
RESEARCH Open Access

ObasCId(-Tool): an ontologically based
approach for concern identification and
classification and its computational support
Paulo Afonso Parreira Júnior1* and Rosângela Aparecida Dellosso Penteado2

Abstract

The aspect-oriented requirements engineering (AORE) area intends to provide more appropriated strategies for
software concern identification, classification (as crosscutting or non-crosscutting), and modularization, in the early
phases of software development cycle. A commonly reported issue about the existing AORE approaches is the lack
of appropriated resources (guidelines, processes, catalogs, among others) to support software engineers during the
concern identification and classification. This work aims to mitigate this issue by proposing (i) a reference ontology
for the software concern domain, called O4C (Ontology for Concerns); (ii) an ontologically based approach for
AORE, called ObasCId, that suggests the usage of catalogs of software concerns and a well-defined process for
supporting software engineers to perform these activities in a more systematic way; and (iii) a computational
support, called ObasCId-Tool, that automates some activities of the ObasCId. Two quasi-experimental studies were
performed on ObasCId and ObasCId-Tool, and their results indicated that these technologies may positively
contribute for the concern identification and classification effectiveness without harming its execution time.

Keywords: Crosscutting concerns, Early-Aspects, Aspect-oriented requirements engineering, Concern identification
and classification

Introduction
In the context of requirements engineering (RE), a
concern can be understood as a set of software require-
ments related to the same purpose [1]. The two main
categories of software concerns are functional and non-
functional concerns. The first one regards to concerns
that are related to the functional features of the software,
such as “Payment,” “Order Management,” “Reservation,”
among others. The last one corresponds to concerns
related to the non-functional features of the software,
such as “Security,” “Persistence,” “Performance,” “Log-
ging,” among others. Several traditional RE approaches,
such as those based on viewpoints, goals, use cases, and
scenarios have been developed in order to allow the
modularization of software concerns in a more appropri-
ated way [2]. However, there are some concerns that
may not be easily modularized, even in the early phases

of software development cycle. These concerns are
known as CrossCutting Concerns or Early-Aspects and
consist of software concerns (functional or non-
functional) whose requirements are spread over require-
ments of other software concerns [3]. For instance, a se-
curity concern may contain requirements related to the
encryption and/or authorization mechanisms. These re-
quirements, in turn, may affect (cut across) some
requirements related to “Orders Management” concern,
for instance.
The non-identification of the software concerns, espe-

cially the crosscutting ones, may bring difficulties for the
software development and evolution processes, harming
the reasoning of the software engineers on the effects
caused by the inclusion, removal, or modification of a
requirement over the other ones [1]. The aspect-
oriented requirements engineering (AORE) area deals
with software concerns during the early phases of soft-
ware development [2, 4], in order to identify, classify,
modularize, and compose these concerns in a more
appropriated way.

* Correspondence: pauloa.junior@dcc.ufla.br
1Department of Computer Science, Federal University of Lavras, Lavras, MG,
Brazil
Full list of author information is available at the end of the article

Journal of the
Brazilian Computer Society

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3
DOI 10.1186/s13173-017-0067-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-017-0067-6&domain=pdf
mailto:pauloa.junior@dcc.ufla.br
http://creativecommons.org/licenses/by/4.0/

Some experimental studies performed on the main
AORE approaches [5–8] have pointed out the concern
identification and classification as bottleneck activities.
One of the possible causes of this is the lack of under-
standing about the software concern domain: there are
few studies designed to provide a clear understanding
about the software concern concepts, aiming to answer
questions such as “which are the main properties of a
concern?” and “how does a concern affect other software
concerns,” among others. Generally, the knowledge
about software concern domain is spread in different
studies, sometimes in a divergent way, which may pre-
clude the understanding of researchers and practitioners.
Another possible cause is the lack of appropriated re-
sources (guidelines, processes, catalogs, computational
tools, among others) to support software engineers during
the concern identification and classification [9, 10]: sev-
eral AORE approaches rely only either on the software
engineers’ expertise or on the usage of keywords for the
correct identification and classification of software con-
cerns, which may decrease the effectiveness of these ap-
proaches. In addition, most of the computational
supports for AORE either do not address the concern
identification and classification activities, or are not
available in a public way, or have obsolete documenta-
tion, which may indicate that they were discontinued.
The “Related works” section of this paper presents more
details about these causes, taking the related works into
account.
In this context, this work aims to improve the effect-

iveness of the concern identification and classification
activities by dealing with the previous mentioned causes.
To do this, we propose (i) a reference ontology for the
software concern domain, called O4C (Ontology for
Concerns), that aims to make clear and precise the
description of the concepts of this domain; (ii) an
ontologically based AORE approach, called ObasCId
(Ontologically based Concern Identification and Classifi-
cation), that provides more appropriated resources
(catalogs, heuristics, and processes) for supporting soft-
ware engineers during the concern identification and
classification; and (iii) a computational support, called
ObasCId-Tool, that automates several of the activities
and artifacts proposed in ObasCId. The assessment
performed on the ObasCId and ObasCId-Tool provided
results that lead us to believe that the usage of these
resources may improve the recall of the concern identifi-
cation and classification, without negative impacts on
the precision and the execution time of these activities.
It is important to state that this paper is an extension of
previous studies [7, 11] and it improves the content pre-
sented in them as follows: (i) a better description of the
concepts and relationships of the O4C ontology is pre-
sented and (ii) a computational support for concern

identification and classification is presented and its
assessment by means of a quasi-experimental study is
described.
This paper is organized as follows: the “Related works”

section presents a discussion about the related works; in
the “Ontology for Concerns (O4C),” “ObasCId ap-
proach,” and “ObasCId-Tool” sections, the O4C ontol-
ogy, the ObasCId approach and its computational
support, and ObasCId-Tool are presented, respectively.
The description of the quasi-experimental studies
performed on the ObasCId and ObasCId-Tool are in the
“Quasi-experimental study I” and “Quasi-experimental
study II” sections. Finally, the “Final remarks” section
highlights the final remarks of this paper, including the
limitations of the presented work and the proposals for
future works.

Related works
Several AORE approaches have been proposed in the
last years, especially, for concern identification and clas-
sification [9, 10]. Many of these approaches ([3, 4, 12–
18] suggest the usage of catalogs of non-functional re-
quirements (NFR catalogs), such as those proposed by
Boehm and In [19], Chung and Leite [20], and Cysneiro
[21], for aiding software engineers while performing the
concern identification and classification activities.
The usage of NFR catalogs in the AORE context is not

totally appropriate, since these catalogs are not prepared
for the software concern domain and fail to consider
some specific properties of this area. For example, they
do not contain information about functional require-
ments and their relationships. According to Moreira et
al. [17], functional requirements also may cut across
other software requirements; hence, it is important to
take them into account during the concern identification
and classification activities. Furthermore, although these
approaches suggest the usage of NFR catalogs, they do
not present guidelines or processes that indicate how to
use them in an appropriated way.
In other approaches [2, 22, 23], no resources are

provided to aid software engineers during the concern
identification and classification. Instead, they only sug-
gest the usage of keywords, previously identified by the
software engineer from the requirements document, as
inputs for the concern identification and classification
activities. The main drawback of this strategy is that it
does not consider the existence of implicit concerns, i.e.,
concerns that emerge from the existence of other soft-
ware concerns and are not explicitly mentioned in the
requirement document, by means of keywords. For
instance, if the software requires a good performance to
persist its data, a possible strategy is using concurrency
mechanisms, such as connection pooling. Hence, as
mentioned in the work of Sampaio et al. [8],

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 2 of 25

“Concurrency” is an implicit concern, observed from the
existence of two other concerns in the same software:
“Persistence” and “Performance.”
As stated in the introduction of this paper, the know-

ledge about software concern domain is spread in differ-
ent studies, sometimes in a divergent way. Most of the
existing AORE approaches represent the knowledge
about software concerns in XML files (templates), devel-
oped by the authors of these approaches. These tem-
plates are usually presented without the meta-model
that describes them and do not share the main concepts
and relationships existing in the software concern
domain. For instance, the template proposed by Moreira
et al. [17] does not provide information about the
source(s) from which a concern was described, such as a
stakeholder, a business document, among others. How-
ever, this information can be found in templates of other
AORE approaches [12, 16, 18].
In regard to computational supports, in a previous

work, we have noticed that there is a lack of tools that
support the concern identification and classification
activities [24]. This observation makes sense, since most
of AORE approaches do not provide resources for aiding
software engineers while performing these activities. To
the best that we know, EA-Miner [4] is the main tool for
concern identification and classification; however, it is
not available in a public way. In addition, EA-Miner
depends on the WMATRIX [25] tool, which is respon-
sible for running natural language processing routines
for English-only texts.
This work differs from those above mentioned, be-

cause it (i) proposes a conceptual model (O4C ontology)
for the software concern domain, aiming to make clear
and precise the description of the concepts of this
domain; (ii) proposes the building and the usage of soft-
ware concern catalogs as inputs for the concern identifi-
cation and classification activities, aiming to provide
more useful information for aiding the software engi-
neers to perform these activities; (iii) provides a set of
activities and heuristics to guide software engineers
while using the software concern catalogs; (iv) suggests
that the existing relationships among software concerns
and requirements may be used, along with the keywords,
to improve the effectiveness of the concern identification
and classification activities, especially, for the implicit
concerns; and (v) proposes a language-independent tool
for concern identification and classification.
Regarding the usage of ontologies in the RE area, a

systematic mapping conducted by the authors of this
paper [26] presented that there are several ontology-
based approaches for this area. However, none of them
was specific to the context of AORE. One of the closest
works related to this paper is that one proposed by
López et al. [27]. In this work, the authors presented an

ontology for sharing and reusing NFR and design
decisions. The proposed ontology aims to store the
knowledge related to the NFR and design decisions
based on the description of NFR catalogs. Hence, the
researcher may create instances from this ontology that
address the NFR and design decisions of his/her interest.
The work of López et al. [27] is different from the pro-

posal of this paper, because (i) their work is not related
to the AORE area; therefore, it does not address specific
properties of the software concern domain, such as the
classification of a concern as non-functional or func-
tional, the relationships among software concerns and
their keywords, the decomposition of concerns into sub-
concerns, among others; (ii) their work does not present
neither a set of activities/guidelines that helps software
engineers on how to use the proposed ontology in-
stances nor a computational tool for automating their
proposal; and (iii) this work does not present any type of
an experimental study on their proposal.

Ontology for Concerns (O4C)
Software concerns are the focus of the AORE area;
hence, it is important to understand (i) which are the
main concepts related to this domain, (ii) which are the
relationships among these concepts, among others.
Providing answers to these questions may minimize the
negative impacts of the issue discussed in the introduc-
tion of this paper. A well-defined understanding of the
software concern domain may also allow the researchers
and practitioners to build AORE methods, techniques,
and tools that may be widely used, since they are based
on shared definitions of this domain.
To do this, a reference ontology for the software con-

cern domain, called O4C (Ontology for Concerns) was
proposed. Reference ontology is a special type of con-
ceptual model, which aims to make clear and precise the
description of a domain with the purpose of communi-
cation, learning, and problem solving [28]. The develop-
ment of O4C considered (i) the existing works regarding
AORE, gathered by the authors of this paper from a
systematic mapping of literature [9, 10] and (ii) the
expertise of two researchers that have worked with
AORE for 12 years. Moreover, the O4C ontology was de-
veloped in accordance with (i) the approach for ontology
development, called SABiO (Systematic Approach for
Building Ontologies) [28], and (ii) an UML profile for
ontology modeling, called OntoUML [29]. A preliminary
version of this ontology was proposed in [6, 7, 11]; in
this paper, the final version of O4C is formalized and de-
scribed according to SABiO and OntoUML approaches.
The graphical model of O4C ontology is presented in

Fig. 1, and its concepts and relationships are commented
in this section.

