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Abstract

The Marching Cubes algorithm is arguably the most popular isosurface extraction algorithm. Since its inception, two
problems have lingered, namely, triangle quality and topology correctness. Although there is an extensive literature to
solve them, topology correctness is achieved in detriment of triangle quality and vice versa. In this paper, we present
an extended version of the Marching Cubes 33 algorithm (a variation of the Marching Cubes algorithm which
guarantees topological correctness), called Extended Marching Cubes 33. In the proposed algorithm, the grid vertex
are labeled with “+,” “−,” and “=,” according to the relationship between its scalar field value and the isovalue. The
inclusion of the “=” grid vertex label naturally avoids degenerate triangles. As an application of our method, we use
the proposed triangulation to improve the quality of the triangles in the generated mesh while preserving its
topology as much as possible.
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Introduction
The isosurface extraction algorithms are a powerful tool
in the interpretation and visualization of volumetric data.
Among the isosurface extraction algorithms, the March-
ing Cubes, originally proposed by Lorensen and Cline
[1] in 1987, stands out for its simplicity, robustness, and
speed. An isosurface provides a mechanism for under-
standing the structure of volumetric data, which is why
an accurate representation is needed to interpret data
correctly.
Given a scalar field f : D ⊂ R

3 → R and a scalar value
α, the isosurface Sα , associated to α, consists of the set of
the points x ∈ R

3 such that f (x) = α:

Sα = {
x ∈ R

3|f (x) = α
}
. (1)

In the computational process of isosurfaces extraction,
the scalar field f is sampled on the vertices of a three-
dimensional rectilinear grid and linearly interpolated on
the edges, faces, and interior of the cubes of this grid
(see Fig. 1).
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Thus, let g : D ⊂ R
3 → R be a function that

interpolates the scalar field f in each cell of the grid:

g(x,y,z) = (1− x)(1− y)(1− z)f (v0)+ (1−x)(1 − y)zf (v4)
+ (1 − x)y(1 − z)f (v3) + (1 − x)yzf (v7)
+ x(1 − y)(1 − z)f (v1) + x(1 − y)zf (v5)
+ xy(1 − z)f (v2) + xyzf (v6),

where we consider, without loss of generality, a unit cube,
given a scalar value α, we want to construct, within each
cube, a three-dimensional model (usually constituted by
a triangular mesh) that correctly represents the geometry
and topology of the isosurface:

S̄α = {
x ∈ R

3|g(x) = α
}
. (2)

The Marching Cubes is the most popular isosurface
extraction technique, and it has been an active research
topic for decades. The premise of algorithm is to divide
the input volume into a discrete set of cubes. By assuming
linear reconstruction filtering, each cube, which contains
a piece of a given isosurface, can easily be identified
because the sample values at the cube vertices must span
the target isosurface value. For each cube containing a
section of the isosurface, a triangular mesh that approx-
imates the behavior of the trilinear interpolant in the
interior cube is generated.
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Fig. 1 Illustration of a cube in the grid

Let H be a rectilinear grid in a volumetric data domain
D, such that f : D ⊂ R

3 → R is the scalar field repre-
sented by these data and α is the desired isovalue. A vertex
vi of a cube in H is classified as positive if f (vi) ≥ α and
negative if f (vi) < α. Since there are eight vertices in each
cube, there are 28 = 256 possible ways that the isosur-
face can intersect the cube. Considering the symmetries
in the cube, these 256 cases are reduced to 14 patterns,
with 14 cases, which supposedly would cover the possi-
ble behaviors of the trilinear interpolant inside the cube
(see Fig. 2).
However, due to the existence of ambiguities in the

trilinear interpolant behavior in the cube faces and

interior, the meshes extracted by the Marching Cubes
presented discontinuities and topological issues. Given
a cube of the grid, a face ambiguity occurs when its
face vertices have alternating signs, that is, the vertices
of one diagonal on this face are positive and the ver-
tices on the other are negative. Observe that in this
case, the signs of the face vertices are insufficient to
determine the correct way to triangulate the isosurface.
Similarly, an interior ambiguity occurs when the signs
of the cube vertices are insufficient to determine the
correct surface triangulation, i.e., when multiple trian-
gulations are possible for the same cube configuration
(see Fig. 3).

