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Abstract

This work surveys Internet of Things (IoT) experimental research published since 2015. We summarize the IoT state of
the art during the last 2 years and extract important data that we apply to enhance the analysis of IoT solutions. The
IoT scenario presents a promising universe to data analysis. This raises a number of questions: which are its most
popular applications? What is the definition of scale in an IoT application? What sensors are more often used and for
what IoT applications? How can a researcher compare IoT scenarios? To investigate these concerns, this survey
analyzes 2 years’ worth of contributions made in three main scientific publishers. We focus on IoT experiments that
were actually implemented using real equipment within one or more scenarios. Our first contribution is the
classification of those IoT scenarios into seven main aspects. Each analyzed research study presents a specific
configuration of a scenario’s variables and sensors. Our second main contribution takes place after the scenario
mapping phase. We identify as many as 19 common categories of data types in use. The interrelation among the
scenarios and the data types from sensors should assist data researchers in understanding current IoT dynamics.
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Introduction - IoT as a paradigm
The Internet of Things (IoT) is a computationally sup-
ported information system paradigm [1, 2] that embraces
a variety of applications. IoT services differ from other
IT-related techniques found in industrial or home office
context due to their ubiquitous and embedded character-
istics that permeate our daily lives [3]. While the main IoT
architecture(s) is still under definition, their underlying
paradigm offers the means to gather one or more “things”
(sensors, interactive devices, or even complex ones) using
well-defined communication interfaces. These can then
share data and communicate with the outside world
through some specially designed network gateways [4, 5].
The final result is similar to service-oriented architectures
that can be subject to service orchestration (e.g., through
their APIs). IoT events and information are processed
and presented as application output to a human’s interac-
tion or used for autonomic decision. Furthermore, the IoT
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paradigm allows applications to interact with machines,
things, and/or humans through actuators to enforce new
control.
A case in point is a farm equipped with soil humid-

ity and temperature sensors. The farmer’s information
dashboard may present sensors data in a geographical
and analytic way. Knowing the humidity levels, a farmer
may decide whether or not to irrigate the soil. This also
depends on the type of crops planted. Then, the irrigation
actuators can be activated to increase field humidity. The
IoT paradigm creates new opportunities for specialized
small devices (sensors and actuators) while it also intro-
duces new challenges for the storage and retrieval of large
amounts of data and its meaningful visualization [6].
Such hyper-connected information sources often pro-

vide a large-scale data offering. This is classified as a Big
Data scale problem for storage, retrieval, and analysis [7].
The data analysis aspect is challenged by an intense data
input, constant mutation, and complex scenario represen-
tation. Other similar large data applications include those
in a metropolitan scale [8] such as smart city services,
domestic appliances in the context of the smart home [9],
and industrial applications [10].
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In those applications, the data intensity constraints may
vary from within minutes to real time, for each sensor.
Accordingly, each scenario demands a different data strat-
egy to deal with the context of each data. The scenario-
based architecture analysis (SAAM) is considered quite
mature in the software engineering field [11]. Scenarios
have been used during system design as a method for
comparing design alternatives for development [12]. Some
works classify the IoT objects (as in [13, 14]), but this
strategy has not been applied to IoT scenarios so far.
The present work aims to help in answering some

research questions that may occur to data analysis
researchers. We provide the reader with details of the
most common emerging IoT scenarios currently found.
We explain the way data structures and demand can
change from one scenario to the next. A classification
of existing sensors ranked in terms of popularity and its
application is presented. More importantly, we qualify the
different attributes according to usage contexts and pro-
vide guidelines for their data analysis [15]. Finally, we
provide a technique that binds sensors’ qualification with
the scenario’s description in an analytic way.
First, the procedures that were used is this survey are

described in the “Methodology” section. After that, the
“Analysis” section will present the classifications and cat-
egories used by this work. Then, the results are presented,
showing the major contributions of this work. At last, the
conclusions from this research, some future works, threats
to validity, and references are described. To help the keen
reader further in exploiting our results, we also provide in
the Appendix 1 section the main raw data of analysis and
the identified structures.

Methodology
This work falls into the category of analytic bibliographi-
cal research. Three main publishers (namely, ACM, IEEE,
and Springer) were considered as part of the main cor-
pus of analysis. The selected time frame is from 2015 to
2016, to show the newest applications and sensors in a
closed sample. The initial search query was “Internet of
Things” and “Experiment.” The objective was to sample
all papers that actually implement a concrete IoT solu-
tion, with real sensors in a context or domain. The total
number of examined papers reached a staggering 1087.
After this first selection, the inclusion and exclusion cri-
teria (described below) were applied to filter out some of
the works.

Inclusion criteria
The inclusion criterion was that any article must have as
its focus IoT technology while also presenting an exper-
imental setup or testbed running over real hardware. In
addition, the publishing date must fall between the years
2015 and 2016, inclusive.

Exclusion criteria
The papers that did not deploy real sensor(s) in a given
application domain were classified as out of the scope
of this analysis and removed from our study. We also
excluded papers that enhanced one aspect of IoT per-
formance, but lacked an implementation into the consid-
ered system. This was the case for example of research
describing enhancements made to sensor network com-
munications protocols. A similar strong exclusion crite-
rion regarded works that exclusively used simulation and
simulated sensor operation. Note that IoT solutions that
process data from a dataset or trace, as opposed to data
being gathered by sensors, were also excluded from this
sample. Finally, the sample did not include studies pub-
lished in books and book chapters, concentrating only on
scientific articles.