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 3 of 25

Concern, FunctionalConcern, and NonFunctionalConcern
The “Concern” concept represents individuals that meet
the properties of a software concern (these properties
are discussed in this section). Two subtypes of this con-
cept are “FunctionalConcern” and “NonFunctionalCon-
cern.” “FunctionalConcern” regards to concerns that are
related to the functional features of the software, such as
“Payment” and “Order Management.” The “NonFunctio-
nalConcern” concept, in turn, corresponds to concerns
related to then non-functional features of the software,
such as “Security,” “Persistence,” and “Logging.”
The “Concern” class is stereotyped with «Kind» and their

subclasses have the «Subkind» stereotype. In accordance to
OntoUML [29], these stereotypes correspond to rigid con-
cepts, which means that instances of these concepts will
continue to be so as long as they exist. For example, “Per-
son” is a rigid concept, because if “John” is an instance of
“Person,” then it always will be it, as long as it exists. The
difference between the “Kind” and “Subkind” concepts is
that the first one provides the principle of identity to its in-
stances and the second one inherits this principle of another
concept. For example, considering the fingerprint as the
principle of identity provided by the “Person” concept to its
instances, then “Man” and “Woman” are “Subkinds” con-
cepts, since they inherit the identity principle of “Person.”
The “Concern,” “FunctionalConcern,” and “NonFunctio-

nalConcern” concepts are well-known in the AORE com-
munity and are reported in several studies [2–4, 12–18,
22, 23].

Keyword and Source
The “Keyword” concept appears in some AORE ap-
proaches [2, 22, 23]; however, none of the analyzed

works presented the idea of storing these keywords in
order to use them in further projects. In the O4C ontol-
ogy, this concept was created aiming to store the key-
words commonly used to identify a particular software
concern. For example, “save,” “update,” and “persist”
may be used to provide indications of the existence of
the “Persistence” concern.
The idea represented by the “Source” class, its “st”

attribute, and the “SourceType” enumerated class (Fig. 1)
regards to the possible sources from which the descrip-
tion of a software concern may be extracted. A software
concern may be related to several sources and they are
important in the concern identification and classification
activities, because they can help the software engineer to
identify who or what needs to be consulted when a par-
ticular concern is not being correctly identified.
According to Agostinho et al. [12], Brito and Moreira

[16], and Whittle and Araújo [18], the possible source
types are (i) stakeholders, for example, a project man-
ager, an expert in security, among others; (ii) NFR cata-
logs, such as those proposed by Boehm and In [19],
Chung and Leite [20], Cysneiro [21], among others; or
(iii) business documents, such as a security protocol of a
company.

Contribution, Dependency, and Composition
The possible types of software concern relationships are
represented by the “Contribution,” “Dependency,” and
“Composition” concepts (sub-concepts of “Relation-
ship”). The classes that represent these concepts were
stereotyped with «Relator». In OntoUML, “Relators” are
mediator elements, i.e., elements that mediate the rela-
tionship among other ones, making it real. In Fig. 1, it is

Fig. 1 Ontology for Concerns (O4C)

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 4 of 25

possible to notice a relationship, called “isRelatedTo,”
stereotyped with «Material». “Material” relationships are
applied to relations that depend on a mediator element
to exist. For example, the “married to” relationship is
only valid while a “marriage” (relator) exists. In the same
way, the “isRelatedTo” relationship is only valid while a
“Relationship” (relator) between two concerns exists.
It is also important to highlight the two relationships

stereotyped with «Mediation», called “source” and “tar-
get.” According to OntoUML, “Mediation” is a type of
relationship that binds the “Relator” to the elements
whose relationship is mediated by it. In this case, these
relationships describe what are the source and the target
of a concern relationship.
The type of relationship addressed by the concept

“Composition” describes the idea of decomposition of a
concern into sub-concerns. This concept is important,
because a given concern may be too wide and reducing
its granularity may facilitate the reasoning of the soft-
ware engineers on which concerns are really present in
the software and which are the more appropriated strat-
egies for modularizing them. For instance, the “Security”
concern may be decomposed into “Authorization,” “En-
cryption,” among others. There may be the “Authorization”
sub-concern in a specific software but not the “Encryption”
sub-concern.
The “Dependency” concept defines a dependency rela-

tionship between two concerns. This means if an “A” con-
cern (source) depends on “B” (target) and “A” appears in
the software requirements document, then “B” needs to
be there as well. This type of information is important,
because (i) it allows the software engineer to explore other
software concerns, before being unrecognized by him/her,
i.e., by saying that “A” depends on “B,” he/she should also
look for keywords related to “B” concern in the require-
ments document and (ii) it allows the software engineers
to verify inconsistencies in the requirements document,
i.e., if a concern “A” depends on “B” and “B” is not
described in the software requirements, then the require-
ments document may be inconsistent.
The “Contribution” concept represents a mutual in-

fluence between different concerns. A contribution
can be “Negative” or “Positive,” as defined by the
“ContributionType” enumeration and the “ct” attri-
bute of the “Contribution” class. An example of con-
tribution may be found among the “Concurrency,”
“Performance,” and “Cost” concerns: the implementa-
tion of concurrency mechanisms in the software may
positively contribute to the software performance. On
the other hand, this may negatively contribute to the
project cost. This type of relationship may be used as
a guide to help software engineers to deal with impli-
cit software concerns, as presented in later sections
of this paper.

The “Contribution,” “Composition,” and “Dependency”
concepts are quite divergently presented in the related
works. The idea represented by the “Contribution” con-
cept is reported in the approaches proposed by Moreira
et al. [17] and Soeiro et al. [3]. However, in both
approaches, the usage of this concept is limited to the
project under analysis and there are no guidelines clearly
indicated by the authors about how to reuse this know-
ledge in other projects. The approach proposed by
Moreira et al. [17] also provides a XML file (template)
responsible for specifying the relationships among
different concerns; however, this template does not
differentiate the types of possible relationships, such as
dependency, composition, among others. The “Depend-
ency” concept was found only in the approach proposed
by Soeiro et al. [3] and the “Composition” concept was
not found in the analyzed works.
In all previous discussed cases, the cited approaches do

not report how the information on the concern relation-
ships may be useful in the process of concern identifica-
tion and classification. Hence, the adequate application of
this information is highly dependent on software engi-
neers’ expertise.

ObasCId approach
ObasCId is an ontologically based AORE approach that
proposes a set of activities and heuristics for concern
identification and classification from software require-
ments. The “ontologically based” expression refers to the
fact that ObasCId takes the concepts of the O4C ontol-
ogy into account in its conception. The ObasCId
approach consists of the following phases: (i) preparing
the catalog of software concerns, (ii) preparing the re-
quirements document, and (iii) performing the concern
identification and classification.

Preparing the catalog of software concerns
This phase has the responsibility of obtaining, preparing,
or updating a catalog of software concerns to be used in
other phases of ObasCId approach. By using the con-
cepts defined in the O4C ontology, it is possible to store
the existing knowledge about specific types of concerns,
generating catalogs of software concerns. For example,
O4C ontology describes the “NonFunctionalConcern”
concept; hence, in an O4C-based catalog, there will be
instances of non-functional concerns, such as “Security,”
“Persistence,” “Logging,” among others.
Catalogs of software concerns may be generated from

(i) NFR catalogs, such as those proposed by Boehm and
In [19], Chung and Leite [20], and Cysneiro [21]; (ii) the
knowledge of experts on AORE; (iii) business docu-
ments, such as security and privacy protocols, pattern
language, among others; or (iii) historical data of previ-
ous projects.

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 5 of 25

Figures 2 and 3 present two examples of O4C-based
catalogs, represented by UML class diagrams. In both
diagrams, the stereotypes refer to O4C concepts and the
classes represent instances of these concepts.
Figure 2 shows a part of the catalog generated from

historical data of the software Health Watcher [30–32].
Health Watcher is an information system that aims to
store complaints regarding health area. The concerns of
this software were identified and classified by experts in
AORE and health domains.
The proposed catalog presents seven non-functional

concerns, related to 28 keywords, and three functional
concerns, related to six keywords. In addition, there are
two contribution relationships (a positive contribution
between “Concurrency” and “Performance” and a
negative contribution between “Security” and “Perform-
ance”) and two composition relationships, between
“Complaint” and “AnimalComplaint” and “Complaint”
and “FoodComplaint”.

The catalog of Fig. 3, in turn, was built from the con-
cepts represented in a pattern language, called business re-
source management [33]. This pattern language was
designed to assist the development of information systems
in the business resource management domain. This cata-
log has seven functional concerns, 17 keywords, and five
relationships: (i) three compositions between the “Transac-
tion” and “Rental,” “Transaction” and “Commercialization,”
and “Transaction” and “Reservation” software concerns and
(ii) two dependencies between the “Payment” and “Transac-
tion” and “Delivery” and “Payment” concerns.
By combining the non-functional concerns of the cata-

log presented in Fig. 2 with all concerns of the catalog of
Fig. 3, it is possible to generate a broader catalog that
may be used to identify both functional and non-
functional concerns of information systems related to
business resource management domain. The “Perform-
ing the concern identification and classification” section
of this paper presents how to use a software concern

Fig. 2 Part of a catalog generated from historical data

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 6 of 25

catalog, such as those previously presented, in order to
identify and classify software concerns from require-
ments documents. It is important to state that the
process of concern identification and classification may
implicate in changes on the catalog of software con-
cerns. Hence, this phase, “preparing the catalog of soft-
ware concerns”, must be faced as a part of an iterative
and incremental process of AORE.

Preparing the requirements document
This phase allows the software engineers to obtain/pre-
pare/update the requirements document on which the
concern identification and classification will occur. The
template used to represent the software requirements in
the ObasCId approach is based on a list of software re-
quirements that contains, for each requirement, (i) the
requirement identifier, (ii) the requirement type (func-
tional or non-functional), (iii) a plain-text description,
and (iv) a list of other requirements on which it depends.
All this information is needed to improve the quality of
the concern identification and classification results, as
may be explained later in this paper.
Table 1 illustrates a part of the requirements docu-

ment of Health Watcher, according to the model

described above. In this example, there are two non-
functional requirements (“NFR-01” and “NFR-02”) and
one functional requirement (“FR-01”). In addition, the
functional requirement depends on the other two re-
quirements. The full requirements document can be
found in Health Watcher [30–32].

Performing the concern identification and classification
This phase aims to identify and classify the existing con-
cerns of the software from the catalog and the require-
ments document prepared in the previous phases. This
phase is divided into (Fig. 4) (i) identifying concerns
from keywords, (ii) identifying concerns from the inter-
dependence among software requirements, (iii) specify-
ing the main concerns, (iv) verifying the results of
concern identification, and (v) classifying concerns.

