Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13 JOU rna| Of the
DOI 10.1186/513173-017-0062-y r. .
Brazilian Computer Society

RESEARCH Open Access

Stimuli-SoS: a model-based approach to @ e
derive stimuli generators for simulations of
systems-of-systems software architectures

Valdemar Vicente Graciano Neto'23", Carlos Eduardo Barros Paes?, Lina Garcés'2, Milena Guessi'-,

Wallace Manzano', Flavio Oquendo? and Elisa Yumi Nakagawa

Abstract

Background: Systems-of-systems (SoS) are alliances of independent and interoperable software-intensive systems.
SoS often support critical domains, being required to exhibit a reliable operation, specially because people’s safety
relies on their services. In this direction, simulations enable the validation of different operational scenarios in a
controlled environment, allowing a benchmarking of its response as well as revealing possible breaches that could
lead to failures. However, simulations are traditionally manual, demanding a high level of human intervention, being
costly and error-prone. A stimuli generator could aid in by continuously providing data to trigger a SoS simulation and
maintaining its operation.

Methods: We established a model-based approach termed Stimuli-5oS to support the creation of stimuli generators
to be used in SoS simulations. Stimuli-SoS uses software architecture descriptions for automating the creation of such
generators. Specifically, this approach transforms SoSADL, a formal architectural description language for SoS, into
dynamic models expressed in DEVS, a simulation formalism. We carried out a case study in which Stimuli-SoS was used
to automatically produce stimuli generators for a simulation of a flood monitoring SoS.

Results: We run simulations of a SoS architectural configuration with 69 constituent systems, i.e., 42 sensors, 9
crowdsourcing systems, and 18 drones. Stimuli generators were automatically generated for each type of constituent.
These stimuli generators were capable of receiving the input data from the database and generating the expected
stimuli for the constituents, allowing to simulate constituent systems interoperations into the flood monitoring SoS.
Using Stimuli-SoS, we simulated 38 days of flood monitoring in little more than 6 h. Stimuli generators correctly
forwarded data to the simulation, which was able to reproduce 29 flood alerts triggered by the SoS during a flooding
event. In particular, Stimuli-SoS is almost 65 times more productive than a manual approach to producing data for the
same type of simulation.

Conclusions: Our approach succeeded in automatically deriving a functional stimuli generator that can reproduce
environmental conditions for simulating a SoS. In particular, we presented new contributions regarding productivity
and automation for the use of a model-based approach in SoS engineering.

Keywords: Simulation, Software architecture, Systems-of-systems, Automatic generation, Model transformation

*Correspondence: valdemarneto@usp.br

University of Sdo Paulo, Av. Trabalhador Sancarlense, 400, 13566-590 S&o
Carlos, Brazil

2University of South Brittany, Rue André Lwoff, 56000 Vannes, France

Full list of author information is available at the end of the article

. © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
@ Sprlnger Open International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and

reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-017-0062-y&domain=pdf
mailto: valdemarneto@usp.br
http://creativecommons.org/licenses/by/4.0/

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

Introduction

Systems-of-systems (SoS)! are a set of interoperable sys-
tems called constituents joined together to accomplish
complex missions [1-4]. SoS often support missions in
critical domains, such as smart cities, traffic control, and
emergency and crisis response management [5—8]. Sub-
stantial investments have been made to support SoS engi-
neering. For instance, Saudi Arabia has invested 70 billion
dollars in smarter cities, and South Africa has recently
started a 7.4 billion dollars project on smart cities [9]. Due
to the critical nature of domains that SoS intend to sup-
port, SoS exhibit a noteworthy risk of causing damage,
financial losses, and threats to human life. Hence, they
must be constructed to be trustworthy, i.e., their operation
must be reliable so that people can rely on their services to
accomplish their own missions correctly, without failing
nor causing accidents, working as expected, and keeping
their operation in progress [10—12].

