game, level,
and main) were implemented in both mobile and desk-
top games. As differences between them, we highlight the
higher number of function calls in desktop games and
mobile games has three variants (editor, highscore,
and userlevels). Moreover, desktop projects pre-
sented six packages from org.apogames. If we elim-
inate these packages from the comparison, both sets
presented similar PLA.
This might have happened because the developer used

the Java project as a basis for the creation of the
Android projects. Moreover, the limitations imposed by

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 13 of 17

Table 6 PLA metrics after eliminating some variants and threshold analysis (classes)

EV SSC SVC RSC RVC CO OR CM R

0 0.01 0.99 0.00 1.00 278 625 19 7

1 0.08 0.92 0.02 0.98 205 465 19 7

2 0.10 0.90 0.02 0.98 157 365 19 7

3 0.13 0.87 0.02 0.98 126 313 19 7

4 0.15 0.85 0.02 0.98 107 263 19 7

Application of the threshold analysis

13% 0.26 0.74 0.07 0.93 56 91 19 7

26% 0.32 0.68 0.20 0.80 42 56 19 7

38% 0.38 0.62 0.20 0.80 32 37 19 7

51% 0.46 0.54 0.30 0.70 23 18 19 7

Legends: EV eliminated variants, SSC structure similarity coefficient, SVC structure variability coefficient, RSC relation similarity coefficient, RVC relation variability coefficient, CO
ClassOptional, OR OptionalRelation, CM ClassMandatory, RMandatoryRelation

the Android framework could lead to the simplification of
the projects. For this reason, we did not identify packages
from org.apogames in the Android projects as can be
seen in Fig. 11. Moreover, Fig. 12 highlights the evidence
that bigger projects implement more complex logic which
demands the implementation of exclusive elements.

Answering RQ3
To figure out the impact of outlier elimination to support
the recovery of better PLAs, we analyzed the threshold
technique results. The implementation of this technique
allowed the reduction of the number of exclusive packages
and classes without eliminating the outlier variants. In the

high-level context (packages), we identified the reduction
of the exclusive packages and the balance between SSC
and SVC metrics in the first cuts of the threshold. How-
ever, in the lower level (classes), the number of exclusive
classes raised due to the granularity of the implemen-
tation. We believe that behavior happened because it is
easier to maintain the organization in the packages than
in the classes. For this reason, we eliminated four outlier
variants with a high number of exclusive classes. Only
after eliminating these outliers, we identified the improve-
ments in the metrics and in the PLA representation.
Figure 13 presents the application of three threshold val-

ues (0%, 4%, and 7%). The first execution of the threshold

Fig. 11 Comparing ApoSnake mobile and desktop versions

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 14 of 17

Fig. 12 DSM comparison between mobile and desktop (threshold: 7%) PLA

technique reduced the DSM’s size in 58% (see Fig. 13b-
threshold 4%). Moreover, the technique second execution
reduced the DSM’s size in 76% (see Fig. 13c–threshold
7%).
These results indicates the efficiency of the threshold

technique in filtering outliers. It maintains the manda-
tory packages, preserves the packages implemented in
the majority of the variants, and eliminates the packages
exclusive to a small number of variants.

Threats to validity
The following threats to validity are discussed to reveal
their potential interference with our study design.

Internal validity
Selection. Depending on how the subjects are selected
from a larger group, the selection effects can vary. We
identified this effect during the selection of the variants
in the class analysis. When we considered all the variants
in the recovery, the PLA was composed by only optional
classes. To reduce the noise in the representation, we
eliminated the variants with a high number of exclusive
classes. Moreover, due to extraction tool limitation and
unavailability of the source code of some projects, we can-
not extract the class information of all the variants. To
minimize the threats, we improved the approach for this
study based on the evidence we gathered by applying the
approach in other settings. We considered SPL projects
from different domains and implemented with different
variability mechanisms [13, 27, 28].

External validity
Interaction of selection and treatment. This is an effect
of having a subject population not representative of
the population we want to generalize. The Apo-Games
represents a small portion of the domain we want to

generalize (similar variants that can be used to migrate to
SPL domain). However, it is a case that can help in the
evidence building regarding the impact of the variability
in the context of PLA recovery. To minimize the threats
associated with the use of the approach in other settings,
we reviewed the evidence raised when we performed an
exploratory study to investigate the PLA recovery using
SPL products as variants [27]. We validated the guideline
to support our approach. Moreover, we found an issue
related to packages and classes implementing the same
logic but using different names. We eliminated informa-
tion specific to projects to reduce the impact of this issue
and we intend to automate this activity in future work.

Construct validity
Mono-operation bias. We only considered subjects of the
Apo-Games in the case study. It may under-represent the
construct and thus not give the full picture of the prob-
lem. The projects evolved over the years, and new ideas
were included contributing for the maturity and raise of
the complexity of the projects. To mitigate this threat,
we included bigger variants and variants from mobile
domain.
Inadequate preoperational explication of constructs.