Resulting sample
The final result consisted of 48 articles from the three data
sources that satisfied our selection criteria (see Table 1).
Although the resulting sample seems reduced, it repre-
sents the most relevant papers that have real implemen-
tation. This is a tricky point, because the majority of the
IoT systems are too complex to be implemented, even in
small scale. So, each deployed application should be val-
ued, to further research studies. The actual state of an IoT
application is crucial to better understand the complexity
of data analysis, visualization, and sensor utilization.

Sample’s analysis
The analysis section is split into three parts: scenario, sen-
sors, and application analysis. The first part classifies and
qualifies the context of use of IoT solutions. The objec-
tive is to understand how each IoT scenario is placed and
its idiosyncrasies. Then, the second part of the analysis
focuses on the sensors themselves. The main concern is
the sensor classification and its application in each case.
The last part of the analysis offers the classification of
the use of sensors, within a characterized scenario. As
an example, a temperature sensor can be used for an
agricultural or an e-health application.

Analysis
Scenarios’ variables
A main aspect of the IoT scene is how the context of use
and scale can change the data analysis. An IoT application

Table 1 Sample distribution by publisher and year

2015 2016 Publisher’s total

ACM 5 4 9

IEEE 4 14 18

Springer 7 14 21

Year’s total 16 32 48
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can vary in many aspects. As an example, a smart city and
a smart home are both categorized as IoT, but the smart
city’s challenges are much more complex and demanding.
The scenario configuration is critical to understand and

develop a better data analysis solution. The IEEE’s IoT
working group built a platform in an attempt to cata-
log scenarios1. This scenario catalog is useful, but it does
not allow the comparison and inter-relationship among
the registered scenarios. Beyond the description of a use
case, the scenario analysis can be enhanced if its classifica-
tion could be analytic. Furthermore, this systematization
might also be used by other applications, as in ontology.
In this section, the scenario’s characteristics from an IoT
implementation are described in an analytic way, to per-
form comparison and identify possible relations among
the scenarios.

Analyzed variables
The IoT scenarios present a complex configuration. The
“thing” concept itself is debatable in many works. The
variation of what is defined as IoT is huge. An IoT domain
may span a single room or an entire city. Also, the quan-
tities of sensors and data upload rates vary in every sce-
nario. Those differences raise the need for identifying and
classifying each IoT scenario. We need to identify the
similarities and differences among the considered scenar-
ios. For example, one should understand which aspects

of a smart city IoT system could show similarity to those
from a smart industry. Scenario classification is one of the
major contributions of this work and it should advance
this topic.
This paper classifies the scenarios using seven variables

(see Table 2 for description). Those variables represent the
ability to relate to space (mobility, density, and area), peo-
ple (human interface), and sensors (heterogeneity, inten-
sity, and actuability2).
The first group of variables is related to the space

dimension of the IoT scenario. One common concern is
the spatial distance between nodes and gateways. This
aspect is represented by the area variable, which ranges
from a single room to a whole city. Along with the spa-
tial distance, the number of items per area, classified
as density, is a crucial measure to understand a sce-
nario. A wide area might have only a few sensors in
one experiment, but some other experiment might imple-
ment a large number of sensors within a small area,
as is the case in an industrial application, for example.
The last variable related to space is mobility. Mobil-
ity is the ability to move in or in-between areas. We
observe that these three variables can change according
to the application and even within the same application
type.
Heterogeneity and intensity are variables directly related

to sensors themselves and their displacement. Intensity

Table 2 Scenarios’ variable description and quantifier

Variable Description Quantifier

Density (DEN) Density represents the quantity of sensors
placed in one area.

When the area has a single sensor, it is classified as “0.” If the
area has up to five sensors, it is defined as “1”; over 5 and under
15 sensors, a “2” is allocated, and the density is “3” when there
are more than 15 sensors in an area.

Mobility (MOB) This is the thing’s ability to change location
in an area.

“0” is attributed for a static sensor. If the sensor can change its
location in a predefined route, it is classified as “1.” When the
sensor has the ability to move across areas, it is given a “2.” And
in the case of large changes, as in a city scale, it is represented
as “3.”

Intensity (INT) This reflects the sensor’s data refresh rate. A
higher refresh rate makes the data register
more critical.

Data refresh rate over 5 min are classified as,“0”; between 1 and
5 min as “1”; each minute as “2,” and real-time “3.”

Heterogeneity (HET) This denotes for the variety of data types and
sensors in the context.

Just one sensor with one data type is represented by “0.” A
sensor with various data type is classified as “1”; various sensors
with one data type are labeled “2,” and various sensors with
various data type are classified as “3.”

Area (A) This is the geographical displacement of the
things.

A single room is represented as “0”; a single store building as
“1”; more than one store building as “2”; “3” represents a smart
city.

Human interface (HI) This variable registers the degree of
interaction of the thing with a human being.