Simulations can contribute to guarantee SoS trust-
worthiness. They consist of a recurrent approach in SoS
Engineering to anticipate failures early in SoS life cycle.
Simulations externalize how the whole SoS behaves
at runtime [13-16]. To be reliable, a simulation must
faithfully reproduce the conditions under which a SoS
operates. These conditions must involve SoS surround-
ing environment (such as rain and temperature) and
constituent operational conditions (such as battery level
and GPS location) [15, 17]. A manual approach can fail
to reproduce the real frequency of such stimuli, since an
expert would have to simultaneously inform inputs for all
constituents at runtime until the end of the simulation.
Moreover, a manual approach to generate inputs for such
simulation can be costly. For example, to reproduce SoS
dynamics, for each unit of time, each constituent in the
simulation must be fed. A stimulus is often delivered to
a constituent system through a user interface interaction.
For each stimulus, one user interaction is needed. Con-
sidering a SoS formed by six constituents, if each one of
them requires one stimulus by unit of time, after only 100
units of time, 600 interactions (such as clicks) need to be
performed. Thus, the effort needed to feed a simulation
with a greater number of constituents or for a longer
period of time is extremely high, making this approach
unfeasible to simulate real SoS.

In this scenario, stimuli generators can support SoS sim-
ulation. They consist of a virtual simulation entity respon-
sible for playing the role of the environment, delivering
input to a SoS [18].

However, manually coding of such stimuli generator is
equivalently not feasible. Stimuli generators are domain-
dependent and totally adherent to the environment mod-
eling, which is itself challenging for SoS development
[19-21]. For example, if we want to simulate a reactive
system (such as a temperature sensor), it is important to

Page 2 of 22

predict a subset of stimuli that it can receive in order
to establish how it will react to them. This entity should
encompass details such as the scale in which it will work
(celsius, fahrenheit, kelvin, or another scale), a range of
acceptable values (from —50 to 60 °C, for example), the
description of the data as a data structure (with value and
type), instances that could be received, and frequency in
which it must be delivered. Additionally, its development
is costly, as it requires writing additional simulation code,
often in a lower abstraction level, such as state machines,
ports, inputs, and outputs details. Aiming to reduce costs
associated to the engineering of a stimuli generator, we
can explore the possibility of automating its creation,
hence supporting (i) the prediction of the surrounding
environment dynamics and (ii) an anticipation of possi-
ble events and natural phenomena that could hamper SoS
correct operation.

In context, it is noteworthy to pose the following
research question: How is it possible to automatically
obtain a functional stimuli generator that reproduces envi-
ronmental conditions to the simulation of a SoS? To
answer this question, in this article we present a model-
based derivation approach for automatically producing
stimuli generators to feed a SoS simulation at runtime. In
this approach, architectural descriptions play the role of
input model as they inherently store information about
expected inputs and outputs of the SoS, supporting envi-
ronmental modeling. We evaluate our approach with
regard to its correctness/reliability in automatically pro-
ducing stimuli generators for the simulation of a real SoS
that monitors flash floods risk in a river that crosses urban
areas. Results of this study reveal that our approach is
reliable and capable of deriving stimuli generators that
conform with the expected inputs that must be received
by simulated constituents and that effectively triggers the
SoS simulation.

This paper is structured as follows: “Background”
section briefly introduces the foundations for
understanding our approach, “Presentation of Stimuli-
SoS” section presents our approach Stimuli-SoS, “Evalua-
tion” section details the case study, “Discussion” section
discusses our results and related work, and “Final remarks
and forthcoming steps” section has our final remarks,
discussing potential future works.

Background

Modelling and simulation (M&S) are vital elements within
processes for analysis and design of SoS. M&S enable
visualization of SoS dynamics [17, 22-25]. Several appli-
cation domains adopt M&S [17]. Simulations correspond
to an imitation of the operation of a real-world process
or system over time and involve generation of artifi-
cial stimuli and the observation of its outcome to draw
inferences about the operation of real systems that they

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

represent [15, 17, 26]. As such, M&S promote (i) a visual
and dynamic viewpoint for SoS software architectures,
reproducing stimuli the system can receive from a real
environment, (ii) prediction of errors, diagnosing them
and enabling corrections, and (iii) observation of expected
and unexpected emergent behaviors of an SoS [27, 28].