Fig. 2 Original Marching Cubes lookup table

https://liscustodio.github.io/ExtendedMC33/Figure2.html
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Fig. 3 Right: case 4 ambiguity. The interior ambiguity test proposed by Chernyaev is used choose the correct configuration. Left: face ambiguity.
The Asymptotic Decider is used to resolve the ambiguity

The popularity of the Marching Cubes and its
widespread adoption resulted in several improvements in
the algorithm to deal with the ambiguities and to correctly
track the behavior of the interpolant. Dürst [2] in 1988
was the first to note that the triangulation table proposed
by Lorensen and Cline [1] was incomplete and that cer-
tain Marching Cubes cases allow multiple triangulations.
Later, Nielson and Hamann [3] in 1991 observed the exis-
tence of ambiguities in the interpolant behavior on the
face of the cube. They proposed a test called Asymptotic
Decider to correctly track the interpolant on the faces of
the cube. In fact, as observed by Natarajan [4] in 1994,
this ambiguity problem also occurs inside the cube. In his
work, the author proposed a disambiguation test based on
the interpolant critical points and added four new cases
to the Marching Cubes triangulation table (subcases of
the cases 3, 4, 6, and 7). At this point, even with all the
improvements proposed to the algorithm and its triangu-
lation table, the meshes generated by the Marching Cubes
still had topological incoherencies.
The Marching Cubes 33, proposed by Chernyaev [5] in

1995, is one of the first isosurface extraction algorithms
intended to preserve the topology of the trilinear inter-
polant. In his work, Chernyaev extends to 33 the number
of cases in the triangulation lookup table (see Fig. 7). He
then proposes a different approach to solve the interior
ambiguities, which is based on the Asymptotic Decider.
Later, in 2003, Nielson [6] proved that Chernyaev’s lookup
table is complete and can represent all the possible behav-
iors of the trilinear interpolant, and Lewiner et al. [7] pro-
posed an implementation to the algorithm. More recently
Custodio et al. [8] in 2013 and Grosso [9] in 2016 worked
to guarantee topological correctness of the meshes gener-
ated by the Marching Cubes.
The Marching Cubes is considered robust, simple, and

with a low computational cost. These characteristics have
made it the most popular isosurface extraction algorithm.
However, the weakness of the algorithm lies on the quality
of the resulting mesh. The triangulation generated by the
Marching Cubes is characterized by a large number of
degenerate and skinny triangles. The degenerations are
caused by the way the algorithm classifies the vertices of

the grid; a vertex is classified as positive if it has a scalar
value equal or greater than the isovalue, and negative if it
has a scalar value less than the isovalue. Note that if a ver-
tex has scalar value equal to the isovalue, it is classified as
a positive vertex. Consequently, its three incidents edges
will be classified as intersected edges (edges intersected by
the isosurface), and a triangle with its three vertices in the
same point (the vertex of the grid which the scalar field
value match with the isovalue) is created. A skinny trian-
gle is generated when two of its vertices are close to a grid
vertex while the third vertex is far from this vertex.
To avoid the creation of degenerate triangles by the

Marching Cubes algorithm, Raman and Wenger [10] in
2008 propose a lookup table that includes grid vertices
with labels “+,” “−,” and “=,” according to the relationship
of the isovalue with its scalar value. This classification
of the grid naturally avoids the generation of degener-
ate triangle. The authors also present the application of
the extended lookup table to improve the quality of the
triangulation on the resulting mesh.
In their work, Raman and Wenger [10] opt to use the

lookup table proposed by Montani et al. [11] in 1994 as
reference to their triangulation process, and the extended
lookup table proposed inherits some limitations of
Montani et al. work, namely, it covers only 23 of the
33 possible behavior of the trilinear interpolant in the
interior of the cube. Hence, the mesh produced by both
Montani et al. and, consequently, by the Raman and
Wenger lookup tables cannot represent the topology of
the trilinear interpolant correctly. Figure 4 shows an
example of topological inconsistencies in the meshes gen-
erated by Raman andWenger’s method. The orange mesh
shows the expected isosurface extracted from a 5 × 5 × 5
randomly sampled grid H, which contains some voxels
with ambiguous configurations. The blue mesh was
extracted from G by the algorithm proposed by Raman
and Wenger. The method fails to represent the topology
of the trilinear interpolant correctly. The red mesh was
extracted by the method proposed in this work.
To further illustrate the problem in the construction

proposed by Raman and Wenger [10], Fig. 5 presents all
possible behaviors of the trilinear interpolant for case 10

https://liscustodio.github.io/ExtendedMC33/Figure3.html
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Fig. 4 Left: isosurface generated by randomly sampling a 5 × 5 × 5 grid. Some of the voxels contain ambiguous configurations. Middle: mesh
generated by our method tends to preserve the topology and produces good quality triangles. Right: mesh extracted by the Raman and Wenger
method fails to correctly represent the isosurface topology