Ranges from “ 0—not related” when the device is independent
of human input, “1—weakly related” when the device/thing is
used or held by a human, “2—moderately related” when the
sensor is a wearable device, or “3—totally related” when it is a
direct input interface (neurotransmitter) or implanted chip.

Actuability (ACT) This represents the capability of a thing in
the system to act.

Ranges from “sensor only” (0), “self-acting/self-reconfiguring”
(1), “acts in the environment” (2) to “acts on an external thing
or human being” (3).
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is the amount of data provided by a sensor in a deter-
mined time frame. Higher intensity denotes a more inten-
sive service and demands a better network, storage, and
processing infrastructure. Heterogeneity is related to the
variety of sensors in the area. Many different sensors
demand complex correlations to their values and different
strategies to understand data.
The last variables are related to elements outside the IoT

sensing and processing domain. The human interface rep-
resents the human interaction as data source to the system
sensing part. Higher human interface denotes more sys-
tem dependency on human data to produce information.
Actuability is the capability of an IoT system to inter-
act with actuators and interfere with other objects and
people. This can happen through a light switch, turn-
ing on or off a light, or even an information display to
a person (not system user) showing some system sta-
tus information (e.g., an accident LED display in a smart
road). In addition, actuability refers to the capability of
the sensor to reconfigure itself, change proprieties, and
restart.
Those variables will be invaluable to classify each sce-

nario. In the section describing our results, this classifi-
cation will be applied to understand and represent each
scenario from the sample. In the next section, the sensors’
characteristics will be presented.

Sensors’ analysis
Sensor data is classified according to its application.
The initial taxonomy for classification was presented by
Harbor Research and Postscapes’ analysis3. Some cate-
gories were merged into bigger ones to better understand
the scenarios’ characteristics. As an example, the humidity
and temperature sensors were joined under the “ambient”
sensor type, as both represent a variable that measures
something in the environment. The sensors were divided
into 14 categories presented below (see Table 3 for a
synthesis).
The first classification is that of the ambient sen-

sors. This category groups together sensors that monitor
an environment’s characteristics and represent them in
data. The most common are temperature, light, atmo-
spheric pressure, and humidity sensors. A second group,
motion sensors, collect the data from the movement
of an entity. Accelerometers and gyroscopes are the
main components of this group. In the most mod-
ern sensors, the axis varies from 3 up to 9 axes. A
third class is the one for electric sensors which mon-
itor information about energy consumption at a place.
Those sensors usually are a multivariate data provider
that analyzes current, tension, and other electricity-
related data. An exception is the capacitance sensor,
which might be used for interaction, position, and other
applications.

Table 3 Sensors’ classification

Category Description

Ambient This refers to sensors that gather data from
the environment or the space around them.

Motion This is used to perceive motion of people or
things in a context (as in accelerometers and
gyroscopes).

Electric This category holds the sensors that are
applied to electricity grids.

Biosensor The biosensors are worn by humans or
animals. They return vital signs and/or
biological information about one subject.

Identification This represents a semantic or identity of
another thing to the IoT system. The most
common items in this classification are RFID
and NFC tags and their readers.

Position This is related to identifying an object’s
position in a global scale (as with GPS) or in a
local scale (as in small beacon position).

Presence This captures the presence of a person, an
animal, or object in a space and registers it
in the system. The most common solution is
the PIR sensor.

Machine vision This family of sensors captures images that
will be processed by a computer to produce
information.

Interaction These types of sensors are devices that are
human-activated to trigger an event, such as
a button or a lever.

Acoustic Such sensors are activated by soundwaves,
producing data from the ambient sound
change.

Force/load The force/load sensors are activated by
external forces, capturing the deformation or
the intensity of those forces to the system.

Hydraulic These are applied in the water system to
measure and control the flow.

Chemical Chemical sensors are capable of detecting
chemical substance(s) in the air or water.

Object information This specific category includes sensors with
similar functions to the previous categories.
They differ in that their application is
confined to a specific object. The object
information is the result of a small context
application of a sensor. For instance, a
temperature sensor used inside a machine
provides object information which is
different from an ambient temperature
sensor.

Biosensors collect information from a living being, rep-
resenting biological data to the system. Electrocardio-
gram (ECG), electroencephalogram (EEG), heartbeat, and
breath sensors are the most common ones found in this
category. Object identification sensors and their acces-
sories (e.g., tags or cards) are used to identify an entity to
the system. Furthermore, it is possible to store semantic
data in the tag, in addition to the offered identification ser-
vice. Among emerging identification technologies, we list
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RFID and NFC. Position sensors aggregate the geolocal-
ization or spatial information about an entity. This family
of sensors collects the position relative to a reference
which can be global, as in the case of GPS, or specific, in
an indoor wireless network localization service. This data
ranges from simple coordinates to complex collections of
data, as with GPS sensors. The most popular sensors used
here are GPS, magnetometers, and fixed wireless access
points through the processing of received signal strength
(RSS) information.
Presence sensors became ubiquitous and very popular

in the security context. Their main use is to detect if a
person or animal is entering a predetermined area. The
passive infrared sensor (PIR) is by far the most common
example. More advanced machine vision-based sensors
utilize computer-assisted vision to provide data to IoT
platforms. The application might then detect movement,
persons, or things through the use of image processing
techniques. Chief among these sensors is the security
cameras (conventional or infrared).
Interaction sensors are small gateways to conscious