SoS must be analyzed under a multitude of viewpoints,
and these viewpoints can be distinguished into two fam-
ilies: static approaches, focusing on systems properties,
and dynamic approaches, focusing on their behavior [23].
As SoS exhibit emergent behaviors, dynamic approaches
are especially interesting. An emergent behavior can be
classified under two perspectives [14]: Intention and Type.
An emergent behavior can be Predicted or Unpredicted
[29]. Predicted emergent behavior consists of behaviors
intentionally designed to emerge at runtime, whilst unpre-
dicted emergent behavior corresponds to that one that
emerges as a co-lateral effect of specific conditions or run-
time configurations, with the potential to cause losses to
the SoS operation. Considering the type, four categories
exist [14]: Simple, predicted, strong, and spooky. Simple
emergent behaviors are emergent properties readily pre-
dicted by simplified models of the SoS. They are produced
in lower complexity through models that abstract the SoS
(only intentional predicted behaviors emerge since the
model is overly simple). Predicted emergent behaviors are
those readily and consistently reproducible in simulations
of the system, but not in static models. They are partially
predicted in advance (desired behaviors are predicted, but
undesired can also appear). Strong emergent behaviors
are consistent with SoS known properties, but are not
reproducible in any model of the system. Direct simula-
tions may reproduce the behavior, but inconsistently, and
simulations do not predict where the property will occur
(desired behaviors exist, but unpredicted behaviors are the
majority). Finally, spooky emergence is inconsistent with
known properties of the SoS, not reproducible or subject
to simulation (a natural emergence, such as life itself, not
predicted).

Baldwin et al. summarize current techniques found in
the literature to simulate SoS [24]. Event-based model-
ing is the most prominent approach, as researchers can
program different states a system undergoes to compre-
hend the behavior of the SoS as a whole [24]. In particular,
DEVS is the most popular event-based simulation for-
malism [30]. It represents SoS, providing the required
dynamic view of SoS. However, a straightforward genera-
tion of DEVS code does not guarantee that the simulation
is executable. This happens because the SoS operation is
deeply related to the stimuli received from the environ-
ment that triggers the simulation execution. Hence, it is
necessary to elaborate a specific entity in the simulation
model that is responsible for delivering expected stimuli
that drive the operation of the SoS: the stimuli generator.

Page 3 of 22

Regardless of the approach adopted to simulate SoS,
simulations often depend on some internal structure that
imitates the surrounding environment of an SoS, deliver-
ing stimuli that are assumed to be received by the SoS to
trigger its operation [31]. The environment comprises the
SoS surroundings, such as temperature, wind, water level,
and noise, and/or conditions in which a system operates,
such as battery level and geographic position [4]. Envi-
ronment is local to each system. By the nature of SoS,
environments are only partially known at design time [8].

There are two alternatives to deliver stimuli to a simula-
tion [18, 32—35]. The first one is adding a portion of code
to the body of each constituent in the simulation, ran-
domly producing data [36]. However, this approach brakes
the separation of concerns principle, decreasing main-
tainability, as this code will be tangled to the constituent
operational code. The second alternative is to materialize
all stimuli into a single artificial entity known as stimuli
generator. This structure becomes part of the simulated
SoS, continuously delivering stimuli to SoS. Hence, stim-
uli generators imitates the SoS surrounding environment,
automating the stimuli input [33-35, 37-39].

Developing stimuli generators require a careful investi-
gation of SoS requirements and architecture specification
to elicit which stimuli should be provided. Such tasks can
bring additional cost to the SoS development and might be
error-prone when a manual approach is used to transform
architectural elements in software code. Moreover, stimuli
generator can be used as an interface between the simula-
tor actually employed and other industrial simulators used
to imitate real environments, such as flight simulators, or
a river simulation for flood monitoring SoS. This asso-
ciation between two types of simulator is known as co-
simulation [40, 41]. This approach is broadly adopted by
the industry to a large-scale test. Meanwhile, despite the
potential of stimuli generators to support co-simulation
approaches in SoS development, such approaches for
automatically creating this stimuli generator for simula-
tion of SoS have not been widely investigated.