(top), the single behavior covered by the Montani et al.
lookup table (bottom left), and the missing triangulations
(bottommiddle and right). The same issue applies to other
ambiguous configurations.
Figure 6 illustrates what happens when Raman and

Wenger’s method tries to construct the triangulation of
a configuration that the base lookup table proposed by
Montani et al. does not cover it. In this lookup table,
there is no possibility of a “tunnel” crossing the cube
in case 10 (see Fig. 7); hence, the topology of Raman
and Wenger’s method does not match the topology of
the trilinear interpolant. Note that the problem here
is more complicated than simply replacing the Raman
and Wenger’s base lookup table with an extended one.
In fact, the triangulation presented in Fig. 6a cannot
be produced by the method proposed by Raman and
Wenger.

To solve the problem of degenerate triangles and also to
preserve the topological correctness of the resulting mesh
as much as possible, we propose a method to construct
an extended triangulation to the Marching Cubes 33. The
challenge is to build an extended triangulation to the com-
plex cases present in the topologically correct lookup table
proposed by Chernyaev [5] (see Fig. 7). In addition, we
apply our method to improve the quality of the triangula-
tion in the resulting mesh. As we describe in the following
sections, the key of our method is to construct the tri-
angulation respecting the regions defined by the trilinear
interpolant inside the cube.
Our contributions are:

• A method to build an extended triangulation to the
Marching Cubes 33 algorithm. The proposed method
allows vertices of the grid to be part of the

Fig. 5 Top: isosurfaces of the trilinear interpolant for case 10. Bottom: the triangulation returned by the Montani et al.’s lookup table (left) and the
missing triangulations (middle and right)

https://liscustodio.github.io/ExtendedMC33/Figure4.html
https://liscustodio.github.io/ExtendedMC33/Figure5.html
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Fig. 6 a The correct triangulation for the case 10.2 (the interpolant inside the cube is homeomorphic to a cylinder). b The triangulation method
proposed by Raman and Wanger. (Left) A triangulation of the convex hull of positive and edge intersection points is built. (Right) Then, the triangles
coplanar to the faces of the cube are removed

triangulation, which avoids degenerate triangles, so
common in the Marching Cubes mesh.

• An algorithm to avoid the skinny triangle in the
resulting mesh. It is an algorithm similar to the
proposed by Raman and Wenger [10], but as shown
in “Improving the triangulation quality of the final
mesh” section, the mesh generated by our method
better preserves the topology of the trilinear
interpolant.

In addition, to better represent our results, we made our
figures executable. In the pdf version of this work, you
have access to an interactive visualization found in the
project page by simply clicking on the figures.

Related work
In 2000, Lachaud and Montanvert [12] and Bhaniramka
et al. [13] independently proposed an algorithm to gener-
ate a Marching Cubes lookup table in higher dimension.
In both methods, the ambiguities of the trilinear inter-
polant in the interior of the cube are not considered in
constructing the triangulation, which leads to topologi-
cal inconsistencies in the generated mesh. Later, in 2004,
Bhaniramka et al. [14] proposed the use of convex hulls in
the isosurface construction.
In 2008, Raman and Wenger [10], based on the

Bhaniramka et al.’s [14] work, proposed an algorithm
to construct an extended lookup table which allows the
vertices of the grid to be part of the triangulation. By
using grid vertices in the triangulation, the algorithm
avoids the creation of degenerate triangles. The pro-
posed algorithm is also used to improve the quality of
the generated mesh: modifications on the value of the
scalar fields on the vertices of the grid are used to
avoid the creation of skinny triangles. However, as dis-
cussed in the previous section, the proposed method
cannot correctly represent the topology of the trilinear
interpolant.

Wang et al. [15] proposed in 2014 a method to address
the problem of needing to access the cubes sequentially
and the inability of the algorithm to directly separate the
isosurfaces. The authors propose a lookup table which
tracks connected surfaces instead of searching isosurfaces
cell-by-cell. The focus of this work is the reduction of the
algorithm running time; however, the proposed lookup
table is based on the lookup table presented in the first
version of the Marching Cubes algorithm of Lorensen and
Cline [1]. Consequently, as in the original method, the
resulting mesh will present topological inconsistence. In
addition, in the direction of improving runtime, Cirne and
Pedrini [16] present GPUS-based techniques using spatial
auxiliary data structures.

Extended trilinear triangulation
Given a cube and scalar values defined on its vertices, in
the “Connectivity of the cube elements” section, we first
describe the approach used to define one new connectivity
scheme of its vertices through the edges, faces, and inte-
rior of the cube. This first step is the key of our method,
where we track the behavior of the trilinear interpolant
and determine the regions defined by it within the cube.
The “Generating the triangulation” section describes the
proposed triangulation process, and in the “More than the
trilinear interpolation” section, we discuss an additional
direction to the application of our algorithm.