Identifying concerns from keywords
This activity aims to identify the software concerns from
the software requirements document. This is done by
searching for the keywords of each cataloged concern in
the description of the software requirements. If any key-
word of a particular concern is in the description of a
software requirement, it is stated that this concern af-
fects (is related) to the requirement in analysis.
As may be seen in Fig. 4, this activity takes the catalog

of software concerns and the requirements document as
inputs and generates a list of requirements and related
concerns as an output, i.e., a list in which, for each re-
quirement, there is a set of concerns identified for it. By
taking the requirements of Table 1 and the catalog of Fig. 2
as inputs, after executing this activity, the list of require-
ments and related concerns presented in Table 2 is gener-
ated. The list of requirements and related concerns will be
increased with new types of concerns in the next activities
of the approach. This is possible due to the other types of
resources and mechanisms proposed by ObasCId, such as

Fig. 3 Part of a catalog generated from a pattern language

Table 1 Part of the Health Watcher requirements document

Identifier Type Requirement description Dependencies

FR-01 FR It allows the state of a complaint to
be updated. The complaint must be
registered and have the OPENED state.

NFR-01,
NFR-02

NFR-01 NFR The system should have an easy to use
GUI, as any person who has access to
the Internet should be able to use the
system. The system should have an
online HELP to be consulted by any
person that uses it.

–

NFR-02 NFR The response time must not exceed
5 s.

–

FR functional requirement, NFR non-functional requirement

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 7 of 25

the identification of concerns based on the interdepend-
ence among software requirements.

Identifying concerns from the interdependence among
software requirements
In this activity, the software engineer has the responsi-
bility of identifying other software concerns, which could
not be identified only using keywords. To do this, the
dependency relationships among software requirements
and the list of requirements and related concerns are
used. As results, the list of requirements and related
concerns may be updated, including new concerns, if
needed.
To exemplify a situation for which this activity is rele-

vant, consider the requirements presented in Table 1. It
may be noticed that the requirement “FR-01” depends
on the requirement “NFR-01,” which was written aiming
to specify the performance behavior of the software. This
dependency exists because in the description of the re-
quirement, “NFR-01” is clear that the performance attri-
bute must be applied to other functions of the software.

Once the requirement “FR-01” depends on the require-
ment “NFR-01”, related to “Performance” concern, then
we may assume that “FR-01” is related to this concern
too.
After executing this activity, the list of requirements

and related concerns is updated, as can be seen in
Table 3. The requirement “FR-01” now is related to “Per-
formance” and “Usability” concerns. The reasons for the
inclusion of “Usability” are similar to those presented for
“Performance” concern. The “Main Concern” column
will be explained in the “Specifying the main concerns”
section of this paper.

Specifying the main concerns
In this activity, the software engineer must inform what
is the main concern of each software requirement. A
main concern represents the main purpose for which the
requirement was written. The result of this activity is the
updating of the list of requirements and related con-
cerns; the specification of the main concerns is import-
ant for the concern classification activity, as will be
presented in the next sections.
In the example of Table 3, the requirements “NFR-01”

and “NFR-02” are related to only one concern, which is
their main concern. The requirement “FR-01,” in turn, is
related to four distinct software concerns: “Persistence,”
“Complaint,” “Performance,” and “Usability”. By consid-
ering the description of this requirement, it is possible
to notice that it was written in order to specify the fea-
ture related to complaint updates. Hence, “Complaint”
must be considered the main concern of this
requirement.
If there is a requirement for which it is difficult to de-

cide which is its main concern, the software engineer
may consider rewriting this requirement. It is also import-
ant to state that having “a requirement with only one

Fig. 4 Overview of the “Performing the concern identification and classification” phase

Table 2 List of requirements and related concerns

Requirement FR-01 Concerns

It allows the state of a complaint to be updated.
The complaint must be registered and have the
OPENED state.

Persistence

Complaint

Requirement NFR-01 Concerns

The system should have an easy to use GUI, as
any person who has access to the internet
should be able to use the system. The system
should have an on-line HELP to be consulted
by any person that uses it.

Usability

Requirement NFR-02 Concerns

The response time must not exceed 5 s. Performance

The keywords stored in the catalog that match the requirement descriptions
are italicized

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 8 of 25

concern” does not mean that this concern is the main
concern of the requirement, since the identified concern
may be a false positive. Hence, it is important that the
software engineer checks the requirements with only one
concern, before deciding about its main concern.

Verifying the results of concern identification
In this activity, the software engineer has the responsi-
bility of verifying the list of requirements and related
concerns, aiming to find potential problems with the
concern identification process.
This activity takes the list of requirements and related

concerns and the catalog of software concerns as inputs
and may generate a list of occurrences regarding concern
identification process. To produce this list, the software
engineer must check a set of four heuristics, as presented
in Table 4. This table presents the description of each
heuristic, as well as the reason for the existence of it.
When a heuristic is not satisfied, an occurrence is gen-

erated and then it must be analyzed by the software en-
gineer. For instance, one of the proposed heuristics
states that each software requirement must be related to
its main concern. If a particular requirement “r” is not
addressed by any software concern, an occurrence will
be generated for this requirement. It is important to no-
tice that not all occurrences represent an error. Hence,
the software engineer must check the need to resolve or
not each generated occurrence.
ObasCId approach also provides, for each heuristic, a

set of suggestions for solving the occurrence generated
by this heuristic. The goal of these suggestions is to let
the software engineers aim to make more appropriated
decisions on how to deal with these occurrences. Due to
space limitation, only the suggestions for heuristic 3 are
presented below. The suggestions of the remaining heu-
ristics may be found in [24]:

� Check the spelling of the keywords related to “B”
concern (and its sub-concerns), as well as those
related to the software requirements;

� Check the possibility of adding new keywords to the
“B” concern (or its sub-concerns); or

� Check the possibility of rewriting the description of
some software requirements.

By performing this activity on the list of requirements
and related concerns presented in Table 3, taking as in-
put the catalog of Fig. 2, it will generate an occurrence
derived from heuristic 2, since the “Concurrency” con-
cern contributes positively to “Performance” (according
to the catalog of software concerns), but “Concurrency”

Table 3 List of requirements and related concerns updated

Requirement FR-01 Concerns Main concern

It allows the state of a complaint to be
updated. The complaint must be
registered and have the OPENED state.

Persistence

Complaint X

Usability

Performance

Requirement NFR-01 Concerns Main concern

The system should have an easy to use
GUI, as any person who has access to
the Internet should be able to use the
system. The system should have an
on-line HELP to be consulted by any
person that uses it.

Usability X

Requirement NFR-02 Concerns Main concern

The response time must not exceed 5 s. Performance X

Table 4 Heuristics for the verification of the concern
identification process

Heuristic 1

Description: each software requirement is related to its main concern.

Justification: each software requirement must be related to a main
concern, because each requirement should be written with one
purpose.

Heuristic 2

Description: if there is a “positive contribution” relationship “rel” that
binds the concerns “A” (source) and “B” (target) and “B” was found in
the software requirements, then “A” or any of its sub-concerns was
identified too.

Justification: the fact that “A” contributes positively to “B” provides evidences
that if “B” was identified, “A” (or any of its sub-concerns) should also be.
However, this is not an error. More than one concern can contribute
positively to “B” and the software engineer could choose just one option.
For example, “Performance” and “Standardization” contribute positively to
“Usability,” but only one of them may be addressed in the software.
However, it is necessary to generate a warning occurrence, since it may
indicate concerns that the software engineer had not previously
considered. This is especially important in cases where implicit concerns
in the software exist.

Heuristic 3

Description: if there is a “dependency” relationship “rel” that binds the
concerns “A” (source) and “B” (target) and “A” was found in the software
requirements, then “B” or any of its sub-concerns was identified too.

Justification: the fact that “A” depends on “B” means that for that “A”
exists, “B” (or any of its sub-concerns) must exist too. For example, the
catalog of Fig. 3 presents a dependency relationship between “Payment”

and “Transaction.” Then, for that “Payment” exists, “Transaction” must
exist too.

Heuristic 4

Description: if a non-functional concern “A” was found in the software
requirements, then “A” (or any of its sub-concerns) is related to one or
more functional requirements.

Justification: it is well known in the scientific community that non-functional
concerns commonly presents a crosscutting behavior, such as “Logging,”
“Persistence,” “Distribution,” “Security,” among others [8]. Thus, at the end
of the concern identification process, if there are non-functional concerns
identified in the software that do not affect any functional requirements,
the crosscutting behavior of this concern is being omitted. This is not an
error occurrence, but is a warning that needs to be checked by the
software engineer.

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 9 of 25

was not identified in the software requirements. This
fact indicates that “Concurrency” may be a candidate of
an implicit concern and the software engineers must dis-
cuss about the relevance of this concern in the software
under analysis. In this case, we will just ignore this
occurrence.
According to Fig. 4, if needed, the software engineers

may go back to the initial phases of the approach, such
as “preparing the catalog of software concerns” or “pre-
paring the requirements document,” aiming to solve the
occurrences produced by this activity.

Classifying concerns
This activity uses the list of requirements and related
concerns to build a crosscutting matrix that represents
the crosscutting relationships among different software
concerns. A crosscutting matrix is a “Concern vs. Con-
cern” matrix and, when a cell “[C1, C2]” is highlighted,
this indicates that “C2” affects (cut across) “C1.”
In this activity, we can assume that each software

requirement has a main concern “MC”(defined in the
“specify the main concerns” activity—“Specifying the
main concerns” section) and a set of zero or more
related concerns {“C1,” “C2,” … “Cn”}. In the ObasCId
approach, we consider that all concerns “C1,” “C2,” …
“Cn” cut across the main concern “MC.” Hence, all cells
“[MC, C1],” “[MC, C2],” … “[MC, Cn]” must be
highlighted. If a requirement is related only to its main
concern, no cell of the row “MC” will be highlighted.
From the list of requirements and related concerns of
Table 3, it is possible to generate the crosscutting matrix
presented in Table 5.
Based on Table 3, it is possible to notice that the “FR-

01” requirement, whose main concern is “Complaint,” is
related to “Persistence,” “Usability,” and “Performance”
concerns. Hence, the cells “[Complaint, Persistence],”
“[Complaint, Usability],” and “[Complaint, Perform-
ance]” of Table 5 were marked with an “X” symbol.
By keeping the focus on the columns of a crosscutting

matrix, the software engineer will have an overview on
which concerns cut across the behavior of other con-
cerns. The more a concern “A” affects other software
concerns, the higher is the likelihood of “A” to be a
crosscutting concern. To know which requirements are
affected by a specific concern, the list of requirements
and related concerns (Table 3) may be used.

In an ideal scenario, each concern should only affect
requirements for which it is its main concern. In other
words, the column related to this concern should con-
tain only empty cells. Hence, in the ObasCId approach,
all columns with at least an “X” symbol regard to cross-
cutting concerns candidates. In the case of Table5, all
concerns, except the “Complaint” (column 2), are con-
sidered crosscutting concern candidates.
The crosscutting matrix proposed in this paper is simi-

lar to that presented in the approach proposed by Rashid
et al. [2]. However, the matrix proposed by Rashid et al.
is a “Non-functional Concerns vs. Viewpoints” matrix.
Hence, only the influence of non-functional concerns
over functional concerns (called viewpoints in the au-
thors’ proposal) may be studied. The advantage of the
crosscutting matrix proposed in this paper is that the
crosscutting behavior existing among functional con-
cerns on other software concerns can also be analyzed.
This is important, because it is well-known that func-
tional concerns also can cut across other software con-
cerns [17].
Based on the results of the concern identification and

classification process, the software engineers may back
to the initial phases of the approach, aiming to include/
remove/update elements of the catalog or of the require-
ments document that will improve the quality of these
results.