The constructs are not sufficiently defined before they are
translated into measures or treatments. The theory is not
clear enough regarding the automation effectiveness of
PLA recovery and improvement of the recovered PLA.We
based our analysis onmetric analysis and PLA representa-
tion. Even though, it is still impossible to eliminate human
intervention.

Conclusion validity
Low statistical power. One of the threats of our previous
study [13] was the sample size (20 variants). To mitigate
this issue, we included 14 new variants in this study. From

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 15 of 17

Fig. 13 DSMs showing the application of the threshold

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 16 of 17

the 34 variants, we considered 31 in the package analysis
and 17 in the classes analysis. However, as the purpose was
to improve the initial evidence on the existence of a cor-
relation between variant size and exclusive components,
and investigate how the threshold improves the effective-
ness of the PLA recovery, we still understand that for
generalizing such findings, we need a sample with new
projects.

Related work
As mentioned previously, PLA recovery techniques have
been overlooked and the analysis of commonality and
variability has been more focused on low-level implemen-
tation elements [8]. However, in this section, we present a
related work on PLA recovery.
Shatnawi et al. [35] proposed an approach to PLA

recovery that focused on the comparison of components
(classes and interfaces) recovered from different versions
of the same SPL. The authors relied on FCA to identify the
variability and created a variability model. Our study did
not use different variants derived from an already exist-
ing SPL. Instead, several variants from the same domain
were used as an input to our approach. For each vari-
ant, we extracted structural information from source code
and collected information about variability found within
classes, packages, and their relationships. Finally, they did
not consider the removal of outliers through thresholds.
Linsbauer et al. [36] presented an approach for extract-

ing information from sets of related product variants—
structural information from SPL products source code—
with the goal of recovering a feature model for the SPL.
Likewise, our approach supports the extraction of struc-
tural information from the source code of sets of related
variants, but with the goal of recovering a PLA for the SPL.
Fenske et al. used the Apo-Games case study to evalu-

ate variant-preserving refactorings for SPL adoption [22].
In our approach, we performed renaming refactorings
(manually) while eliminating information specific to vari-
ants. However, our approach is more focused on effective
extraction of PLAs which can consist on the exclusion of
variants, packages, or classes from the analysis.
In our previous work [13], we propose an automatic

PLA recovery approach for the identification of the min-
imum subset of cross-product architectural information.
We evaluated the approach by considering 20 open-source
variants of the Apo-Games project. In this paper, we
extend our work by including further details of the pro-
posed approach.We introduced a guideline to support the
PLA recovering process, we included 14 Apo-Games new
variants (9 desktops and 5 mobiles) in addition to the 20
ones of our previous study, and we performed an in-depth
analysis of the results.

Concluding remarks
PLA recovery can provide useful information for defin-
ing the foundations to facilitate SPL adoption. Instead of

working from scratch, the recovered PLA can provide ini-
tial support to development and maintenance tasks. In
this context, one of the main issues is to manage the
variability introduced by some variants (i.e., outliers).
In this paper, we propose an approach for recovering

the PLA based on the source code of similar variants. We
performed a FCA to identify the outliers. Moreover, we
implemented the threshold analysis to reduce the number
of exclusive components without eliminating the variants
of the recovered PLA.
We evaluated the approach using the Apo-Games

projects. We identified that five variants can be consid-
ered as outliers because they were dissimilar among the
other variants. Moreover, the data reveal that the differ-
entiation among variant implementation increases with
their size. In other words, bigger projects lead to the
implementation of exclusive components.We reduced the
number of exclusive components by applying the thresh-
old technique, and the results indicated the efficiency of
the technique in filtering outliers.
As future work, we intend to apply our approach in

other case studies to extend the sample size and strength
of the analysis of the evidence. We aim to improve our
approach with search-based software engineering tech-
niques to automate the definition of the threshold val-
ues. Moreover, we intend to improve the PLAR tool
for automatically eliminate specific information of the
variants.

Endnotes
1 http://apo-games.de
2 https://bitbucket.org/Jacob_Krueger/apogamessrc
3 http://stan4j.com/
4 https://but4reuse.github.io/
5 https://en.wikipedia.org/wiki/Jaccard_index

Acknowledgements
Wewould like to acknowledge the institutions which contributed by providing
support to the execution of this work, namely INES 2.0, CNPq, and FAPESB.

Authors’ contributions
CL, WA, and JM designed the outlier filtering approach and reported it in this
manuscript. CL conducted the PLA recovery experimentation and obtained
the data for figure and table creation. All authors reviewed the final
manuscript and discussed the results.