Connectivity of the cube elements
Let H be a rectilinear grid in a volumetric data domain D,
f : D ⊂ R

3 → R is the scalar field and α is the isovalue.
A vertex vi of a cube in H is classified as positive (labeled
with “+”) if f (vi) > α, negative (labeled with “−”) if f (vi) <

α, and zero if f (vi) = α (labeled with “=”).
A region R ⊂ D is positive (labeled R+) if all points

P ∈ R have f (P) > α. The definition of a negative region
is analogous. Figure 8 illustrates the case 10.1.1 where we
have two positive regions (red) and one negative (blue).

https://liscustodio.github.io/ExtendedMC33/Figure6.html
https://liscustodio.github.io/ExtendedMC33/
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Definition 1 A positive cube is a cube where the number
of vertices labeled with “=” or “+” is less than or equal to
four. Otherwise, it is negative.

Note that we chose to define a cube to be positive,
for example, because we are interested to study the

relationships between the positive vertices of this cube,
analogously to a negative cube.

Definition 2 A positive path is any connected curve C
entirely contained in a positive region R+, analogously to a
negative path.

Fig. 7 The lookup table proposed by Chernyaev

https://liscustodio.github.io/ExtendedMC33/Figure7.html
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Fig. 8 a Triangulation for the case 10.1.1. b There are two positive
regions (red) and one negative region (blue)

Definition 3 A group of vertices of a positive cube C,
denoted by GV , is any set of positive vertices of C connected
by a positive path only on the edges or faces of C. The group
of vertices of a negative cube is analogous.

It is important to observe that, in a group of vertices of
a positive cube, we are interested in a positive path on the
interior of cube.

Definition 4 A group of edges, denoted by GE, is any
set of intersected edges (by the isosurface) of C which are
incident to vertices in the same group of vertices.

Figure 9 illustrates the concepts of groups of edges and
vertices using the case 6 and its subcases. Red (resp.
blue) dots represent positive (resp. negative) scalar values
(with respect to the isovalue of interest). The illustrated
case 6 is a positive cube with the positive vertices v0,
v1, and v6. For each subcase, there are different vertices
connectivities that must be respected in the triangulation
process.

• Subcase 6.1.1 (bottom left). There is a positive path
connecting the vertices v0 and v1 by the edge e0. The
vertices v0 and v1 are separated from the vertex v6 by
the face f1 and the interior of the cube. For this
configurations, there are two groups of vertices
GV0 = {v0, v1} and GV1 = {v6}. And, associated to
them, the groups of edges GE0 = {e1, e3, e8, e9} and
GE1 = {e5, e6, e10}.

• Subcase 6.1.2 (bottom middle). The vertices v0 and v1
are connected by a positive path by the edge e0. But
related to vertex v6, they are connected by a positive
path only through the interior of the cube and
separated from it on the face f1. As the connection is
not given by the face f1, the case 6.1.2 has the same
groups of vertices and edges of the case 6.1.1.

• Subcase 6.2 (bottom right). The vertices v0 and v1 are
connected by a positive path by the edge e0 and
connected to the vertex v6 through the interior of the
cube and also by the face f1. In this configuration,
there is only one group of vertices GV0 = {v0, v1, v6}
and, associated to it, the group of edges
GE0 = {e1, e3, e8, e9, e5, e6, e10}.

Fig. 9 First line: the labeling of the vertices and edges of the cube. Second line: the triangulations of the subcases of the case 6

https://liscustodio.github.io/ExtendedMC33/Figure9.html
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Generating the triangulation
We classify Chernyaev’s lookup table triangulation into
three categories:

• Simple leaves , when the isosurface inside the cube is
homeomorphic to discs;

• Tunnel, when the isosurface is homeomorphic to a
cylinder;

• Interior point, when the isosurface is homeomorphic
to a disc and it is necessary to add a point inside the
cube for a correct representation.