ObasCId-Tool
Baniassad and Clarke [22] argue that the intuition or
even the domain knowledge of a software engineer is
not sufficiently enough to identify potential crosscutting
concerns in medium and large software products within
a reasonable period of time. Sampaio et al. [8] corrobor-
ate this opinion, reinforcing the importance of the exist-
ence of computational tools to improve the effectiveness
of AORE approaches. In this context, a computational
tool that automates several activities and artifacts of the
ObasCId approach, called ObasCId-Tool, was developed.

ObasCId-Tool overview
ObasCId-Tool is a responsive web-based tool, freely
available at http://obascidtool-obascidtool.1d35.starter-
us-east-1.openshiftapps.com/. It was developed based on
the following technologies: (i) the JavaServer Faces (JSF)
specification and the framework Mojarra (https://java-
serverfaces.java.net/) that implements the JSF specifica-
tion; (ii) a CSS framework for development of responsive
web-based applications, called Bootstrap (http://getboot-
strap.com/); (iii) the MySQL database management sys-
tem; and (iv) the Apache Lucene search engine (https://
lucene.apache.org/core/), used for the implementation of
the concern identification algorithms.

Table 5 Crosscutting matrix

↓ Main conc./concerns → 1: Persist. 2: Compl. 3: Usab. 4: Perfor.

1: Persistence

2: Complaint X X X

3: Usability

4: Performance

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 10 of 25

http://obascidtool-obascidtool.1d35.starter-us-east-1.openshiftapps.com/
http://obascidtool-obascidtool.1d35.starter-us-east-1.openshiftapps.com/
https://javaserverfaces.java.net
https://javaserverfaces.java.net
http://getbootstrap.com
http://getbootstrap.com
https://lucene.apache.org/core
https://lucene.apache.org/core

It is also important to highlight that, unlike EA-Miner,
ObasCId-Tool is a language-independent concern
identification tool, that is, the researcher may build cata-
logs and requirements documents, as well as perform the
concern identification and classification in the language of
his/her interest. In addition, ObasCId-Tool implements
internationalization (i18n) resources and its graphical user
interface is available in English and Brazilian Portuguese.
Figure 5 presents the architecture of the ObasCId-

Tool, highlighting its main components, as well as the
dependencies existing among them. In this figure, the
rectangular boxes specify the tool’s modules and the dot-
ted arrows indicate the dependencies among these mod-
ules. A cylinder represents a data repository maintained/
used by the tool. ObasCId-Tool consists of five modules:
(i) Repositories Query Module; (ii) Researchers Manage-
ment Module; (iii) Concerns Catalogs Management
Module; (iv) Requirements Documents Management
Module; and (v) Concern Identification and Classifica-
tion Module.
In order to use the modules (iii), (iv), and (v), the

researcher must be signed up in the tool. Hence, these
modules depend, directly or indirectly, on the “Re-
searchers Management Module.” A registered researcher
may create and maintain catalogs of software concerns
and requirements documents, using the “Concerns Cata-
logs Management” and the “Requirements Document
Management” modules.
The “Repositories Query Module” may be used by any

user (registered or not) interested in the ObasCId-Tool.
This module provides options for querying and viewing
public catalogs and requirements documents stored in
the tool. In order to identify and classify the software
concerns, the researcher must have at least one catalog
of software concerns and a requirements document

stored in his/her account. Hence, the “Concern Identifi-
cation and Classification Module” depends on the “Con-
cerns Catalogs Management” and the “Requirements
Document Management” modules. There is no explicit
dependency between these modules, so the researcher
may freely manage their requirements documents and
catalogs of software concerns, in his/her own way.
Due to space limitations, this paper only presents
more details about the “Concern Identification and
Classification,” “Concerns Catalogs Management,” and
“Requirements Documents Management” modules. In-
formation about the other modules may be found at
Parreira Júnior [24].

Concerns catalog management module
This module allows the researcher to build and maintain
catalogs of software concerns. It represents a wizard for
instantiation of the concepts and relationships defined in
O4C ontology (“Ontology for Concerns (O4C)” section).
To register a catalog of software concerns, the re-
searcher must provide a unique name for this catalog
and its type of license, which may be “Private” or “Pub-
lic.” Optionally, the user may inform a description of
his/her catalog. A “Public” catalog allows anyone to
query and view its data. If this person was a registered
user, he/she may also import this catalog into his/her
personal account. The “Private” type of license restricts
the usage of the catalog to the context of its owner’s ac-
count. Hence, it may not be queried or imported by the
other users of the tool. This is useful when the re-
searcher is preparing his/her catalog and does not want
to make it available until he/she finalizes it. The concept
of public/private license is applied to the requirements
documents as well.

Management of software concerns
A concern catalog may have several software concerns.
To register a concern, the researcher must inform the
concern name that must be unique in the context of the
current catalog and the type of this concern, which may
be “Functional” or “Non-functional.” As optional infor-
mation, the researcher may provide a description of the
concern.
Another important resource of a software concern is

its keywords. Figure 6 presents the screen used for regis-
tering the keywords of a software concern. In order to
register a new keyword, the researcher must inform its
description that must be unique in the context of the
current concern. Keywords with more than one word,
such as “response time” and “access control,” are allowed
and they should be enclosed in double quotation marks.
In the case of keywords, the description represents the
keyword itself. The term “description” was used because

Fig. 5 ObasCId-Tool architecture

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 11 of 25

a keyword may be composed by a set of terms separated
by logic operators, as explained bellow.
In addition, the description of a keyword may not be-

long to the researcher’s list of stopwords. A pre-defined
list of stopwords for English and Brazilian Portuguese
languages, obtained from well-known public stopword
repositories [34], is automatically registered for each
new researcher. If the researcher is sure about the inclu-
sion of a keyword that appears in his/her list of stop-
words, he/she may update his/her list of stopwords.
Stopwords are words that have no intrinsic meaning,
and hence, they are not suitable for identification of spe-
cific concepts [35], such as software concerns. The usage
of stopword lists in the ObasCId-Tool is useful because
(i) it serves as a guide for the registration of more appro-
priated keywords and (ii) it may avoid the incidence of
several false positives during concern identification
process.
The concept of keywords is an important resource for

the identification of concerns from the requirements
document. Therefore, ObasCId-Tool provides three
mechanisms for creating keywords that may contribute
more effectively to this activity. These mechanisms are
(i) search with wildcards, (ii) search for similarity, and
(iii) search with logical operators. All these mechanisms
are support by Apache Lucene tool.
Figure 6 presents a description on how to use logical

operators for building keywords. Regarding wildcards,
the following wildcards may be used in a keyword:
“?”—keywords that match with until one character

replacement. For instance, the keywords “test” and “text”
are captured by the expression “te?t”; “*”—keywords that
contain zero or more characters at the position where
the wildcard is. For instance, the keywords “tests” and
“tester” are captured by the expression “test*.” These
wildcards may be used in any position of a keyword, ex-
cept in its beginning.
Similar keywords may be found from a search for

similarity. This type of search uses the well-known
“Levenshtein Distance” algorithm that returns a value
between 0 and 1, where the more the value is close to 1
the more similar are the compared keywords. To use
this resource, the researcher must append the “~”
symbol at the end of the keyword of interest, along with
the threshold required to accept another keyword as
similar to its. For instance, “roam~0.5” will capture key-
words with a “Levenshtein Distance” equal or higher
than 0.5, such as “roma” keyword.

Management of relationships among software concerns
Relationships among different concerns in a catalog may
be created and maintained in the ObasCId-Tool. As ex-
plained in the “Ontology for Concerns (O4C)” section,
the possible types of relationships are “Composition,”
“Dependency,” “Negative Contribution,” and “Positive
Contribution.” To register a new relationship, the follow-
ing information must be provided (Fig. 7): (i) the source
concern of the relationship, (ii) the target concern of the
relationship, and (iii) the type of the relationship. The
meaning of the target and source concerns depends on

Fig. 6 Keywords in ObasCId-Tool

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 12 of 25

the type of the relationship. For example, in a depend-
ency relationship, the source concern depends on the
target concern. In the case of a negative contribution,
the source concern negatively contributes to the target
concern. To make clear this understanding, ObasCId-
Tool presents the meaning of each relationship type
along with a practical example of its usage, as can be
seen at the bottom of Fig. 7.

Requirements documents management module
The focus of the ObasCId-Tool is identifying and classi-
fying concerns from software requirements. Hence, an
important feature of this tool is the management of
requirements documents. As the process of managing
requirements documents are quite similar to the process
of managing catalogs of software concerns, we will not
present it in this paper. More details about this may be
found at Parreira Júnior [24].

Concern identification and classification module
This module implements the five activities proposed for
the concern identification and classification phase of the
ObasCId approach. To implement these activities, the
concept of “Identification Unit” was proposed. Each
identification unit has (i) a name that must be unique,
(ii) a requirements document on which the concerns will
be identified, and (iii) a catalog of software concerns that
will be used in the process of concern identification and
classification.
Figure 8 illustrates the results of the execution of an

identification unit, taking into consideration the require-
ments document present in Table 1, as well as the cata-
log of software concerns of Fig. 2.

Figure 8a presents a list of occurrences generated after
performing the concern identification activities. Figure 8b
presents the name of the requirements document on
which the concerns were identified and a summary of
the identification process, highlighting (i) the list of con-
cerns of the used catalog, (ii) the list of identified con-
cerns, (iii) the amount of software requirements, (iv) the
amount of requirements affected by software concerns,
among others. Figure 8c highlights the “requirements fil-
ter” functionality that will be explained later in this text.
Finally, Fig. 8d illustrates the list of software require-
ments along with the concerns that affect them (the
main concern of each requirement is highlighted with
the string “main concern”). Besides the name of the con-
cern, the part of the description of the requirement that
allowed the identification of this concern is presented.
To obtain these results, each software requirement

under analysis was indexed as a document in Apache
Lucene tool and, for each keyword in the catalog of soft-
ware concerns, a search was performed using this tool
as well. The results of these searches are gathered in the
ObasCId-Tool data structures to be further presented to
the researchers.
Considering that the identification process is complete,

the researcher may verify the crosscutting behavior of
the identified concerns. To do this, he/she may access
the “Crosscutting Matrix” generated by ObasCId-Tool.
Figure 9 displays the crosscutting matrix generated with
the data of the previous example.
If a researcher wants to know what are the software

requirements affected by a specific concern, he/she
must return to the list of requirements and related
concerns (Fig. 8) and apply the “requirements filter.”
For example, in order to know what are the

Fig. 7 Concern relationships in ObasCId-Tool

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 13 of 25

requirements affected by the “Persistence” concern,
when the “Complaint” is the main concern, the re-
searcher must initially filter the requirements by
choosing “Complaint” as the main concern and “Per-
sistence” as the crosscutting concern, as may be seen

in Fig. 10a. Hence, only the requirements compatible
with this filter will be presented (Fig. 10b.
The researcher may also inform either the main or the

crosscutting concern in a filter. This allows the re-
searcher to find out (i) what are the requirements

Fig. 8 Results of the concern identification process in ObasCId-Tool

Fig. 9 Crosscutting matrix in ObasCId-Tool

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 14 of 25

affected by a specific crosscutting concern or (ii) what
are the requirements of a particular main concern.

Quasi-experimental study I
For the assessment of the ObasCId approach, the follow-
ing GQM (goal, question, metric)-based goal [36] was
proposed to analyze the usage of the ObasCId approach,
in order to evaluate, with respect to its effectiveness (re-
call and precision) and efficiency (time of execution),
from the point of view of software engineers, in the con-
text of a group of undergraduates and graduates in
Computer Science.
Aiming to achieve this goal, a group of participants

was asked to identify and classify the concerns of two
software using as support the ObasCId and Theme/Doc
approaches [22, 23]. It is important to highlight that all
resources used in the quasi-experimental studies
presented in this paper are available at Parreira Júnior
[24]—an English version of these resources may be
found in https://goo.gl/cs13QZ. These studies are classi-
fied as quasi-experimental ones due to the non-
randomization of the participant selection. Actually, the
participants of these studies were selected through a
non-probability for convenience sampling.