human interaction. Their objective is to capture human
input from the environment and act accordingly. Physical
buttons and sliders are examples of this group.
Acoustic sensors are sound-activated devices that

gather sound wave data and send this to an application.
Microphones and piezoelectric sensors are some exam-
ples of devices that perform acoustic sensing. Force/load
sensors measure an external force applied to them. Load
sensors and speed meter sensors are instances that fall
into this category. Hydraulic sensors measure the proper-
ties of water and other liquids, including water level and its
flow intensity. This group also includes important water
quality sensors.
Other environmental sensors include chemical sen-

sors that detect substances in the air. Smoke detec-
tor sensors, pH sensors, and gas sensors are further
instances. Finally, object information sensors are a spe-
cific category of sensors that are devoted to providing
information about a single object. Object information
is a small part of the context application of a sen-
sor. As an example, an application may prefer using
a temperature sensor embedded inside a machine as
opposed to relying on an external ambient temperature
sensor.

Application analysis
The surveyed papers have also been classified according
to their applications, reflecting the IoT system as seen
from a consumer point of view. For instance, the case
described in the introduction in which soil sensors are
being used could then be classified as having a “smart
agriculture” application. The categories for this analysis
were not known beforehand, they were discovered from

mining the sample’s papers. The main concern with those
applications is finding a way that relates the sensors and
the scenarios with an application. Note that one scenario
can have different applications. Similarly, an application
may be associated with scenarios with totally different
configurations. We contribute by identifying such rela-
tionships and formally quantifying them in the section
that describes our results.

Results
Our results are divided according to the following three
main aspects: applications, scenarios, and sensors. The
first one, namely, applications, elicits the classification for
each application. Our findings regarding the scenarios
summarize the analysis of the context of the “things” and
the case variable values. Finally, the main characteristics
of Internet of Things are discovered and presented.

Application results
We first built insights reflecting current IoT applications.
From the 48 examined research papers, 15 applications
were identified and listed in Table 4. Note that smart
home is the most common application, followed by smart
healthcare and smart city. The four most common appli-
cations are two times more popular than the 11 latter
cases.
In fact, smart healthcare is a special case, as it is

part of a home and a business environment (e.g., a
hospital). Another notable application is robot move-
ment. The surveyed works showed keen interest in
sensor-based autonomic robots and human-controlled

Table 4 Applications found, by the quantity of papers

Application Papers count

Smart home 11

Smart healthcare 9

Smart city 8

Smart agriculture 4

Smart building 3

Energy monitoring 2

Playful furniture 2

Robot movement 2

Water management 1

Learning device 1

Disaster management 1

Smart vehicle 1

Smart security 1

Personal security 1

Personal information 1

Total 48
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robot research using the IoT as an underlying archi-
tecture. The smart vehicle application had a low result
in our sample. Most of the smart vehicle papers ini-
tially gathered adopted simulation to build their testbed
and evaluations. This is mostly understandable due to
the presence of a number of vehicular network simula-
tors as well as the need to study the large-scale dynam-
ics of traffic and vehicles. We also note some overlaps
among the applications as was the case for example with
the two applications energy monitoring and smart city.
Smart city applications often included energy monitor-
ing but on a city-wide scale. We observe a similar overlap
between the IoT applications smart agriculture and water
management.

Scenarios patterns
A paper, once analyzed, was evaluated and scored a
degree in each of the scenario variables described in
“Analyzed variables” section. The final IoT scenario score
consists of a string made from the scores’ concatenation of
each of the scenario metrics. For example, a scenario that
has density = 1, mobility = 3, intensity = 0, heterogene-
ity = 1, area = 2, human interface = 1, and actuability = 0
will be represented as “1301210.” This notation is impor-
tant in order to observe if any scenario is equal or close to
any other one. Using this coding technique, it is straight-
forward to compare the distance (consequently also the
similarity) between the scores of two scenarios. To achieve
this, we simply sum the differences among the scores of
each of the final scores. A weighted sum may be used
in the future to differentiate among the impacts of these
parameters.
Within our sample space, only three patterns of scenar-

ios matched, i.e., scored the same string. Two of them

were very simple (mostly composed of zeros) and close
to themselves: patterns 0020000 and 0021000, each with
two matching cases. There is also one with a complex pat-
tern (1032102) with two matching cases. The other 43
scenarios were unique. However, they obtained very close
scores, mostly with a single variable being different. To
better understand this issue, a similarity table was built to
comprehend how close the different scenarios are to one
another.
The similarity table compares the columns (positions)

of each scenario pattern (string) to the others. If a vari-
able intensity matches, the scenario has at least one level
of similarity. This research represents the level of similar-
ity in percentages. For example, when a comparison has
one variable with equal intensity, it is 14.3% similar. On
average, the scenarios have at least two variables equal
(similarity = 28.6%, see Fig. 1), followed by three variables
(similarity = 42.8%), and just one variable (similarity =
14.3%). The pattern with least common variables was
“1101133,” with 14 non-matching items. Themost approx-
imate pattern is “0020000,” with 5 matches with at least
85.7% similarity. The complete similarity comparison is
presented in Fig. 1.