For each category, we propose a specific triangula-
tion process to construct an extended triangulation to
the Marching Cubes 33. By using the concept of group
of vertices and group of edges, we track the regions
defined by the isosurface correctly. The triangulation
of the convex hull of a set of point, presented in the
Bhaniramka et al. [14] work, is also used to generate the
triangulation.
Our method adds, to the topological correctness of

Chernyaev’s lookup table, a final mesh free of degenerate
triangles. Also, we present in the “Improving the trian-
gulation quality of the final mesh” section an application
of the proposed method that eliminates the generation of
skinny triangles.
The concept of groups proposed in the previous section

characterizes the behavior of the trilinear interpolant on
the edges and faces of the cube, but not inside it. Observe
that, as illustrated in Fig. 9, although the cases 6.1.1 and
6.1.2 have different topology of the interpolant, they have
the same groups of vertices and edges. If a cube has
two or more groups of vertices, they can be separated or
joined inside the cube. In order to track the behavior of
the trilinear interpolant inside the cube correctly, we use
the interior test proposed by Chernyaev [5] and recently
improved by Custodio et al. [8].
Let C be a positive cube and consider Gi = GVi

⋃
GEi

as the union of the vertices in the group GVi and the
edges in the group GEi , i = 0, 1, · · · n − 1, where n is the
number of groups. Let Wi be the set of the intersection
points (by the isosurface) on the edges in Gi (for simplic-
ity, let us take the midpoints of the edges in Gi; it can be
replaced by the correct position of the point in the genera-
tion of the final mesh) and the vertices in GVi labeled with
“=” and “+.”
Once we have checked the vertices connectivity and

have used the interior test to classify a given cube into
the three categories aforementioned, we construct the
triangulation according to the following methods.

Simple leaves triangulation
For each Wi, construct the convex hull conv(Wi). If
it is three-dimensional, then triangulate the boundary

∂(conv(Wi)). Remove from the triangulation the triangles
contained on the faces of the cube. The remaining tri-
angulation approximates the trilinear interpolant inside
the cube (see Fig. 10a). If conv(Wi) is contained on the
faces of the cube, return the triangulation of conv(Wi),
except in case where the cube has all its vertices equal to
zero. In this case, to avoid duplicate faces, no triangula-
tion is generated. In addition, to prevent a cube face being
triangulated twice into two adjacent cubes, the algorithm
tracks the grid faces already triangulated.

Tunnel triangulation
Let W be the set of the middle points of the inter-
sected edges. Construct the convex hull conv(W ) of W.
If it is three-dimensional, then triangulate the boundary
∂(conv(W )) and remove from the triangulation the trian-
gles which have their three vertices on the same group of
edge GEi . The remaining triangulation approximates the
isosurface inside the cube (see Fig. 10b).

Interior point leaves triangulation
In this category, the boundary of the isosurface patch is
a simple closed polygonal curve, whose vertices are the
intersection of the isosurface and cube edges. If all four
edges of some face are intersected by the isosurface, the
polygonal curve connects pairs of edges based on the
behavior of the bilinear interpolant on that face. We cre-
ate a triangulated isosurface patch from this triangulation
by adding a vertex in the center of the cube and form-
ing triangles from that vertex and the line segments of the
polygonal curve.

The triangulation of the case 13
Case 13 is the most complex case in the Chernyaev’s
lookup table. In this case, all faces are ambiguous and
there are six possibilities for the behavior of the inter-
polant. Due to its complexity, to correctly triangulate the
subcases 13.3, 13.5.1, and 13.5.2 (see Fig. 11), a combina-
tion of the proposed triangulation methods is necessary.
The remaining subcases can be directly triangulated by
one of the proposed triangulation methods. Following,
we present the combination of the above triangulation
methods adopted in our method.

• In case 13.3, there is one group of vertices with four
vertices. To triangulate this configuration, we
additionally use the negative vertex incident to the
three faces on which the positive vertices are joined.
We apply the interior point leaves triangulation
combined with the simple leaves triangulation in the
one negative group with a single vertex as defined
above.

• In case 13.5.1, there are two groups of vertices and
three changes of the interpolant signal inside the cube.
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(a)

(b)
Fig. 10 The triangulation of a simple leaves and b tunnel categories in the Marching Cubes 33 triangulation table. a The top and bottom rows show
a configuration with two groups and one group of vertices, respectively. b Tunnel triangulation

To triangulate this configuration, we apply the simple
leaves triangulation to the two groups of vertices.

• In case 13.5.2, there are two groups of vertices
connected by the interior of the cube and a change of
the interpolant signal in the region diagonally
opposite to the one vertex group. To triangulate this
configuration, we apply the tunnel triangulation
combined with the simple leaves triangulation in the

region diagonally opposite to the one vertex positive
group.