Author’s information
Ph.D. Crescencio Lima is a professor at the Federal Institute of Bahia (IFBA),
Ph.D. Wesley KG Assunção is a professor at Federal University of Technology -
Paraná (UTFPR), Ph.D. Jabier Martinez is a researcher at Tecnalia, M.D. William
Mendonça is lecturer at Federal University of Technology - Paraná (UTFPR),
Ph.D. Ivan Machado and Ph.D. Christina Chavez are professors at the Federal
University of Bahia (UFBA).

Funding
This research was partially funded by INES 2.0; CNPq grants 465614/2014-0
and 408356/2018-9; and FAPESB grants JCB0060/2016 and BOL2443/2016.

Availability of data andmaterials
Not applicable.

http://apo-games.de
https://bitbucket.org/Jacob_Krueger/apogamessrc
http://stan4j.com/
https://but4reuse.github.io/
https://en.wikipedia.org/wiki/Jaccard_index

Lima et al. Journal of the Brazilian Computer Society (2019) 25:7 Page 17 of 17

Competing interests
The authors declare that they have no competing interests.

Author details
1Federal University of Bahia, Ademar de Barros - Campus de Ondina, Salvador,
40170-110, Brazil . 2Federal Institute of Bahia, Sérgio Vieira de Mello Avenue,
3150 - Zabelê , Vitória da Conquista, 45078-900 Brazil . 3Federal University of
Technology - Paraná, Cristo Rei Str, 19 - Vila Becker, Toledo, 85902-490 Brazil .
4Tecnalia, Arteaga Auzoa, 25, 700, E-48160 Derio, Spain .

Received: 6 February 2019 Accepted: 29 May 2019

References
1. van der Linden FJ, Schmid K, Rommes E (2007) Software product lines in

action: the best industrial practice in product line engineering. Springer
2. Pohl K, Böckle G, van der Linden F (2005) Software product line

engineering: foundations, principles, and techniques. Springer-Verlag
New York Inc

3. Apel S, Batory D, Kastner C, Saake G (2013) Feature-Oriented Software
Product Lines

4. Holmes R, Walker RJ (2013) Systematizing pragmatic software reuse. ACM
Trans Softw Engineer Methodol 21(4):20:1–20:44

5. Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013)
An exploratory study of cloning in industrial software product lines. IEEE
Computer Society, Washington, DC

6. Kulkarni N, Varma V (2017) Perils of opportunistically reusing software
module. Softw: Pract Exp 47(7):971–984

7. Assunċão WKG, Lopez-Herrejon RE, Linsbauer L, Vergilio SR, Egyed A
(2017) Reengineering legacy applications into software product lines: a
systematic mapping. Empirical Softw Engineer 22(6):2972–3016

8. Martinez J, AssunçãoWKG, Ziadi T (2017) ESPLA: a catalog of extractive SPL
adoption case studies. In: Proceedings of the 21st International Systems
and Software Product Line Conference, SPLC 2017. ACM Vol. B. pp 38–41

9. Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, et al (2013) A
survey of variability modeling in industrial practice. In: Proceeding of the
7th International Workshop on Variability Modelling of Software-intensive
Systems

10. Wille D, Önder B, Cleophas L, Seidl C, van den Brand M, Schaefer I (2018)
Improving custom-tailored variability mining using outlier and cluster
detection. Sci Comput Program 163:62–84

11. Taylor RN, Medvidovic N, Dashofy EM (2010) Software
architecture-foundations, theory, and practice. Wiley

12. Garcia J, Ivkovic I, Medvidovic N (2013) A comparative analysis of software
architecture recovery techniques. In: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013. IEEE, Silicon
Valley. pp 486–496

13. Lima C, Assunção WKG, Martinez J, do Carmo Machado I, von Flach G
Chavez C, Mendonça WDF (2018) Towards an automated product line
architecture recovery: the Apo-Games case study. In: VII Brazilian
Symposium on Software Components, Architectures, and Reuse. SBCARS
’18. ACM. pp 33–42

14. Krüger J, Fenske W, Thüm T, Aporius D, Saake G, Leich T (2018)
Apo-Games - a case study for reverse engineering variability from cloned
Java variants. In: Proceedings of the 22nd International Systems and
Software Product Line Conference - Challenge Track. SPLC ’18. ACM.
Available from: https://variability-challenges.github.io/2018/ApoGames

15. Galster M, Weyns D, Avgeriou P, Becker M (2013) Variability in software
architecture: views and beyond. SIGSOFT Softw Eng Notes 37(6):1–9

16. Chen L, Ali Babar M (2011) A systematic review of evaluation of variability
management approaches in software product lines. Inf Softw Technol
53(4):344–362

17. Ahmed F, Capretz LF (2008) The software product line architecture: an
empirical investigation of key process activities. Inf Softw Technol
50(11):1098–1113