Theme/Doc overview
The Theme/Doc [22, 23] approach is based on three
main activities: “Identifying key-actions,” “Building an
action-view,” and “Classifying actions as base or cross-
cutting ones.” Identifying concerns with Theme/Doc re-
quires that the software engineer provides (i) a list of
key-actions, i.e., verbs identified from the software re-
quirements (“identifying key-actions” activity); and (ii) a
set of software requirements. Based on these inputs, the
software engineer performs an analysis of the require-
ments document and generates an action-view artifact
(“building an action-view” activity). An action-view rep-
resents the relationships among requirements and key-
actions.
The classification of these actions as base or crosscut-

ting ones may be performed by mean of the “classifying
actions as base or crosscutting ones” activity; it requires
as inputs the action-view and the set of software

requirements. The software engineer initially must
examine the requirements that refer to more than one
key-action and determine what is the primary action
(the more important action) of these requirements. Once
the primary action of a requirement is defined, we say
that all other actions of it are affected by the behavior of
the primary action. The idea is to separate and isolate
actions and requirements into two groups: (i) the “base”
group that is self-contained, i.e., the requirements of this
group do not refer to actions of the other group; and (ii)
the “crosscutting” group, whose requirements can refer
to actions of the base group.
The primary actions and the process of action classifi-

cation are similar to the concepts of main concern and
concern classification activity in ObasCId approach.
However, ObasCId takes into consideration the relation-
ships between requirements and concerns to improve
the effectiveness the concern identification and classifi-
cation process. Furthermore, ObasCId provides re-
sources to represent and reuse the knowledge about
concern domain in other projects, such as concern cata-
logs, heuristics, among others.
Theme/Doc was chosen to be compared to ObasCId

because (i) it is based on the usage of keywords; (ii) un-
like other approaches [4], Theme/Doc does not depend
on computational tools for its execution; (iii) it is simple
and easy to use; (iv) the authors of this paper had some
previous experience on the usage of Theme/Doc; and (v)
it is a robust approach that has been evaluated in recent
experimental studies [5].

Planning of the quasi-experimental study
The planning of this quasi-experimental study was
defined according to Wohlin’s proposal [37] and involves
the following steps: (i) context selection, (ii) hypotheses
formulation, (iii) variable selection, (iv) selection of the
participants, and (v) design and execution of the quasi-
experimental study.

a) Context selection

This quasi-experimental study was conducted with 24
undergraduate and graduate students in Computer

Fig. 10 “Requirements filter” in ObasCId-Tool

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 15 of 25

https://goo.gl/cs13QZ

Science from three federal universities from Brazil (UFG,
UFLA, and UFSCar). The requirements documents of
Health Watcher [30–32] and of an information system for
DVD rental (LocaDVD—[38]) were used in this study. As
already stated in this paper, Health Watcher is a well-
known application in the AORE area and was chosen
because it has a suitable requirements document for con-
cern identification and classification. LocaDVD, in turn,
was chosen because it is a business resource management
application, suitable to be used with catalogs for software
concerns created from the pattern language proposed by
Braga et al. [33], such as the catalog of Fig. 3.

b) Hypotheses formulation

An important part of the hypotheses formulation step
is the specification of the metrics that will be used in the
quasi-experimental study. Based on these metrics, the
researcher may establish hypotheses and draw conclu-
sions from the results of the experiment. In this work,
three metrics were used: (i) Recall (Re)—the proportion
of the amount of correctly identified and classified
concerns on the amount of existing concerns; (ii)
Precision (Pr)—the proportion of the amount of cor-
rectly identified and classified concerns on the amount
of identified concern; and (iii) Execution Time (T)—time
(in minutes) spent for performing the activities proposed
in the quasi-experimental study.
Based on these metrics, six hypotheses were devel-

oped, two related to recall, two for the precision, and
two for the execution time (Table 6).

c) Variable and participant selection

Independent variables are those manipulated and con-
trolled during the quasi-experimental study. In this
study, the two independent variables are (i) the approach

for concern identification and classification (ObasCId
and Theme/Doc) and (ii) the software systems used in
the study (Health Watcher and LocaDVD). The
dependent variables are those under evaluation and
whose variations must be observed. In this experiment,
the recall, precision, and execution time metrics are
dependent variables.

d) Design and execution of the quasi-experimental
study

The distribution of the participants was performed
aiming to form two homogeneous groups, regarding the
participants’ expertise. Each group had 12 participants
and their expertise were verified by the application of a
profile characterization questionnaire. This question-
naire took into account the knowledge of the partici-
pants about the AORE area and the approaches used in
the experiment. Before starting the experimental study, a
120-min training about the main concepts of AORE and
the ObasCId/Theme approaches was performed, in
order to homogenize the knowledge of participants. In
this training, the participants had a practical experience
on the concern identification and classification process
through exercises with ObasCId/Theme approaches.
During the training, it was not informed to the partici-
pants what approach was developed by the authors of
this paper. It is important to state this study was per-
formed in three different moments (each one at a differ-
ent university) and the collected data were gathered to
be analyzed and discussed.
The execution of the quasi-experimental study oc-

curred in two phases. In the first phase, participants
should identify the non-functional concerns presented in
the requirements document of the Health Watcher and
classify them as crosscutting or non-crosscutting. To do
this, group 1 used the Theme/Doc approach and group
2, the ObasCId. In the second phase, participants should
identify the functional and non-functional concerns of
the LocaDVD and also classify them as crosscutting or
non-crosscutting. To do this, group 1 used the ObasCId
approach and group 2, Theme/Doc. The participants
had to perform all activities proposed by Theme/Doc. In
the case of ObasCId, the participants had to perform the
activities presented in Fig. 4, i.e., only the activities of
the “Performing concern identification and classifica-
tion” phase.
The part of the Health Watcher requirements docu-

ment analyzed by the participants had six types of non-
functional crosscutting concerns: “Security,” “Concur-
rency,” “Usability,” “Performance,” “Availability,” and
“Persistence.” Functional concerns were not considered,
because it was not found to be a source that could be
used to generate a catalog of functional concerns

Table 6 Hypotheses used in the quasi-experimental study I

Hypotheses for Recall

H0Re There is no difference of using ObasCId or Theme/Doc, regarding
the recall, that is, H0Re: ReObasCId = ReTheme/Doc

H1Re There is difference of using ObasCId or Theme/Doc, regarding the
recall, that is, H1Re: ReObasCId≠ ReTheme/Doc

Hypotheses for Precision

H0Pr There is no difference of using ObasCId or Theme/Doc, regarding
the precision, that is, H0Pr: PrObasCId = PrTheme/Doc

H1Pr There is difference of using ObasCId or Theme/Doc, regarding the
precision, that is, H1Pr: PrObasCId≠ PrTheme/Doc

Hypotheses for Execution Time

H0T There is no difference of using ObasCId or Theme/Doc, regarding
the execution time, that is, H0T: TObasCId = TTheme/Doc

H1T There is difference of using ObasCId or Theme/Doc, regarding the
execution time, that is, H1T: TObasCId≠ TTheme/Doc

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 16 of 25

regarding the health complaint domain. For the
LocaDVD software, the requirements document had
four functional concerns (“Payment,” “Transaction,” “Re-
source,” and “Destination”) and two non-functional con-
cerns (“Logging” and “Persistence”); three of these six
concerns were crosscutting ones (“Logging,” “Persist-
ence,” and “Transaction”). The size of requirements doc-
uments of both software systems was similar. To
calculate the values of the recall and precision metrics, it
considered the amount of concern correctly identified
and classified by each participant, individually.

Results and discussion
Table 7 presents the results obtained by both groups of
participants, regarding the Health Watcher software
(first phase). Taking into account the values for recall,
the participants who used the ObasCId approach had,
on mean, more promising results than those who used
Theme/Doc. It is also possible to notice that there is no
relevant difference between the two approaches, regard-
ing the precision.
Table 7 still presents that the execution time provided

by ObasCId (48.50 min) was higher than that one pro-
vided by Theme/Doc approach (40.50 min). This is due
to the participants who used ObasCId had other artifacts
to be analyzed, i.e., the catalogs of software concerns, as
well as some new activities to perform. However, we
noted that the difference between the two values (8 min)
is not significant. Although the participants who used
the ObasCId approach had to perform additional tasks,
the usage of the catalogs and the proposed process may
have led the participants to perform the concern identi-
fication and classification activities in a more focused

way. This may have minimized the impact on the execu-
tion time provided by ObasCId approach.
The same type of information presented for the Health

Watcher is also presented for LocaDVD (second phase),
as can be seen in Table 8.
Some important facts about the results of Tables 7 and

8 are:

� Sampaio et al. [8] stated the precision of AORE
approaches is satisfactory but the recall not. This
situation was observed in the case of Theme/Doc
approach but not for the ObasCId approach. The
recall provided by ObasCId is quite similar to the
precision. This may be due to the support provided
by ObasCId approach for the software engineers to
perform the concern identification and classification;

� The execution time provided by both approaches
reduced when it is compared to the execution time
needed to identify and classify the concerns of the
Health Watcher software; however, the difference
between the ObasCId and Theme/Doc approaches
continues, i.e., less time was needed for the
execution of Theme/Doc approach. The reduction
may be explained by the features of the software
used. Although both systems of software contain a
similar number of concerns and requirements, the
domain of the LocaDVD software is more common
than the domain of Health Watcher. This could have
facilitated the process of reading and understanding
the requirements document of LocaDVD; and

� The recall provided by ObasCId approach is still
higher than the recall provided by Theme/Doc, even
using different software and participants; the
precision provided by ObasCId approach remains

Table 7 Quasi-experimental results—first phase

Theme/Doc (group 1) ObasCId (group 2)

Partic. Recall (Re) Precision (Pr) Time (min) Partic. Recall (Re) Precision (Pr) Time (min)

P01 42.85 75.00 43.00 P13 71.42 71.00 62.00

P02 42.85 100.00 48.00 P14 85.71 100.00 39.00

P03 42.85 100.00 49.00 P15 85.71 100.00 54.00

P04 28.57 66.00 48.00 P16 71.42 100.00 37.00

P05 57.14 80.00 36.00 P17 57.14 75.00 43.00

P06 42.85 100.00 31.00 P18 71.42 80.00 42.00

P07 28.57 100.00 34.00 P19 71.42 100.00 42.00

P08 35.76 75.00 38.00 P20 77.42 90.00 45.00

P09 27.16 66.00 60.00 P21 60.00 75.00 60.00

P10 30.32 80.00 39.00 P22 67.00 75.00 58.00

P11 55.55 80.00 30.00 P23 72.00 100.00 43.00

P12 60.60 100.00 30.00 P24 66.00 75.00 57.00

Avg. 41.25 85.16 40.50 Avg. 71.38 86.75 48.50

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 17 of 25

higher than that provided by the Theme/Doc;
however, the difference was not significant.

Aiming to reinforce the experimental results, we repli-
cated the quasi-experiment presented in this section, using
the requirements document of the ObasCId-Tool. More
information about this are in the Appendix of this work.