Variable and scenario potentiality analysis
An important objective is discovering if each sce-
nario is fully leveraging all the information provided
by a variable for an IoT solution. In this section, the
potential of each sampled variable will be analyzed,
as well as each scenario total. This analysis is valu-
able to understand the criticality of the IoT solution.
The higher average in each variable shows that the
variable is present in the sample articles. Higher val-
ues in the case potential denote a more intense, data

Fig. 1 Similarity average of the surveyed scenarios. The graphic shows that the majority of scenarios has at least two equal variables (28.6% similar)
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Table 5 Scenarios’ variable average and percentage of maximum score total from the sample

DEN MOB INT HET A HI ACT

Average 1.17 0.85 2.10 1.44 1.00 0.83 1.00

% of the max score 38.10% 27.89% 68.71% 46.94% 28.57% 27.21% 32.65%

Standard deviation 1.17 1.15 1.17 0.97 1.00 1.02 1.38

critical, and complex system (with more interaction with
other actors).
As defined by the scenarios’ variables, each item can

range from 0 to 3 for each analyzed aspect. So, the aver-
age of each variable score reflects the variable potentiality.
Table 5 represents this data. “Intensity” was the variable
most present, followed (by far) by “heterogeneity” and
“density”. This intensity data confirms the big data iden-
tity of IoT. But some expected values, such as a higher
presence of the “area” variable (as in smart cities or smart
farms) were not significantly present in the sample. Fur-
thermore, the “human interaction” and “mobility” got
the lowest score. This leads us to believe that the IoT
applications are mostly configured as a static and human-
independent paradigm. The majority of the researched
papers do not need human input or human interaction to
function.
The scenario potentiality is composed of the sum of

the variables’ values, compared to the maximum. As an
example, the scenario “2012010” has 6 points in potential
(2 + 1 + 2 + 1) or 28.6% of the case potential (themaximum
would be 21 points). The majority of the cases’ potential
is placed between 40% and 60%, as presented in Table 6.
Many cases analyzed in this sample do not show a complex
configuration (under 40%). Only one outline case has the
potential over 80% (precisely 80.95%).

Scenarios’ variables correlation
In this section, the correlation among the scenarios’ vari-
ables will be presented. As a first exploratory study of
those variables, there is no pre-conceived hypothesis. The
main idea is to show the variables’ inter-relations from this

Table 6 Scenario potential, by quantity

Potential Quantity

Under 20% 10

Between 20% and 40% 10

Between 40% and 60% 23

Between 60% and 80% 4

Over 80% 1

Total 48

sample to be deeply researched and compared in future
works.
The most significant correlation happens between den-

sity and heterogeneity (as seen on Table 7). These two
variables and area seem to have tied correlation, as the
three together also correlate (p < 0.5 and p < 0.01).
Area and density are expected to be correlated, but
the heterogeneity is a new perspective for the sam-
ple data. This information presents an IoT important
characteristic from the sampled papers: the variability
of sensors’ type and the quantity are correlated to the
space.
Mobility and area are also strongly correlated. This is

another expected result, as the ability to change places
happens in scenarios that support great areas. If the
sensors are hard-bounded to an area, the mobility would
be low. Mobility is also strongly related to human inter-
face. This is another foreseen result, as the ability to
change areas is mostly done by humans. The sensor’s
or machine’s movements were not so present in the
sample.
Actuability and intensity were poorly correlated vari-

ables from this sample. These two variables seem to have a
constant value: high values for intensity and low for actu-
ability. Table 5 can help to explain this, as intensity has
a higher average and actuability has a small average and
greater deviation.

Sensors’ analysis results
In this section, the sensors’ quantity and use will be exam-
ined. As presented in Tables 8 and 9, the great majority of
the surveyed sensors were from the ambient classification.
Temperature, light, and humidity sensors are the most
commonly found sensors across our sample, all under the
ambient category.
The most common temperature sensors are semicon-

ductor sensors and thermocouples. The first is easier
and cheaper to build and use. An example would be the
TMP35 sensor, which ranges from −70 to +125 °C. The
latter needs a digital converter but has wider tempera-
ture range. The MAX31855 cold-junction compensated
thermocouple-to-digital converter, for instance, can han-
dle a thermocouple from −270 to +1800 ◦C.
Humidity is commonly measured relative to ambient

temperature (relative humidity will be discussed also in
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Table 7 Correlation table of the scenarios’ variable

DEN MOB INT HET A HI ACT

DEN Pearson’s r – − 0.140 0.250 0.592*** 0.434** − 0.137 − 0.052

p value – 0.344 0.086 < 0.001 0.002 0.354 0.723

MOB Pearson’s r – 0.059 0.116 0.409** 0.416** − 0.268

p value – 0.690 0.431 0.004 0.003 0.066

INT Pearson’s r – 0.241 0.011 0.086 − 0.092

p value – 0.099 0.939 0.560 0.534

HET Pearson’s r – 0.299* 0.011 − 0.207

p value – 0.039 0.942 0.158

A Pearson’s r – − 0.229 − 0.061

p value – 0.117 0.679

HI Pearson’s r – 0.030

p value – 0.838

ACT Pearson’s r –

p value –

*p < .05, **p < .01, ***p < .001

Table 8 Sensor list by quantity

Sensor Quantity

Temperature 19
Accelerometer 12
Humidity 10
Light sensor 10
RFID 7
PIR 6
Acoustic 5
Camcoder 5
AC analyzer 3