Model-based engineering (MBE) techniques have been
investigated in the context of SoS [16, 22, 25, 42, 43]. They
represent a software engineering approach in which mod-
els are the main basis, spanning all activities that make
up the software development process [6, 44]. MBE has
been supported by a broad set of tools that are available
to achieve a proper level of automation using transforma-
tion tools, such as Xtend [45] and Acceleo [46]. Model
transformations are the heart of MBE [44]. Model trans-
formations are a well-accepted approach that aids soft-
ware engineers in establishing correspondences between
models [47]. It consists of a program, often written in
a declarative manner, that transforms an input model in
an output model [44]. MBE can be exploited to generate
stimuli generators. Next section details our approach.

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

Presentation of Stimuli-SoS

Stimuli-SoS is a model-based approach established to
automatically derive stimuli generators for SoS simu-
lations. For each distinct type of constituent in a SoS,
a dedicated stimuli generator is created. Architectural
models often bring some sort of environment description
[48]. To establish the basis of Stimuli-SoS, we decided to
use a SoS architectural model to derive stimuli generators
for a SoS simulation via a model transformation. We
surveyed the literature to find a formalism that could
properly support SoS software architecture modeling
and simulation [49]. For this purpose, such formal-
ism should meet the following language requirements,
supporting:

SoS simulation,

Specification of dynamic architectures,

Multiple constituents modeling,

Constituents interoperability modeling, and

SoS software architecture specificities and precision,
including environment modeling

AR e

Table 1 summarizes the comparison between potential
formalisms to support SoS software architecture repre-
sentation, simulation, and stimuli generator derivation.

We decided to search for a software architecture nota-
tion, an ADL or modeling notation, that could support all
the concepts necessary to represent SoS and that could
be simulated. The following modeling languages have
been identified as the key ones used for SoS architecture
description: Darwin (semi-formal) [50], Wright (formal)
[51], 7-ADL (formal) [52], UML? (semi-formal), SySML?
(semi-formal), and SoSADL [8] [49].

Wright and Darwin were not designed to model SoS
architectures. The aforementioned requirements are not
covered as these ADL were created to model monolithic
systems. SysML was the backbone of two European

Table 1 Comparison between formalisms for SoS simulation
and software architecture specification considering the
aforementioned language requirements

Approach 1 2 3 4 5

Simulink/MATLAB Yes No Yes Yes No
SysML Yes No Yes Yes No
UML/Executable UML Yes No Yes No No
DEVS [15] Yes Yes Yes Yes No
CML Yes No Yes Yes No
Darwin No Yes No No No
Wright No Yes No No No
m-ADL No Yes Yes Yes No
SoSADL No Yes Yes Yes Yes

Page 4 of 22

projects (COMPASS* and DANSE®) for which they
developed extensions for SoSs. DANSE did not develop
an ADL, but used SysML for semi-formally describe
executable architectures that are then tested against
contracts. However, SysML is a UML Profile, and not
necessarily an ADL. Moreover, the adoption of SysML
to model SoS would require multiple models, each one
being simulated individually, and the simulations being
interoperated, what is costly. Then, SysML does match
our approach requirements, and despite being adopted
for software architecture modeling, is not strictly an ADL.
UML shares the same drawbacks.

COMPASS developed a formal approach, in contrast
to DANSE that extended a semi-formal one. In COM-
PASS, CML was specifically designed for SoS model-
ing and analysis. However, CML is not an ADL. It is a
contract-based formal specification language to comple-
ment SysML: SysML is used to model the constituent
systems and interfaces among them in a SoS, and CML
is used to enrich these specifications with contracts. A
CML model is defined as a collection of process defi-
nitions (based on CSP/Circus), which encapsulate state
and operations written in VDM as well as interactions
via synchronous communications. CML is a low-level for-
mal language, of which a key drawback is that SysML
models when mapped to CML results in huge unintelli-
gible descriptions (it was one of the lessons learned from
COMPASS) [8].