Hypothesis tests
To verify the hypotheses defined in Tables 7 and 8, the t
test was applied [39]. Regarding the Health Watcher soft-
ware, comparing the mean values for recall provided by
the approaches Theme/Doc (mean = 41.25) and ObasCId
(mean = 71.38), the H0Re null hypothesis may be rejected
with significance level of 99.9% (p value = 0.00004). This
situation also happens for the LocaDVD software, regard-
ing the recall. Regarding the mean time spent by the
participants to perform the activities of the Theme/Doc
and ObasCId, it was not possible to obtain statistical
evidences, with significance level equal or higher than
95%, to state that these values are different. For both
systems of software, we obtained the same situation for
precision values.

Threats to validity
The main threats to validity of this study are:

� Conclusion and construct validities

These types of threats refer to issues that affect the
ability to draw correct conclusions about the experimen-
tal results. An example of this type of threat is the
choice of the statistical methods for data analysis. In this
study, the t test was used, which requires normally

distributed data. To verify if the data is normally distrib-
uted, we have applied a test known as Shapiro-Wilk test
[39], and the values for recall, precision, and time met-
rics were considered normalized with a significance level
of 99.9%. Moreover, in this study, we did not take into
consideration the effort and tiredness level of the partici-
pants, which may influence the results of the experi-
ment. For example, after 120 min of training and 60 min
of work with the approaches, participants’ capability of
making correct decisions was certainly impaired.

� Internal validity

It refers to issues that may affect the ability to ensure
that the results were, in fact, obtained from the treat-
ments (i.e., the AORE approaches: ObasCId and Theme/
Doc) and not by coincidence. A threat of this type can
be related to the strategy used to select and group the
participants of the quasi-experimental study. To mitigate
this threat, we did not demonstrate expectations for any
approach during the training phase. In addition, the par-
ticipants were grouped according to their levels of
experience.

� External validity

This type of threat refers to issues that affect the abil-
ity to generalize the results of an experiment to a wider
context. In this case, the relevant factors that could have
influenced the results of this study are (i) the size of the
applications used in the study; (ii) the quality of the re-
sources (software concern catalogs and the requirements
documents) presented to the participants—we performed
a pilot study, with different participants, aiming to

Table 8 Quasi-experimental results—second phase

ObasCId (group 1) Theme/Doc (group 2)

Partic. Recall (Re) Precision (Pr) Time (min) Partic. Recall (Re) Precision (Pr) Time (min)

P01 83.00 83.00 32.00 P13 33.00 66.00 18.00

P02 83.00 71.00 22.00 P14 66.00 80.00 29.00

P03 100.00 75.00 18.00 P15 66.00 80.00 15.00

P04 66.00 100.00 42.00 P16 33.00 100.00 32.00

P05 66.00 80.00 37.00 P17 71.00 71.00 13.00

P06 100.00 86.00 22.00 P18 50.00 60.00 18.00

P07 83.00 71.00 25.00 P19 50.00 75.00 21.00

P08 85.00 75.00 27.00 P20 50.00 60.00 17.00

P09 75.00 75.00 42.00 P21 66.00 80.00 30.00

P10 100.00 75.00 30.00 P22 33.00 80.00 27.00

P11 70.00 100.00 27.00 P23 50.00 75.00 21.00

P12 85.00 60.00 22.00 P24 33.00 60.00 25.00

Avg. 83.00 79.25 28.83 Avg. 50.08 74.00 22.16

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 18 of 25

evaluate the quality of the resources used in this quasi-
experimental study; (iii) the amount of participants of the
study—aiming to mitigate this issue, we performed a new
quasi-experimental study and presented it in the Appen-
dix of this paper; and (iv) the usage of undergraduate and
graduate students in Computer Science.

Quasi-experimental study II
The evaluation goal of this second quasi-experimental
study was to analyze the usage of the ObasCId-Tool, in
order to evaluate it, with respect to its ease of use and
its utility, from the point of view of software engineers,
in the context of a group of undergraduate and graduate
students in Computer Science.

Planning of the quasi-experimental study
The planning of this experiment was also carried out
according to the model proposed by Wohlin et al. [37].

a) Context selection

The context of this study consists in the usage of
ObasCId-Tool, aiming to manage the necessary resources
for software concern identification and classification. This
study was carried out with 24 undergraduate and graduate
students in Computer Science from three Brazilian
Universities (UGF, UFLA, and UFSCar).

b) Hypotheses formulation

In order to evaluate the ease of use and the utility of
ObasCId-Tool, the TAM (technology acceptance mod-
el—Davis, [40]) was used. This model aims to explain
the behavior of people regarding the acceptance of a
technology and has been used in recent studies [41] for
software product assessments. The TAM model defines
main constructs [40]: (i) perceived utility, which mea-
sures how much a person believes that using a given
technology increases his/her productivity and (ii) per-
ceived ease of use, which measures how much a person
believes that the usage of a given technology is easy.
It also suggests the construction of questionnaires with

statements regarding the ease of use and the utility of
the technology under analysis. For each statement, the
respondent should choose one of the following options,
according to his/her opinion about it: “totally disagree,”
“strongly disagree,” “partially disagree,” “neutral,” “par-
tially agree,” “strongly agree,” and “totally agree.” In this
context, seven metrics were proposed: (M1) percentage
of participants that assigned the “totally disagree” option,
(M2) percentage of participants that assigned the
“strongly disagree” option, (M3) percentage of partici-
pants that assigned the “partially disagree” option, (M4)
percentage of participants that assigned the “neutral”

option, (M5) percentage of participants that assigned the
“partially agree” option, (M6) percentage of participants
that assigned the “strongly agree” option, and (M7) per-
centage of participants that assigned the “totally agree”
option. The statements of the questionnaires proposed
in this work are presented in Tables 10 and 11, along
with the results of this quasi-experimental study.
Based on seven metrics, four hypotheses were elabo-

rated for this study, two related to the utility construct,
and two related to the ease of use construct (Table 9).

c) Selection of variables and participants

The dependent variables under analysis in this quasi-
experimental study are the percentages of responses for
each statement of the TAM-based questionnaire. Four-
teen of the 24 participants were undergraduate students
and ten were graduate students. In terms of AORE
experience, according to the results of the profile
characterization questionnaire, all the participants had
low levels of knowledge on this subject. When asked
about their level of knowledge about requirements
engineering, all the participants stated that they were at
an intermediate level, whose contact with this subject
occurred through software engineering disciplines.

d) Design and execution of the experiment

It is important to notice that none of the participants
had previously used ObasCId-Tool. Hence, before the
beginning of the experiment, a 40-min training was con-
ducted, aiming to present this tool to the them. In
addition, a 90-min training about the main concepts of
AORE and about the ObasCId approach was performed.
In this training, the participants had a practical experi-
ence on the concern identification and classification
process through exercises with ObasCId approach. This
was done so that the participants could have a more
conscious opinion about the statements presented in
Tables 10 and 11.
In the execution phase of the quasi-experimental

study, the participants should perform a series of activ-
ities in the ObasCId-Tool, which consisted in managing
the needed resources to identify and classify concerns
from software requirements. Some examples of activities
were “registering a new catalog,” “registering a new con-
cern for an existing catalog,” among others. In addition,
after finishing all activities, the participants were asked
to fill out a questionnaire that contained the statements
presented in Tables 10 and 11.

Results and discussion
Tables 10 and 11 present, respectively, the results ob-
tained through two electronic questionnaires filled out

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 19 of 25

by the participants, with respect the utility and ease of
use of ObasCId-Tool. The first column of these tables
contains the statements presented to the participants;
columns 2 to 8 show the percentage of participants who
chose options 1 to 7, respectively. Finally, the ninth and
tenth columns present, respectively, the percentage of
participants who chose negative/neutral (1, 2, 3, or 4)
and positive (5, 6, or 7) options.
In general, it may be noticed that, for both utility and

ease of use constructs, the ObasCId-Tool obtained an
amount of positive opinions higher than the negative/neu-
tral ones. The most well-accepted statement for ease of
use construct was “Using ObasCId-Tool is a good idea”,
while the statements with the worst results were the last
five ones. This indicates that navigability and feedback
mechanisms of ObasCId-Tool should be improved.
Regarding the utility construct, two statements had

almost 100% of positive opinions: “ObasCId-Tool is
useful in the process of concern identification and classi-
fication” and “I will recommend the usage of ObasCId-
Tool.” This indicates that the participants found in
ObasCId-Tool potentially positive resources for the
process of concern identification and classification. The
statement with the lowest approval was “I intend to

integrate ObasCId-Tool into my work routine.” This is
justified by the fact that the participants were students
and they belonged to different research areas.

Hypothesis tests
To verify the validity or not of the null hypothesis re-
garding utility of ObasCId-Tool, H0U, one should com-
pare the amount of positive opinions about this
construct to the amount of negative/neutral opinions.
However, before doing this, it must be checked whether
the sample data conforms to the normal probability dis-
tribution. Hence, the Shapiro-Wilk test [39] was applied
to the set of positive and negative/neutral opinions pre-
sented in Table 10 and for both sets (negative/neutral
and positive opinions); the data were not normally dis-
tributed, restricting the use of the t test. Hence, the
Mann-Whitney test [39], a non-parametric test that does
not require normally distributed data for its execution,
was applied. Comparing the mean value of positive opin-
ions about the ease of use of the ObasCId-Tool to the
mean value of negative/neutral opinions, the null hy-
pothesis H0U could be rejected with degree of signifi-
cance p = 0.00094. That is, with approximately 99.9% of
confidence, it may be stated that the mean amount of
positive opinions differs from the amount of negative/
neutral opinions.
Regarding the ease of use construct, hypothesis H0EoU,

we verified the amount of the users’ opinions regarding
the ease of use of the tool. Initially, the Shapiro-Wilk
test was applied to verify the normality of the sets of
opinions of the users. It was verified that, for both sets
(negative/neutral and positive opinions), the data were
not normally distributed. Hence, the Mann-Whitney was
applied to these data sets as well. Comparing the
amount of positive opinions about the ease of use of the
ObasCId-Tool to the amount of negative/neutral opin-
ions, the first part of the null hypothesis H0EoU could be
rejected with degree of significance p = 0.00452.

Table 9 Hypotheses used in the quasi-experimental study II

Hypotheses for Recall

H0U There is no consensus on the utility construct, regarding the
usage of the ObasCId-Tool, i.e., H0U: M1 +M2 +M3 +M4 =M5
+M6 +M7.

H1U There is a consensus on the utility construct, regarding the
usage of the ObasCId-Tool, i.e., H1U: M1 +M2 +M3 +M4 ≠
M5 +M6 +M7.

Hypotheses for Precision

H0EoU There is no consensus on the ease of use construct, regarding
the usage of the ObasCId-Tool, i.e., H0EoU: M1 +M2 +M3 +M4 =
M5 +M6 +M7.

H1EoU There is a consensus on the utility construct, regarding the
usage of the ObasCId-Tool, i.e., H1EoU: M1 +M2 +M3 +M4 ≠
M5 +M6 +M7.