More than the trilinear interpolation
In his work, Chernyaev points out the existence of cases
where the behavior of the isosurface could not be covered
by the trilinear interpolant. This well-known limitation
draws attention to the necessity of the study of other

Fig. 11 The subcases 13.3, 13.5.1, and 13.5.2 of the case 13

https://liscustodio.github.io/ExtendedMC33/Figure10.html
https://liscustodio.github.io/ExtendedMC33/Figure11.html


Custodio et al. Journal of the Brazilian Computer Society            (2019) 25:6 Page 10 of 18

Fig. 12 A possible behavior of the isosurface for the signal
configuration in case 13 that cannot be covered by the trilinear
interpolant

interpolants and, consequently, to the need for methods
that are able to construct a discrete approximation to
them.
Our triangulation method, based on the connectiv-

ity of the cube elements and the region defined by
the interpolant inside the cube, represents a first step
towards building the triangulation of other interpolants.
We emphasized that the triangulation is generated with-
out the need of a look up table. Thus, it is enough for a
new interpolant to define the regions, and we can gener-
ate the triangulation associated with the isosurface of this
interpolant.
In Fig. 12, it is shown the possible behavior of the iso-

surface, presented by Chernyaev, which cannot be covered

Fig. 13 Topological issue in the meshes generated by the package proposed by Raman and Wenger method. Top: The zero-level set of a 5 × 5 × 5
randomly generated piecewise-trilinear scalar field. Middle: The mesh generated by our method. Bottom: The mesh generated by Raman and
Wenger method

https://liscustodio.github.io/ExtendedMC33/Figure12.html
https://liscustodio.github.io/ExtendedMC33/Figure13.html
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Table 1 Comparison of the Betti numbers of the meshes presented in Fig. 13, generated by the Raman and Wenger method and our
method

B. Numbers Right figure Middle figure Left figure

Correct Our R. W. Correct Our R. W. Correct Our R. W.

b0 1 1 4 1 1 5 1 1 4

b1 0 0 0 2 2 0 2 2 0

b2 1 1 4 1 1 5 1 1 4

by the trilinear interpolant. Observe that, once it is pos-
sible to track the connectivity of the cube elements, such
triangulation can be constructed by our method.

The topology of the generatedmesh
In our method, the concepts of groups of vertices and of
edges are introduced to correctly track the behavior of the
interpolant on the boundary of the cube.
The Betti numbers are known tools in algebraic topol-

ogy to identify and compare topological spaces (Munkres
[17]). For surfaces, the Betti number b0 indicates the
number of connected components; the Betti number
b1 is defined by b1 = 2g, where g is the genus of
the surface; and b2 is the number of three-dimensional
holes.
In Fig. 13, we present meshes extracted from randomly

generated trilinear scalar fields, generated by our method
and the Raman andWenger method. In Table 1, we show a
comparison of the Betti numbers of the generatedmeshes.

The right example has b0 = 1 (one connected compo-
nent), b1 = 0 (no genus), and b2 = 1, so it is equivalent to
a sphere. We observe that our algorithm represents cor-
rectly the topology, while Raman and Wenger algorithm
splits in four components (b0 = 4).
The middle and the left example has b0 = 1 (one

connected component) and b1 = 2 (one genus), so
both are equivalent to a torus. Our algorithm repre-
sents correctly the topology for both examples, while
Raman and Wenger algorithm generates respectively five
components (b0 = 5) and four components b0 = 4
without genus.
As noted by Custodio et al. [8] in their work, even

when the topology of the trilinear interpolant is tracked
correctly, the Marching Cubes 33 may generate non-
manifold meshes. In their work, the author observes that
the lookup table proposed by Chernyaev can generate
non-manifold edges. This occurs when the topology
induced by the interpolant inside two adjacent grid cells

(a) (b)

(c) (d)
Fig. 14 Orange meshes represent the behavior of the trilinear interpolant in the Marching Cubes cases: 7.4.2, 10.1.2, 12.1.2, and 13.5.2. The green
meshes are the triangulation proposed by Chernyaev to approximate the isosurface inside the cube in each case. a Case 7.4.2, b case 10.1.2, c case
12.1.2, and d case 13.5.2

https://liscustodio.github.io/ExtendedMC33/Figure14.html
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Fig. 15 Non-manifold issue caused by the Chernyaev lookup table. a The zero-level set of a 5 × 5 × 5 randomly generated piecewise-trilinear
scalar field. b The mesh generated by our method, in our implementation, was included the solution proposed by Custodio et al. to fix the problem.
c The mesh generated by an implementation of the Marching Cubes 33 algorithm has two non-manifold edges caused by the triangulation
proposed by Chernyaev

is homeomorphic to a cylinder, and these cells share
an ambiguous face. In these cases, part of the tunnel
triangulation on Chernyaev’s lookup table lies on the
ambiguous faces (see Fig. 14).
Observe that any combination of the configurations

shown in Fig. 14, where two adjacent cubes share an
ambiguous face, results in the generation of non-manifold
edges and in the overlap of the triangulation.
As mentioned by Custodio et al. [8], splitting both

grid cells at the critical point (on the face) elimi-
nates the ambiguous face shared by two cells. For the
sake of simplicity, the author proposed to split all
faces in the grid slice that contained the problematic