Button 3

ECG 3

Energy consumption 3

Gyroscope 3

Position 3

Chemical detector 2

Current 2

GPS 2

Heartbeat 2

Magnetometer 2

pH 2

Pressure 2

Temperature (object) 2

Tension 2

Various unique sensors4 32

Total 142

the “Validity threats and restrictions” section). A humid-
ity sensor is usually combined with a temperature sensor
(as in the D-Robotics DHT11). There are some absolute
humidity sensors, but none were clearly presented in any
article in the sample.
Light sensors are present in both indoor and outdoor

applications. The most ordinary light sensor consists of

Table 9 Sensor quantity, qualified by kind

Sensor type Quantity

Ambient 47

Motion 18

Electric 13

Biosensor 10

Chemical 9

Position 9

Machine vision 8

Identification 8

Presence 6

Acoustic 5

Interaction 3

Hydraulic 2

Force/load 2

Object information 2

Total 142
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a photoresistor (found in the CDS’ photoconductive pho-
tocell gl5528). But it also contains some phototransistor
components (as in the Vishay’s TEMT6000). Some com-
ponents can also split the light into the spectrum (red,
green, and blue) to analyze color (an example would be
SparkFun’s RGB Light Sensor ISL29125).
Accelerometers are popular motion sensors built-in to

many devices (as smartwatches or smartphones). Such
sensors can also be embedded in small IoT Arduino
or Raspberry Pi boards. The most common sensor is
a 3-axes sensor, but the most modern ones support
up to 9 axes (combined with gyroscope and compass).
RFID and NFC are very common in the IoT solu-
tions. They are used under the identification category.
The passive infrared sensor (PIR) is an affordable pres-
ence sensor encountered in many scenarios. The low
cost and ease of use for PIR sensors are reflected by
their presence in six scenarios from three applications in
the sample.
The electric category unites sensors that get data from

the power grid. Energy variables such as tension, current,
and energy consumption are some examples of data from
this group. Those sensors also might have a characteristic
presented in the “Validity threats and restrictions” section,
in the form of a validity threat. Beyond the energy mea-
surement, capacitance and soil conductivity were present
in the sample. Those sensors are used in user interac-
tion (such as in playful furniture) and smart agriculture,
respectively.
From the sample, the Biosensors were well repre-

sented. This category does not have just one popu-
lar sensor; it has a lot of variety. The most frequent
sensors are heart-related, such as in the electrocar-
diogram (ECG), heartbeat, and blood pressure sensors.
But one remarkable one was the electroencephalogram
(EEG), which aims to enhance human interaction through
brain waves. Another curious finding from Tables 9
and 10 is that the smart healthcare has fewer biosen-
sors than other kinds of sensors. The healthcare appli-
cation is using motion, identity, ambient, and presence
sensors to provide real monitoring for patients or the
elderly (see Fig. 3 for a better understanding of this
relationship).

Applications, scenario, and sensor relationship
Once we classified the application, scenarios, and sensor
characteristics, we looked into the relationship between
them. Figure 2 shows a graph connecting the scenar-
ios with different types of sensors. The graphs from this
work were generated using Gephi 0.91 for Linux. The
organization layout used was “Force Atlas 2,” with scal-
ing set to 210. The graph is directed. It is composed
of 118 nodes and 190 ties, with average degree 3.22.
Green nodes depict scenarios, purple nodes represent

Table 10 Total of sensors by each application

Application Sensors

Smart healthcare 28

Smart home 28

Smart city 23

Smart agriculture 13

Smart building 9

Smart security 8

Personal information 7

Playful furniture 5

Smart vehicle 4

Water management 4

Robot movement 4

Personal security 3

Energy monitoring 2

Learning device 2

Disaster management 2

Total 142

sensors, and orange nodes are the scenario’s applica-
tion. The presence of lines connecting a scenario to
one or more sensors shows that this scenario uses that
sensor.
As defined by the layout, the more connected nodes

are placed in the center of the graph, the lesser the
connection on the periphery. When the graph has
repeated scenarios, a letter “A” was appended to avoid
miss-reference (as in “0021000” and “0021000A,” water
management and smart home, with totally different
sensors).
The scenario “2133030” is the node with most diversity

of sensors (10), followed by “3032203” (8), “2023200,” and
“3333320,” both with 7 sensors. Those scenarios’ applica-
tions are, respectively, smart healthcare, smart security,
smart agriculture, and personal information. From the top
application in Table 4, only smart healthcare and smart
agriculture match the most sensing scenarios. The sce-
nario potentiality rank was closely related to the quantity
of sensor rank, but not defined by it. The potentiality
did not correlate to the quantity of sensors, as seen in
Table 11.
From the sample, 14 scenarios have just one sensor each.

The applications with least and most variety of sensors by
scenario are described in Table 12. From the top sensing
sample, four applications are also in the bottom sample.
This table shows that there is no relationship between
the variety of sensors and application. The scenario might
have only one data source, but still in the same application
domain.
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Fig. 2 Applications, scenarios, and sensor graph. Each node represents either a sensor (purple node), a paper’s scenario (green node), or an
application (orange node)

For further analysis, this graph is available as an inter-
active HTML5 page generated by the SigmaExporter,
from the Oxford Internet Institute. You can explore it
in the references of “Availability of data and materials”
section.