18. Verlage M, Kiesgen T (2005) Five years of product line engineering in a
small company. In: Proceedings of the 27th International Conference on
Software Engineering. ACM. pp 534–543

19. Kruchten P (1995) The 4+1 View Model of Architecture. IEEE Softw
12(6):42–50

20. Ducasse S, Pollet D (2009) Software architecture reconstruction: a
process-oriented taxonomy. IEEE Trans Softw Engineer 35(4):573–591

21. Zhang T, Deng L, Wu J, Zhou Q, Ma C (2008) Some metrics for accessing
quality of product line architecture. In: International Conference on
Computer Science and Software Engineering. IEEE Vol. 2. pp 500–503

22. Fenske W, Meinicke J, Schulze S, Schulze S, Saake G (2017)
Variant-preserving refactorings for migrating cloned products to a
product line. In: IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering, SANER 2017. IEEE Computer Society,
Klagenfurt. pp 316–326

23. Roughan M, Tuke SJ (2015) Unravelling Graph-Exchange File Formats.
abs/1503.02781

24. Cardoso MPS, Lima C, Chavez C, do Carmo Machado I (2017) PLAR tool –
a software product line architecture recovery tool. In: 8th Brazilian
Conference on Software: Theory and Practice - Tool Session

25. Martinez J, Ziadi T, Bissyandé TF, Klein J, Traon YL (2017) Bottom-up
technologies for reuse: automated extractive adoption of software
product lines. In: Proceedings of the 39th International Conference on
Software Engineering, ICSE 2017. Companion Volume IEEE Computer
Society, Buenos Aires. pp 67–70

26. Lima-Neto CR, Cardoso M, Chavez C, Almeida E (2015) Initial evidence for
understanding the relationship between product line architecture and
software architecture recovery, Vol. IX. Brazilian Symposium on
Components, Architectures and Reuse Software (SBCARS)

27. Cardoso MPS, Lima C, de Almeida ES, do Carmo Machado I, von Flach G
Chavez C (2017) Investigating the variability impact on the recovery of
software product line architectures: an exploratory study. In: Proceedings
of the 11th Brazilian Symposium on Software Components, Architectures,
and Reuse. ACM. pp 12:1–12:10

28. Lima C, do Carmo Machado I, de Almeida ES, von Flach Garcia Chavez C
(2018) Recovering the product line architecture of the Apo-Games. In:
Proceedings of the 22nd International Systems and Software Product
Line Conference SPLC ’18. ACM

29. Rubin J, Chechik M (2012) Locating distinguishing features using diff sets.
In: 27th IEEE/ACM International Conference on Automated Software
Engineering. ACM. pp 242–245

30. Fischer S, Linsbauer L, Lopez-Herrejon RE, Egyed A (2014) Enhancing
clone-and-own with systematic reuse for developing software variants. In:
2014 IEEE International Conference on Software Maintenance and
Evolution. pp 391–400

31. Shatnawi A, Seriai A, Sahraoui H (2015) Recovering architectural variability
of a family of product variants. In: Software Reuse for Dynamic Systems in
the Cloud and Beyond vol. 8919 of Lecture Notes in Computer Science.
Springer International Publishing. pp 17–33

32. van Solingen R, Basili V, Caldiera G, Rombach HD (2002) Goal Question
Metric (GQM) approach. Wiley

33. Rodgers JL, Nicewander WA (1988) Thirteen ways to look at the
correlation coefficient. Am Stat 42(1):59–66

34. Petersen W (2004) A set-theoretical approach for the induction of
inheritance hierarchies. Electr Notes Theoret Comput Sci 53:296–308

35. Shatnawi A, Seriai AD, Sahraoui H (2017) Recovering software product line
architecture of a family of object-oriented product variants. J Syst Softw
131(C):325–346. https://doi.org/10.1016/j.jss.2016.07.039

36. Linsbauer L, Lopez-Herrejon RE, Egyed A (2017) Variability extraction and
modeling for product variants. Softw Syst Model 16(4):1179–1199.
https://doi.org/10.1007/s10270-015-0512-y

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://variability-challenges.github.io/2018/ApoGames
https://doi.org/10.1016/j.jss.2016.07.039
https://doi.org/10.1007/s10270-015-0512-y

	Abstract
	Keywords

	Introduction
	Background
	Apo-Games projects
	Product line architecture
	Architecture views
	Architecture recovery
	PLA metrics

	Proposed approach
	PLA recovery guideline
	Motivating example
	Variants' analysis and extraction
	Application of the PLA recovery

	Study design
	Case study
	Threshold configurations

	Results and analysis
	Discussion
	Answering RQ1
	Answering RQ2
	Answering RQ3
	Threats to validity
	Internal validity
	External validity
	Construct validity
	Conclusion validity

	Related work
	Concluding remarks
	Acknowledgements
	Authors' contributions
	Author's information
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