Fig. 16 An example of a grid configuration which will result in a
non-manifold triangulation. The blue, red, and yellow grid vertices
respectively represent the vertices with the scalar value smaller,
greater, and equal scalar value to the isovalue

configuration. In our work, we followed the proposed
approach and a grid preprocessing step was added
to eliminate configurations as the ones illustrated in
Fig. 15, which shows the issues with the Chernyaev’s
lookup table and presents the mesh generated by
our method.
It is important to note that, once the vertices of the

grid can be part of the final triangulation, some con-
figurations of the input data can result in non-manifold
triangulations. The correct topology, in some cases,
implies in the generation of a non-manifold. Figure 16
illustrates one of these possibilities that corresponds to the
conic.

Improving the triangulation quality of the final
mesh
Wenow turn to a well-known issue in theMarching Cubes
based algorithm, the quality of the resulting mesh. As pre-
sented in the “Extended trilinear triangulation” section,
our triangulation process naturally avoids the degenerate
triangles once; in our method, we consider the possibility
of the isovalue match with the scalar field value at a ver-
tex of the grid. In this section, we propose a method to
eliminate skinny triangle and to improve the aspect ratio
of the triangulation. Our main strategy is based on modi-
fying the scalar field value on the grid vertices close to an
isosurface intersection point.
We measure triangle quality using the radii ratio: the

ratio between the triangles incircle and circumcircle. Let
t be a triangle and q the quality measure expressed by
radii ratio, we have q(t) ∈[ 0, 0.5]: a degenerate trian-
gle is associated with the value 0, triangles with very
large or very small angles are also penalized, being asso-
ciated with values very close to zero, and an equilat-
eral triangle is associated with the value 0.5. In Fig. 17,
we present examples of meshes extracted by Marching
Cubes 33. In both cases, we observed a large number of
skinny triangles. And, as it is possible to observe in the

https://liscustodio.github.io/ExtendedMC33/Figure15.html
https://liscustodio.github.io/ExtendedMC33/Figure16.html
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Fig. 17 The meshes generated by the Marching Cubes algorithm from the Bonsai and Aneurysm datasets

histograms presented in Fig. 18, in bothmeshes illustrated
in Fig. 17, the number of triangles with quality inferior to
0.15, for example, is greater than 10% of the total number
of triangles in the meshes.
A strategy commonly used to solve the mesh quality

problem is the post processing of the mesh. As presented
in the survey Recent advances in remeshing of surfaces
proposed by Alliez et al. [18], most of these techniques

are concerned only with the quality of the triangulation,
without commitment with the preservation of geometric
and, in some cases, topological characteristics of the
isosurface.
The main drawback in the cited methods is that

the post-processing changes the triangulation without
considering if the new mesh corresponds to a
representation of the initial isosurface.
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Fig. 18 Statistics of the quality of the meshes shown in Fig. 17. In the mesh extracted from the aneurysm dataset, 13.48% of the 173,940 triangles
generated have the radii ratio less than 0.15. In the mesh extracted from the bonsai dataset, 10.7% of the 822,663 triangles generated have the radii
ratio less than 0.15
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Fig. 19 The topological changes in the generated mesh that are blocked by our optional verification step

On the other hand, techniques that seek to improve the
quality of the mesh through modifications made directly
in the Marching Cubes algorithm (Dietrich et al. [19, 20])
have shown to be effective in improving the quality
of the generated mesh while preserving desired charac-
teristics of the isosurface. However, these methods are
based on the original Marching Cubes look up table,
which is unable to represent the behavior of the trilinear
interpolant inside the cube correctly.
Also in this direction, Raman and Wenger [10] com-

bine their extended triangulation table with the algorithm
proposed by Labelle and Shewchuk [21] which, by modi-
fication on the scalar field, collapses to the nearest vertex
of the grid the intersection points near to it, thus elim-
inating the skinny triangles. Nevertheless, as presented
in the “The topology of the generated mesh” section,
the proposed extended triangulation also has topological
issues that are propagated to this application.
The Labelle and Shewchuk [21] algorithm has an input