Table 10 Quasi-experimental results—utility construct

Statements Option (no. of participants) Neg Pos

1 2 3 4 5 6 7

I liked to work with ObasCId-Tool. 0 0 2 3 4 7 8 5 19

The access to ObasCId-Tool is simple. 0 1 2 1 4 6 10 4 20

Using ObasCId-Tool is a good idea. 0 0 1 1 7 7 8 2 22

In ObasCId-Tool, I always know where I am and how to arrive where I want. 0 0 3 4 7 6 4 7 17

The main functionalities of ObasCId-Tool are clear and easy to find. 0 0 0 8 5 6 5 8 16

My interaction with ObasCId-Tool is clear and understandable. 0 0 3 5 5 5 6 8 16

In ObasCId-Tool, I always know how to find the information that I need. 0 3 1 3 5 2 10 7 17

ObasCId-Tool has well-defined and understandable GUI elements. 0 0 2 4 4 4 10 6 18

1 totally disagree, 2 strongly disagree, 3 partially disagree, 4 neutral, 5 partially agree, 6 strongly agree, 7 totally agree

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 20 of 25

Since the percentage of negative/neutral opinions is
lower than that of positive opinions, ObasCId-Tool can
be considered satisfactory with respect to the utility and
ease of use constructs.

Threats to validity
Conclusion and construct validities
Analogous to what was said for the quasi-experimental
study I, an example of these types of threats is the choice
of appropriated statistical methods for data analysis. In
the case of this second study, two statistical tests were
adopted: t test and Mann-Whitney. t test requires nor-
mally distributed data; hence, the Shapiro-Wilk normal-
ity test was applied to confirm this situation before the
application of this statistical test. For the cases in which
the Shapiro-Wilk test did not indicate normality of the
data set, the Mann-Whitney test was applied. Regarding
construct validity, it is important to state that we did not
consider the results generated by the participants after
finishing the activities proposed in this quasi-
experiment. Hence, a participant may choose positive al-
ternatives for the propositions presented in the TAM
questionnaire related to ease of use; however, the activ-
ities performed by him/her were not well-concluded.

Internal validity
A point that may have influenced the results of this
quasi-experimental study was the use of undergraduate
and graduate students as participants. However, no
expectations were expressed in favor or against the ana-
lyzed tool, so that the participants were not influenced.
In addition, all students were submitted to the same
fixed duration training so that none of them had privi-
leges over the other ones.

External validity
Other factors that may have influenced the results of this
quasi-experimental study are (i) the quality of the re-
sources (forms, questionnaires, among others) presented

to the participants—we performed a pilot study, with
different participants, aiming to evaluate the quality of
the resources used in this quasi-experimental study and
(ii) the number of samples (participants) studied.

Final remarks
Based on what was previously presented in this paper,
the main contributions of this work are (i) the O4C
ontology, which provides a clear conceptual definition
regarding the software concern domain, highlighting the
key concepts and relationships involved in it. The usage
of the concepts contained in O4C may collaborate with
the building of AORE approaches, methods, and tools
that are compatible with each other, since they are based
on a common conceptualization; (ii) the ObasCId ap-
proach, which provides resources (activities, guidelines,
heuristics, among others) that aim to help software engi-
neers to perform the activities of the process of concern
identification and classification in a more appropriated
way; and (iii) the ObasCId-Tool computational support
that provides support for building and sharing catalogs
of software concerns, as well as for the identification
and classification of software concerns from require-
ments documents.
As a main limitation of the ObasCId approach, we

may cite the quality of the results of the concern identi-
fication and classification process proposed by this
approach which strongly depends on the existence of
good catalogs of software concerns. Furthermore, the
cost/effort to maintain a good catalog may be impedi-
tive, mainly for small companies. Moreover, the quality
of the results of the “specify the main concerns” activity
strongly depends on the expertise of the software engi-
neers that are using the ObasCId approach. In addition,
this activity is not automated by the ObasCId-Tool, what
may affect the productivity of the development/mainten-
ance team. Another limitation is the lack of experimen-
tal studies that compare the ObasCId(-Tool) to other
AORE approaches/tools proposed in the literature.

Table 11 Quasi-experimental results—ease of use construct

Statements Option (no. of
participants)

Neg Pos

1 2 3 4 5 6 7

Using ObasCId-Tool is important and adds value to my work. 0 0 4 5 5 5 5 9 15

ObasCId-Tool is useful in the process of concern identification and classification. 0 0 0 1 3 8 12 1 23

Using ObasCId-Tool may improve the quality of the results of the concern identification and classification process. 0 0 1 1 2 9 11 2 22

ObasCId-Tool may improve my productivity while performing the concern identification and classification. 0 1 1 6 3 3 10 8 16

ObasCId-Tool produces the results that I hope of a tool for concern identification and classification. 0 1 3 8 4 4 4 12 12

I intend to integrate ObasCId-Tool into my work routine. 1 5 5 4 3 3 3 15 9

I will recommend the usage of ObasCId-Tool. 0 0 0 2 4 5 13 2 22

The main concepts of AORE were addressed by ObasCId-Tool. 0 0 0 3 5 10 6 3 21

1 totally disagree, 2 strongly disagree, 3 partially disagree, 4 neutral, 5 partially agree, 6 strongly agree, 7 totally agree

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 21 of 25

Regarding the lack of computational support compari-
son, this was mainly due to the lack of available tools in
the literature that support the concern identification and
classification activities. Most of the proposed tools are
for other AORE activities, such as concern representa-
tion and composition. EA-Miner tool provides support
for concern identification and classification, but it is un-
available for public usage.
Based on the contributions and limitations previously

presented, it is possible to propose some future works,
such as extending the ObasCId approach, as well as the
ObasCId-Tool, so that they may address other AORE
activities, such as concern composition and conflict
detection. The O4C ontology may be improved, as well
as the ObasCId(-Tool), to allow the usage of other types
of relationships among requirements in the process of
concern identification and classification.
Another possible extension of the products proposed

in this paper is to create methods for automatic
transformation of catalogs of NFR requirements into
O4C-based catalogs. The idea is to try to establishing re-
lationships among the O4C concepts and the concepts
of the NFR catalogs available in the literature, in order
to allow the construction of this type of procedure. As
stated before, the quality of the results provided by the
ObasCId approach depends on the existence of good
catalogs of software concerns. However, the cost/effort
to create/maintain this catalog may be impeditive. The
idea of using well-known and validated catalogs of NFR
requirements to create instances of software concerns
may help the developers to get a better start point to
maintain their own catalogs of software concerns.
Regarding the dependency between the results of the

“specify the main concerns” activity and the expertise of
the software engineers that are using the ObasCId ap-
proach, we believe that creating heuristics for aiding
software engineers to specify the main concern of a
given requirement is an interesting work. Such heuristics
will serve as guidelines to simplify the decision making
of the software engineers, reducing the dependence of
the quality of the results of the concern identification
and classification process on the expertise of the profes-
sionals who apply it. In addition, the usage of heuristics
could be considered as a starting point for the automa-
tion of this activity in the ObasCId-Tool.
Aiming to improve the analyst team productivity,

someone may propose mechanisms for the collaborative
construction of catalogs of software concerns, as well as
for the control of different versions of these catalogs.
These resources could improve the productivity of the
team involved in the process of building catalogs, as well
as facilitate the tracking of the changes made by each
member of this team. We believe this purpose may re-
duce the cost/effort associated to the creation and

maintenance of good software concern catalogs, the
same way that collaborative/distributed software devel-
opment may reduce the development/maintenance cost
of a software product.
Finally, the last interesting work we propose as a fu-

ture extension of this work is building domain-specific
catalogs of software concerns. For example, with the
help of experts in some domain, such as embedded sys-
tems and business documents related to this domain, it
is possible to build catalogs of concerns to be imported
and updated by other researchers/professionals in the
ObasCId-Tool. From an economic perspective, these
catalogs could be sold by companies specialized in some
domain, ensuring minimum recall and precision values
provided by these catalogs in the context of concern
identification and classification. This idea would be an
interesting way of reducing the cost/effort in using
ObasCId approach.
We also believe that performing new experimental

studies on the ObasCId(-Tool) approach, comparing it
with other AORE approaches/tools, is needed. Other
types of experiments that could be performed on the
ObasCId-Tool are (i) performance and scalability tests,
using large-scale software requirements documents; (ii)
tests to verify the most appropriated threshold values for
similarity searches; and (iii) tests to verify the effective-
ness of the ObasCId-Tool in terms of recall and preci-
sion, when its results are confronted to the manual
usage of the ObasCId approach, considering documents
of requirements of different sizes, among others.

Appendix
Replication of the quasi-experimental study I (see “Quasi-
experimental study I” section)
The goal of this replication is the same as that of quasi-
experimental study I, presented in the “Quasi-experi-
mental study I” section of this paper: to analyze the
usage of the ObasCId approach, in order to evaluate,
with respect to its effectiveness (recall and precision)
and efficiency (time of execution), from the point of
view of software engineers, in the context of a group of
undergraduates and graduates in Computer Science.
Aiming to achieve this goal, a group of 24 participants

was asked to identify and classify the concerns of a sys-
tem of software, using as support the ObasCId and
Theme/Doc approaches [22, 23]. It is important to high-
light that all resources used in the quasi-experimental
studies presented in this paper are available at Parreira
Júnior [24]—an English version of these resources may
be found in https://goo.gl/cs13QZ.

A.1 Planning of the replication
a) Context selection. This replication study was con-
ducted with 24 undergraduate and graduate students in

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 22 of 25

https://goo.gl/cs13QZ

Computer Science from a federal university from Brazil.
The requirements document of ObasCId-Tool [24] was
used in this study—an English version of the require-
ments is available at https://goo.gl/cs13QZ. It was
chosen because the developer of ObasCId-Tool (first au-
thor of this paper) was able to generate an oracle with
the existing concerns in this software and a catalog for
concern identification and classification that allows the
use of ObasCId approach.
b) Hypotheses formulation. The same six hypotheses

used in the quasi-experimental study I (Table 6) were
considered in this replication.
c) Variable and participant selection. Independent vari-

ables are those manipulated and controlled during the
quasi-experimental study. In this study, the only inde-
pendent variable is the approach for concern identifica-
tion and classification (ObasCId and Theme/Doc). The
dependent variables are those under evaluation and
whose variations must be observed. In this experiment,
the recall, precision, and execution time metrics are
dependent variables.
d) Design and execution of the replication study. In

the quasi-experimental study I, we concluded that
performance of ObasCId approach was higher than that
of Theme/Doc, regarding recall metric, independent of
the group of participants. Hence, we decided to keep the
distribution of the participants into two groups of 12
participants. The replication study was planned in just
one phase: the participants should identify the functional
and non-functional concerns presented in the require-
ments document of the ObasCId-Tool and classify them
as crosscutting or non-crosscutting. To do this, group 1
used the Theme/Doc approach and group 2, the
ObasCId.

The ObasCId-Tool requirements document analyzed
by the participants had four types of non-functional
crosscutting concerns: “Security,” “Persistence,” “Usabil-
ity,” and “Responsivity” and five functional concerns:
“Management of concern catalogs,” “Management of
researchers,” “Management of requirement documents,”
“Repositories query,” and “Concern identification and
classification”; two of these five concerns were base ones
“Repositories query” and “Concern identification and
classification”. To calculate the values of the recall and
precision metrics, it was considered the amount of
concern correctly identified and classified by each par-
ticipant, individually.