Finally, w-ADL is a formal language to model dis-
tributed architectures. However, despite 7-ADL provid-
ing architectural description models for concurrent and
communication processes, it does not provide straight-
forward abstractions for some SoS’ particular concepts,
such as mediator, coalition, and environment modeling,
and it does not support modeling of abstract architec-
tures and simulations. SOSADL is more expressive than
-ADL for the description of SoS software architectures,
with additional elements, such as gates, duties, guaran-
tees, properties, and mediators. In SOSADL, architectural
descriptions are intentional and abstract, whereas in -
ADL, such descriptions are declarative and concrete. In
addition, from a formal point of view, SoOSADL includes
other formalisms besides the 7 -calculus, which is the only
one that 7-ADL possesses.

Hence, only SoOSADL matched the majority of require-
ments we raised. SoOSADL is a language formally founded
on m-calculus for SoS, a novel process calculus extended
from original 7 -calculus, conceived for enabling the for-
mal architecture description of software-intensive SoS. It
can be considered correct by construction, as the for-
mal semantics of such calculus is defined by means of
a formal transition system, expressed as labeled transi-
tion rules, which are formulated as proof rules [53]. In
short, SOSADL describes SoS, which can be expressed

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

as a combination of architecture, systems, and mediators
declarations®. Each architecture declaration is expressed
in terms of its intrinsic behavior, data types, and gates,
i.e., abstractions that enable the establishment of con-
nections. A connection is established to receive stimulus
from or act on the environment, or to simply communi-
cate with other constituents. Furthermore, a connection
can be used to receive, send, or do both actions. Data
types can have inherent functions, and functions can have
associated expressions. Mediators and systems as well as
the SoS architecture itself also have gates, data types,
and behaviors. Systems play the role of constituents in
an Architecture Behavior Declaration, and systems are
mediated by mediators. SOSADL supports representa-
tion of emergent behavior by means of a coalition, i.e.,
a temporary alliance that allows constituents to perform
a combined action. These emergent behaviors are speci-
fied as part of the coalition behavior, documenting how
constituents should interact to accomplish a given set
of missions’.

However, as SoSADL is not executable yet, we needed
to combine SoSADL with the simulation formalism that
matched the majority of our requirements and com-
plemented the characteristics not covered by SoSADL.
SosADL holds the environment description, whilst a sim-
ulation formalism run the stimuli generators created.

Simulation formalisms (or notations subject to simula-
tion) such as Simulink/MATLABS, Executable UML [54],
or SySML? do not support any one of the aforementioned
requirements. Even if such formalisms could represent
SoS constituents by means of multiple models, each one
representing one individual constituent; hence, simulating
them would require interoperability between individual
simulations (known as distributed simulations), which
demands further adaptations and costly implementations.
DEVS, in turn, was developed specially to represent SoS
architectures. Hence, we chose DEVS as the formalism to
simulate our SoS software architectures.

Page 5 of 22

However, even DEVS lacks important characteristics
for expressing SoS software architectures, such as (i) the
language only deals with the notion of ports; there is
no notion of connections and gates separately that is
a remarkable paradigm of software architectures (Com-
ponents, Connections, and Values/Constraints define a
software architecture [48, 55]) used by SoS modeling [56],
(ii) in DEVS, every major entity of an architecture is rep-
resented as the same type of model (called atomic model).
As the single abstraction available, an atomic model pre-
vents a complete characterization of the software archi-
tecture with the diversity and typical heterogeneity of
constituents that form a SoS, (iii) even though it supports
environment modeling, its inherent syntax does not have
any specific mechanism for representing the surround-
ing environment, which is an important aspect of any
software architecture, including software architectures of
SoS [48], (iv) it does not offer a mechanism to automat-
ically create stimuli generators, and finally, (v) since SoS
architectures are dynamic, i.e., their constituents are not
necessarily known at design time and they can join or
leave the SoS at runtime, it lacks the notion of abstract
architectures, i.e., a description of constituents and their
potential connections with other constituents, and how
they could be adapted at runtime. Even though DEVS
supports dynamic reconfiguration, i.e., the modeling and
simulation of architectures of SoS that adapt themselves at
runtime, the language still lacks support for abstract archi-
tectures, thus requiring all constituents that take part in
the simulation to be known. Therefore, it is not allowed
for a new constituent, i.e., a constituent that has not been
predicted at design time, to join the coalition at runtime.