Sensors and applications relationship
In this section, links between sensors and their
applications will be identified and depicted. In Fig. 3,
Table 11 Pearson’s correlation of sensors’ quantity and
scenario’s potential

Potentiality

Sensor’s variety Pearson’s r 0.361

p value 0.011

There is no significant correlation from the sample

an orange node represents an application, a purple one
represents a sensor, and a green node represents the
sensor’s type. This graph shows the way each sensor
is used in the final application and which sensor and
sensor’s type are more popular or commonly used in
each application. Each line represents a connection
between a sensor and an application or a sensor and a
sensor’s type. The line’s thickness represents the degree
of presence of this sensor in the application. If this
number is above 1, it is presented in the middle of the
line.
The smart home is the application with the most

variety of sensors (18 types), followed by smart health-
care (17 types) and smart city (16 types). From the
sample, the smart home and smart healthcare have the
same quantity of sensors, as seen in Table 10, but the
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Table 12 Applications and scenarios, classified by the most and
least variety of sensor

Application Scenarios

Bottom sample (1 sensors)
Smart city 3
Smart healthcare 3
Energy monitoring 2
Smart home 2

Playful furniture 1
Robot movement 1
Smart agriculture 1
Smart building 1
Total 14

Top sample (> 5 sensors)
Smart city 2
Smart healthcare 2
Personal information 1
Smart agriculture 1
Smart building 1
Smart home 1
Smart security 1
Total 7

smart home has more variety. Temperature, humidity,
and accelerometer are the most used sensors (respec-
tively 8, 7, and 6 applications), followed by light sensor
and RFID. The light sensor is used by smart agricul-
ture, smart city, smart security, smart healthcare, smart
home, and personal information applications. RFID is still
an important sensor in many application and is more
used than the NFC in this sample. The GPS sensor,
on the other hand, is only connected to two applica-
tions, namely, personal security and smart healthcare.
The smart healthcare’s most predominant sensor is the
accelerometer. This might be related to the great variety
of heart monitoring devices, but it is an interesting fact
that a motion sensor is a prominent source of e-health
data.
This graph also is available as an interactive

HTML5 page. You can explore it in the references of
“Availability of data and materials” section.

Conclusions and contributions of this work
This work proposes a method to classify and com-
pare IoT scenarios. The authors believe that this is
the first time sensor, scenario, and application have
been inter-related for IoT systems.The first contribu-
tion is the classification scheme presented in the analysis
(“Scenarios’ variables” section). This codification will
help developers and data analysts to better under-
stand what the characteristics of an IoT application
are. Also, developers and/or data analysts can match
and compare those codes as a parameter to an existing
product.

Our main contribution presents insights from cur-
rent IoT applications. From the 48 examined research
papers, 15 applications were identified. They are listed
in Table 4. Note that smart home is the most com-
mon application, followed by smart healthcare and smart
city. The four most common applications have two
times more papers than the 11 latter cases. One inter-
esting fact found from this sample was that there is
no relationship between the variety of sensors and
applications. The scenario might have only one data
source, but still might be in the same application
domain.
Another contribution is the discussion of the state-

of-the-art of sensors in scientific papers. As presented
in Tables 8 and 9, the great majority of the surveyed
sensors were from the ambient classification. Tempera-
ture, light, and humidity sensors are the most commonly
found sensors across our sample, all under the ambient
category.
In the future, we may think of code-related templates

that would give developers and researchers a jump-start
in the design and evaluation of IoT applications. As an
example, a developer designing an IoT system for a water
metering scenario with the pattern “2012010” may be
given references and guidelines on how to achieve their
task. The developers may also find out the amount of
effort needed to translate the water IoT system to another
application (such as electrical) by simply comparing the
scenario’s code difference (especially if they have the same
or very close pattern code). We believe that the proposed
codification scheme facilitates both the understanding
and the comparison of IoT applications.

Validity threats and restrictions
The present work has an internal validity threat as pre-
sented by [16]. This threat appears from the imprecise
presentation of sensors in the papers. In some cases,
two data sources (e.g., humidity and temperature sensors)
are bundled in the same device. Humidity is commonly
measured relative to temperature, so temperature and
humidity are measured from the same sensor. But when
presented in the paper, some authors from the sample
did not specify if the produced data (humidity and tem-
perature) are from one sensing device or two. So, for the
sake of precision, those cases were represented as different
sensors. The number of those sensors may be higher or
lower than the presented number, but without the author’s
better specification of the actual instruments used (as a list
of sensors used), it is impossible to determine the correct
numbers. This phenomenon might happen in the elec-
tric sensors (as current, tension, and power consumption
might be included in an AC analyzer) and in biosensors
(all heart-related sensors might be an ECG). One sugges-
tion to enhance future IoT works is to present a clearly
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Fig. 3 Sensors, sensor’s type, and application graph. Each node represents either a sensor (purple node), an application (orange node), or a sensor’s
type (green node). Each application can gather one or more papers from the sample. The line width represents the amount of the sensor in the
application. When the presence is over 1, the number of sensor is presented in the middle of the tie

defined section describing the instruments used, in the
main text or appendix, describing sensors used, manu-
facturer, and model. This information would improve the
precision of sensors’ variable data types and quantity.
Another threat might have to do with work validation.