A.2 Results and discussion
Table 12 presents the results obtained by both groups of
participants, regarding the ObasCId-Tool software. It is
possible to notice that ObasCId approach had, on mean,
more promising results than those who used Theme/
Doc, in terms of recall; however, there is no relevant
difference between the two approaches, regarding the
precision and execution time. These results are similar
to those obtained in the quasi-experimental study I.
Regarding the hypothesis tests, the H0Re null hypoth-

esis may be rejected (Table 6) with significance level of
99.9% (p value = 0.0016). This situation also happened
for the HealthWatcher and LocaDVD systems of soft-
ware. However, regarding execution time and precision
metrics, it was not possible to obtain statistical evi-
dences, with significance level equal or higher than 95%,
to state that their values are different. The expressive in-
creasing of the execution time between the quasi-
experiment and the replication studies (approx. 40 min)
may be explained by the size of the requirements

Table 12 Replication study results

Theme/Doc (Group 1) ObasCId (Group 2)

Partic. Recall (Re) Precision (Pr) Time (min) Partic. Recall (Re) Precision (Pr) Time (min)

P01 44.44 89.00 80.00 P13 66.67 89.00 90.00

P02 33.33 67.00 95.00 P14 66.67 89.00 95.00

P03 55.56 100.00 85.00 P15 77.79 89.00 100.00

P04 22.22 89.00 80.00 P16 88.89 100.00 80.00

P05 11.11 78.00 70.00 P17 66.67 78.00 85.00

P06 66.67 89.00 75.00 P18 66.67 78.00 70.00

P07 55.56 89.00 88.00 P19 55.56 56.00 92.00

P08 77.78 56.00 87.00 P20 100.00 89.00 87.00

P09 22.22 100.00 88.00 P21 66.67 89.00 88.00

P10 22.22 78.00 80.00 P22 66.67 100.00 93.00

P11 11.11 78.00 77.00 P23 55.56 67.00 97.00

P12 33.33 67.00 78.00 P24 100.00 67.00 100.00

Avg. 37.96 81.48 81.92 Avg. 71.38 82.41 89.75

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 23 of 25

https://goo.gl/cs13QZ

document used. ObasCId-Tool contains 30 requirements
while HealthWatcher and LocaDVD have 10 and 8,
respectively.

A.3 Threats to validity
The threats to validity of this replication study are simi-
lar to those ones presented in the quasi-experimental
study I and will not be discussed again.

Abbreviations
AORE: Aspect-oriented requirements engineering; FR: Functional
requirements; GQM: Goal, question, metric; i18n: Internationalization;
JSF: JavaServer Faces; NFR: Non-functional requirements; O4C: Ontology for
Concerns; ObasCId: Ontologically based Concern Identification and
Classification; Pr: Precision; Re: Recall; RE: Requirements engineering;
SABiO: Systematic Approach for Building Ontologies; TAM: Technology
acceptance model

Funding
The authors declare that they have no funding.

Availability of data and materials
The authors declare that all data and materials are available at Parreira Júnior [24].

Authors’ contributions
PAPJ This paper aims to present the products generated from the doctorate
degree of the author. RADP She was the supervisor of PAPJ in his doctorate
degree. Her contribution is mainly based on the academic orientation and as
a partner for making decisions during the doctorate degree. Both authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Department of Computer Science, Federal University of Lavras, Lavras, MG,
Brazil. 2Department of Computer, Federal University of São Carlos, São Carlos,
SP, Brazil.

Received: 27 December 2016 Accepted: 14 December 2017

References
1. Chitchyan R et al (2005) A report synthesizing state-of-the-art in aspect-

oriented requirements engineering, architectures and design. Technical
report. Lancaster University, Lancaster, p 259 2005

2. Rashid A, Moreira A, Araújo J (2003) Modularisation and composition of
aspectual requirements. In: 2nd AOSD. New York, USA, pp 11–20 2003

3. Soeiro E, Brito IS, Moreira A (2006) An XML-based language for specification
and composition of aspectual concerns. In: 8th international conference on
Enterprise information systems. Paphos, Cyprus, pp 410–419 2006

4. Chitchyan R, Sampaio A, Rashid A, Rayson PA (2006) Tool suite for aspect-
oriented requirements engineering. In: International workshop on early-aspects
at ICSE, New York, pp 19–26 2006

5. Herrera J et al (2012) Revealing crosscutting concerns in textual
requirements documents: an exploratory study with industry systems. In:
26th Brazilian symposium on software engineering (SBES). Natal, RN, pp
111–120 2012

6. Parreira Júnior PA, Penteado RAD (2015) Crosscutting concerns
identification supported by ontologies: a preliminary study. LBIP. Springer
International Publishing, Switzerland, pp 385–407 2015a

7. Parreira Júnior PA, Penteado RAD (2015) OnTheme/Doc: an ontology-based
approach for crosscutting concern identification from software
requirements. In: XVII ICEIS. Barcelona, Spain, pp 188–200 2015b

8. Sampaio A, Greenwood P, Garcia AF (2007) Rashid, A. A comparative study of
aspect-oriented requirements engineering approaches. In: I international
symposium on empirical SE and measurement. Madrid, Spain, pp. 166-175, 2007

9. Parreira Júnior PA, Penteado RAD (2015) An overview on aspect-oriented
requirements engineering area. LBIP. 16ed.: Springer International
Publishing, Switzerland, 2015c, v. 227, p. 244-264

10. Parreira Júnior PA, Penteado RAD (2014) Aspect-oriented requirements
engineering: a systematic mapping. In: XVI ICEIS. Lisboa, Portugal, pp
83–95 2014

11. Parreira Júnior PA, Penteado RAD (2016) ObasCId: an ontologically-based
approach for concern identification and classification. In: X Brazilian
symposium on software components, architectures, and reuse (SBCARS),,
Maringá/PR, pp 141–150 2016

12. Agostinho S et al (2008) Metadata-driven approach for aspect-oriented
requirements analysis. In: 10th international conference on enterprise
information systems, Barcelona, pp 1–6 2008

13. Alencar F et al (2010) Towards modular i* models, ACM symposium on
applied computing, pp 292–297 2010

14. Chernak Y (2012) Requirements composition table explained. In: 20th
requirements engineering conference, Chicago, pp 273–278 2012

15. Zheng X, Liu X, Liu S (2010) Use case and non-functional scenario template-
based approach to identify aspects. 2nd Int. Conf. on Computer Eng. and
Applications, Bali Island, pp 89–93 2010

16. Brito I, Moreira A (2003) Towards a composition process for aspect-
oriented requirements. In: Early-aspect workshop at AOSD, Boston, pp
113–119 2003

17. Moreira A, Rashid A, Araújo J (2005) Multi-dimensional separation of
concerns in requirements engineering. In: 13th requirements engineering.
Paris, pp. 285-296, 2005

18. Whittle J, Araújo J (2004) Scenario modeling with aspects. IEEE Softw 151(4):
157–172 2004

19. Boehm B, In H (1996) Identifying quality-requirement conflicts. IEEE Softw
13(2):1996

20. Chung L, Leite JSP (2000) Non-functional requirements in software
engineering. Springer, p 441 2000

21. Cysneiro LM (2016) Catalogues on non-functional requirements. Available
at: http://www.math.yorku.ca/~cysneiro/nfrs/nfrs.htm. Last access: Dec. 2016

22. Baniassad E, Clarke S (2004) Theme: an approach for aspect-oriented
analysis and design. In: 26th international conference on software
engineering, Washington, pp 158–167 2004

23. Clarke S, Baniassad E (2005) Aspect-oriented analysis and design: the theme
approach, Addison-Wesley, p 400 2005

24. Parreira Júnior PA (2015) ObasCId: uma Abordagem Ontologicamente
Fundamentada para EROA. Doctorate Thesis. 2015. UFSCar/São Carlos/SP, p
197 (in Portuguese)

25. WMATRIX (2016) Corpus analysis and comparison tool. Lancaster University.
Available at: http://ucrel.lancs.ac.uk/wmatrix/. Last access: Dec. 2016

26. Parreira Júnior PA, Penteado RAD (2015) Domain ontologies in the context
of requirements engineering: a systematic mapping. In: XII ACS/IEEE.
Marrakech, Morocco, pp 1–8 2015d

27. López C, Cysneiro LM, Astudillo H (2008) NDR ontology: sharing and reusing
NFR and design rationale knowledge. In: International workshop on
managing requirements knowledge. USA, pp. 1-10, 2008

28. Falbo RA (2016) SABiO: systematic approach for building ontologies.
2011. Available at: http://www.inf.ufes.br/~falbo/files/SABiO.pdf. Last
access: Dec. 2016

29. Guizzardi G (2005) Ontological foundations for structural conceptual
models. PhD. thesis. Univeristy of Twente, 2005

30. Greenwood P et al (2007) On the impact of aspectual decompositions on
design stability: an empirical study. In: European Conference on Object-
Oriented Programming (ECOOP), Berlin, Germany, pp 176–200 2007

31. Greenwood P et al (2007) On the contributions of an end-to-end AOSD
testbed. In: Workshop aspect-oriented requirements engineering and
architecture design (early-aspects), Minneapolis, MN, USA, pp 1–8 2007

32. Health Watcher (2016) Available at: http://www.cin.ufpe.br/~scbs/testbed/
requirements /aore/. Last access: Dec. 2016

33. Braga RTV, Germano FSR, Masiero PC (1999) A pattern language for business
resource management. In: 6th PLoP, pp 2–7 1999

34. Ranks NL. Available at: http://www.ranks.nl/stopwords. Last access: Dec. 2016
35. Manning CD, Raghanvan P, Schütze H (2008) Introduction to information

retrieval, Cambridge University Press. 482 p., 2008

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 24 of 25

36. Basili V, Rombach H (1994) Goal question metric paradigm. In: Encyclopedia
of software engineering, p 2, 6 1994

37. Wohlin C, Runeson P, Höst M, Regnell B, Wesslén A (2012) Experiment. in
SE. Springer-Verlag Berlin Heidelberg. 236p. 2012

38. Viana MC (2009) Building the graphical user interface layer and a wizard for
the GRENJ framework. Master dissertation, UFSCar, São Carlos 2009 (in
Portuguese)

39. Montgomery DC (2000) Design and analysis of experiments, 5ª ed. Wiley,
New York, p 752 2000

40. Davis FD (1993) User acceptance of information technology: system
characteristics, user preceptions and behavioral impacts. Int J Man Mach
Stud 38:475–487

41. Hernandes ECM (2014) Abordagem Orientada à Informação para Análise
Qualitativa com suporte de Visualização e Mineração de Texto. Doctorate
Thesis, UFSCar, São Carlos, 2014 (in Portuguese)

Parreira Júnior and Penteado Journal of the Brazilian Computer Society (2018) 24:3 Page 25 of 25

	Abstract
	Introduction
	Related works
	Ontology for Concerns (O4C)
	Concern, FunctionalConcern, and NonFunctionalConcern
	Keyword and Source
	Contribution, Dependency, and Composition

	ObasCId approach
	Preparing the catalog of software concerns
	Preparing the requirements document
	Performing the concern identification and classification
	Identifying concerns from keywords
	Identifying concerns from the interdependence among software requirements
	Specifying the main concerns
	Verifying the results of concern identification
	Classifying concerns

	ObasCId-Tool
	ObasCId-Tool overview
	Concerns catalog management module
	Management of software concerns
	Management of relationships among software concerns

	Requirements documents management module
	Concern identification and classification module

	Quasi-experimental study I
	Theme/Doc overview
	Planning of the quasi-experimental study
	Results and discussion
	Hypothesis tests
	Threats to validity

	Quasi-experimental study II
	Planning of the quasi-experimental study
	Results and discussion
	Hypothesis tests
	Threats to validity
	Conclusion and construct validities
	Internal validity
	External validity

	Final remarks
	Appendix
	Replication of the quasi-experimental study I (see “Quasi-experimental study I” section)
	A.1 Planning of the replication
	A.2 Results and discussion
	A.3 Threats to validity
	Abbreviations

	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Publisher’s Note
	Author details
	References