We thus harmonize both formalisms SoSADL
and DEVS, by means of a model transformation
(SoSADL2DEVS), to automatically derive the stimuli
generators from the SoS software architectural descrip-
tions documented in SoSADL. Figure 1 illustrates how
the transformation is carried out. A SoSADL model is

-

.

= »tend =
:: iNPUt——p| 4% output S
— ! \\k’ Code Generator
\,\k g
SosADL DEVVSVimodeI
model Stimuli
a Generator

AN Y,

Fig. 1 SOSADL2DEVS transformation [77]

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

used as input to an Xtend script that materializes a model
transformer. In our approach, there is an Xtend script
that materializes the Code Generator. A functional code
written in DEVS is generated as output, establishing a
SoSADL2DEVS transformation. Considering a broad
view of the transformation, the concepts of system and
mediator in SOSADL are transformed into atomic models
in DEVS. Behaviors are materialized into labeled state
diagrams in DEVS that configures the constituents oper-
ations. Architecture, coalition, and SoS become coupled
models. Connections and gates become ports, and data
types and functions are mapped, respectively, in data
types and functions in DEVS.

A systematic approach to derive stimuli generators

We established Stimuli-SoS as a systematic approach
based on well-defined activities. The systematic approach
involves a reference workflow to derive stimuli generators.

Page 6 of 22

Figure 2 shows the proposed workflow which is repre-
sented through an UML activity diagram using SPEM*?
stereotypes. Each activity is developed by a SoS archi-
tect. The result of the execution is the generation of
work products. Our approach consists of the following
activities:

1. Specification of SoS software architecture: In the first
activity, an architectural description of the SoS
software architecture is specified using SoOSADL. The
work products delivered are used as input for the
next activity. Environment modeling is a sub-activity
performed in this step

2. Automatic derivation of stimuli generators: This
activity comprises running the model
transformation, receiving SOSADL work products as
inputs, and delivering DEVS files as outputs,
including the stimuli generators

Specification of a
Software Achitecture
of SoS

DEVSNL and Stimuli
Generators

Gengrators

Stimuli-SoS Approach

-8
o
H
¥

< @(
«flows -

«flows

Automatic Derfvation of Stimuli

<<use>>
[SEE e
«flows

Inclusion of Stimuli Generators in
the Targgt Simulstion Model

]!

Activity
SosADL Architecture
Description

s
L

Product

=3

Tool Definition

MS4ME

Execution of <<use>>
Simulation ﬁ j S ‘

MS4ME

<<use>>

<_ _______

Monitoring of
Simulation

Fig. 2 Stimuli-SoS workflow

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

3. Inclusion of stimuli generators in the target
simulation model: After delivering the DEVS files,
they must be included in a project that is deployed in
MS4ME tool to support the launching and execution
of the simulation; and

4. Execution and monitoring of simulation: This
activity uses the stimuli generator and collects data
from the simulation to observe emergent behaviors,
to perform statistical analysis and to collect evidence
for validation and verification of properties of the
SoS software architecture.

Model transformation

All SoSADL elements must be mapped to DEVS to cre-
ate a functional simulation. In SOSADL, there is a special
type of connection called environment, which abstracts
interaction of a SoS with the surrounding environment,
emitting outputs to the environment, or receiving stimuli
from it, e.g., when the system is a sensor. However, there
are no straightforward elements in DEVS to automatically
produce environment stimuli. Thus, it is necessary to cre-
ate a stimuli generator that delivers the expected inputs
the constituents wait to perform transitions and to start
their execution.

Listing 1 shows an excerpt of a code in SoOSADL that
depicts part of the specification of one constituent: in
this case, a sensor Additional file 1. Some parts are hid-
den because they do not influence in the derivation of
stimuli generation. It is possible to see, for example, that
the gate energy offers two environment connections
(lines 12 and 13): one to receive a threshold (a limit
of energy that is considered enough to keep the sensor
in operation), and power, which is used to receive the
level of battery available. A connection in SoOSADL has
a name and a data type that can be transferred through
that communication channel. Then, when a connection
is specified with the environment modifier, it actually
models what is expected to be received from the environ-
ment and the data type expected. Each type of constituent
requires a different stimuli generator. Then, such archi-
tectural model is used as an input for a model transfor-
mation that collects the set of environment connections,
extracting the data type, and creating one respective out-
put state transition for each one of them. These state
transitions are assembled in sequence to form an entire
state diagram that will drive the stimuli generator oper-
ation. Then, each state transition will deliver one of the
expected data to the correspondent constituent whose
architectural specification model was used to create that
stimuli generator. Each stimuli generator is associated to
a data flow that receives data from a textual file. That file
holds the data that feeds the constituent. Then, these data
are read from the text file and sent to the constituent,
triggering the simulation to run. This happens in a