But, as a first IoT scenario experimental classification,
this threat is expected. The classification presented in this
work is likely to be expanded, enhanced, be better defined,
or changed after the publication. The nature of IoT might
demand modifications that could not be predicted at the
time of this writing.
The main restriction of this work is the sample’s pub-

lisher source quantity. The authors understand that a great
variety of sources would provide a better overview of the
IoT scenario. But this paper chose a qualitative analysis,
so each paper was a semantic trial, to avoid imprecise

selection of paper. We invite other authors to apply the
same method to other paper sources, in order to complete
this overview.

Endnotes
1Avaliable in http://iot.ieee.org/iot-scenarios.html;
2 The concept of actuability is close to the one defined

in [17], but extended beyond the motion ability of motors.
In this work, actuability is seen as the capability of a thing
or a system to act on someone/something else.

3Available from http://harborresearch.com/are-you-
prepared-for-big-changes-in-the-way-we-will-learn-
work-and-innovate/

4 Presented individually in Appendix 2

http://iot.ieee.org/iot-scenarios.html
http://harborresearch.com/are-you-prepared-for-big-changes-in-the-way-we-will-learn-work-and-innovate/
http://harborresearch.com/are-you-prepared-for-big-changes-in-the-way-we-will-learn-work-and-innovate/
http://harborresearch.com/are-you-prepared-for-big-changes-in-the-way-we-will-learn-work-and-innovate/
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Appendix 1: List of surveyed papers and classifications

Table 13 Complete list of surveyed papers, with scenario code and application classification

Paper Application Scenario Paper Application Scenario

[18] Smart agriculture 0000000 [19] Smart home 1032102A
[20] Smart home 0000103 [21] Smart home 1101133
[22] Smart home 0011010 [23] Smart home 1132020
[24] Smart building 0020000 [25] Smart building 1132110
[26] Smart agriculture 0020000A [27] Smart home 1232120
[28] Water management 0021000 [29] Disaster management 1301210
[30] Smart home 0021000A [31] Smart vehicle 1332300
[32] Energy monitoring 0030000 [33] Playful furniture 2012010
[34] Energy monitoring 0031000 [35] Smart agriculture 2023200
[36] Smart home 0101003 [37] Smart city 2030103
[38] Playful furniture 0101123 [39] Smart city 2032013
[40] Smart healthcare 0130030 [41] Smart healthcare 2033020
[42] Smart healthcare 0131113 [43] Robot movement 2130033
[44] Learning device 0230023 [45] Smart healthcare 2133030
[46] Smart healthcare 0231020 [47] Smart building 3001200
[48] Smart healthcare 0312020 [49] Smart home 3022103
[50] Smart healthcare 0321210 [51] Smart city 3032100
[52] Smart healthcare 0322310 [53] Robot movement 3032200
[54] Smart healthcare 0331020 [55] Smart security 3032203
[56] Smart home 1002013 [57] Smart city 3032213
[58] Smart home 1002100 [59] Smart city 3033000
[60] Smart city 1020202 [61] Smart city 3233200
[62] Smart agriculture 1032003 [63] Personal security 3322300
[64] Smart city 1032102 [65] Personal information 3333320
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Appendix 2: List of sensors from the sample

Table 14 List of all sensors found in the sample

Sensor Type Quantity Sensor Type Quantity

Temperature Ambient 19 Degree of cloudness Ambient 1

Accelerometer Motion 12 Direction Position 1

Humidity Ambient 10 Discomfort index Biosensor 1

Light sensor Ambient 10 EEG Biosensor 1

RFID Identification 7 Electrical conductivity Electric 1

PIR Presence 6 Float sensor Hydraulic 1

Acoustic Acoustic 5 Flow sensor Hydraulic 1

Camcoder Machine vision 5 IR camcoder Machine vision 1

AC analyzer Electric 3 Lane perception Machine vision 1

Button Interaction 3 Laser scanner Motion 1

ECG Biosensor 3 Load sensor Force/load 1

Energy consumption Electric 3 NFC Identification 1

Gyroscope Motion 3 ORP Chemical 1

Position sensor Position 3 Proximity sensor Motion 1

Chemical detector Chemical 2 Smoke sensor Chemical 1

Current Electric 2 Soil conductivity Electric 1

GPS Position 2 Soil humidity Ambient 1

Heartbeat Biosensor 2 Soil microorganism Ambient 1

Magnetometer Position 2 Soil temperature Ambient 1

pH Chemical 2 Solar irradiation index Ambient 1

Pressure Ambient 2 Speed Force/load 1

Temperature (object) Object information 2 Swallow sensor Biosensor 1

Tension Electric 2 Thermal camera Machine vision 1

Blood pressure Biosensor 1 Tilt sensor Motion 1

Breath sensor Biosensor 1 Ultrasonic sensor Position 1

Capacitance Electric 1 Water oxygen Chemical 1

CO2 Chemical 1 Water quality Chemical 1

Wind velocity Force/load 1

Total 142
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