parameter lambda [ 0, 0.5] that given an isovalue alpha,
before the extraction of the isosurface, all the intersected
edges are detected, and if the intersection point is dis-
tant less than λL (L being the length of the edge) from
a vertex of grid, then this intersection point is collapsed
to the nearest vertex of the grid. To preserve the geom-
etry of the mesh, the final step of the algorithm moves
each isosurface vertex on a vertex of the grid to the
location of the closest isosurface vertex in the original
grid.
Seeking to join the Marching Cubes 33 topologi-

cal consistency with a better quality of the result-
ing mesh, we combine the Labelle and Shewchuk [21]
algorithm with our extended triangulation. After pre-
processing the grid, we run the Marching Cubes 33 with
our extended triangulation and the modified grid. To
avoid undesired topological changes in the isosurface

representation caused by the modification of the scalar
field values sampled at the vertices of the grid, we add
to the method proposed by Labelle and Shewchuk an
optional verification step. Given the isovalue and the
λ parameters, we track the isosurface topology changes
in the interior of each cube. Once a configuration that
could modify the global isosurface topology is detected,
this cube and its neighbors are “blocked.” Then, the
mesh improvements are performed only in the cubes
that are not in the neighborhood of the blocked cubes.
In Fig. 19, we use the configuration of the lookup table
case 4 to illustrate the topological changes blocked in our
verification step.
In Fig. 20, we present our result (red) and compare it

with the Raman and Wenger [10] work (blue). Although
both methods improve the quality of the triangulation
(as shown in Fig. 21), our method correctly represents
the topology of the trilinear interpolant while the Raman
and Wenger [10] method cannot represent the trilin-
ear interpolant correctly even when the λ parameter is
equal to zero. For λ equal to 0.1, 6.73% of the cubes
intersected by the isosurface were blocked in the verifi-
cation step and 31.1% of the cubes were blocked for λ

equal to 0.2. As illustrated in Fig. 22, where we compare
the meshes generated by our method for λ equal to 0.2
with and without the verification, the proposed additional
step avoided the change of the topology of the generated
mesh.
In Fig. 23, we present the results obtained by applying

the method to remove the skinny triangles of the mesh
extracted from the data set Bonsai, with the parameter
λ equal to 0.0 (left column) and equal to 0.2 (right col-
umn). In the first row are the views from the interior of
the tree trunk, and in the second row are the views from
the top of the tree leaves. As is possible to observe in the
histograms presented in Fig. 24, the mesh quality of the

https://liscustodio.github.io/ExtendedMC33/Figure19.html
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Fig. 20 A comparison of meshes generated by Raman and Wenger and our methods. A randomly generated scalar field firstly sampled on a
64 × 64 × 64 grid in a way to guarantee no ambiguous configurations in the grid is used as input to the Marching Cubes algorithm (yellow mesh
presents the correct topology of the trilinear interpolant), then the same scalar field is sampled on a 6× 6× 6 grid and used as input to the SnapMC
(blue meshes) and our method (red meshes) for the parameter λ equal to 0.0, 0.1, and 0.2. Our algorithm is capable of better preserving the
topology of the trilinear surface while generating good quality triangles

https://liscustodio.github.io/ExtendedMC33/Figure20.html
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Fig. 21 Statistics of the quality of the meshes shown in Fig. 20

Fig. 22 Comparison of the meshes generated by our method of a randomly generated scalar field for the λ = 0.2. Left: the mesh generated without
the verification step. Right: the mesh generated with the verification step

https://liscustodio.github.io/ExtendedMC33/Figure22.html
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Fig. 23 The meshes extracted from the data set Bonsai for the isovalue 39.5, with the parameter λ equal to 0.0 (left column) and equal to 0.2 (right
column)

meshes shown on the right is superior to the one shown on
the left.
In our experiments, we observed that the number of

blocked cubes in real datasets is even smaller than the
observed in the randomly generated dataset. For the
Bonsai dataset, for instance, only 0.63% of the cubes inter-
sect by the isosurface was blocked in the verification step,
for λ equal to 0.2 and the isovalue 39.5.

Conclusion
We have presented a new method to generate an extended
triangulation to the Marching Cubes 33 algorithm, which
guarantees acorrect interpretationof the trilinear interpolant.

We have compared our result with a related method and
pointed out the existence of topological issues in the mesh
generated by it.
In addition, we applied our extended triangulation pro-

cess to improve the quality of the triangulation in the
resulting mesh, a well-known issue on meshes generated
by algorithms based on Marching Cubes.
For future work, we plan to use the cube connectivity

concepts to study the behavior of others interpolants in
the Marching Cubes algorithm.We also plan to generalize
the extended triangulation with the intent of obtain-
ing a topologically correct Marching Cubes in higher
dimensions.
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