Page 7 of 22

periodic and constant rhythm so as to keep the simulation
running.

Listing 1 A specification of a Sensor in SoSADL.
1 //’with’ imports declarations suppressed
2 // Description of Sensor as a System Abstraction
3 library WsnSensor is {
4 system Sensor(lps:Coordinate) is {
5 // Declaration of local types hidden
6 gate measurement is {
7 connection pass is in { MeasureData }
8 environment connection sense is out { MeasureData }
9 }
10
11 gate energy is {
12 environment connection threshold is in { Energy }
13 environment connection power is in { Energy }
14 }
15 }
16 1}

The following steps are followed by the transformation
chain that produces stimuli generators:

1. All connections of all the constituents are mapped
into a specification format and saved in a text file

2. Connections are read from the text file and analyzed.
Such connections are parsed from the architectural
description of the SoS to be in the following format:
measurement: : sense; RawData-true. This
first part is the name of the gate in which the
connection has been specified. The second part is the
name of the connection. The third part represents
the data type that can be transferred across that
communication channel. The last part of each
connections descriptions is a boolean: it has a true
value if the connection is of the type environment
and false if it is not. The transformation algorithm
searches for environment connections. Each
connection specified as an environment
connection produces one transition in the
specification of the state diagram in the resulting
stimuli generator. Hence, the stimuli generator
consists of a special type of system (in the context of
the simulation) that has a continuous behavior (a
behavior materialized as a loop) to emit stimulus by
output state transitions, starting and keeping the SoS
in operation.

Listings available externally'! show and bring explana-
tions about the Xtend code that materializes the model
transformation. We evaluate our approach as follows.

Evaluation

To investigate the reliability of Stimuli-SoS approach,
we performed a case study, which is an exploratory
type of empirical method for investigating a phenom-
ena in its natural environment using data gathered from

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

few entities (people, organizations, and sensors) [57]. It
refers to a contemporary phenomenon observed in its
real-world context, and it often adopt multiple sources
of evidence.

We evaluate our approach using a Flood Monitoring
and Emergency Response SoS. Such SoS includes wireless
river sensors, telecommunication gateways, unmanned
aerial vehicles (UAVs), Vehicular Ad Hoc Networks
(VANETs), Meteorological Centers, Fire and Rescue Ser-
vices, Hospital Centers, Police Departments, Short Mes-
sage Service Centers and Social Networks, as described
in [8]. This SoS involves the National Center for Natu-
ral Disaster Monitoring, which monitors 1000 cities, with
4700 sensors, including 300 hydrological sensors, and
4400 rain gauges. There are 5000 mobile ground stations

Page 8 of 22

to monitor land slopes, and data from other agencies are
also used, such as the National Water Agency (ANA!2),
Mineral Resources Research Company (CPRM!3) sensors,
and Aeronautical radars, according to the SENDALI Inter-
national Protocol for Natural Disaster Risk Reduction
(2015-2030), such as droughts, landslides and floods, in
the case of the Brazilian reality. We will use a subset of this
Flood Monitoring and Emergency Response SoS, which
is itself an SoS, i.e., the Urban River Monitoring System,
henceforth, FMSoS. Next section details our application
scenario.

Scenario description

We specified a FMSoS architecture with 42 sensors, 9
crowdsourcing systems, and 18 drones, following the
model shown in Fig. 3. Each drone has its own base

S
'!" Drone
Dn

\

A person using a
crowdsourcing
system Drone

Base

]
)
Hn

f
-

Fig. 3 A Flood Monitoring System-of-System (FMSoS) architecture

/

s s
£ Ms 2 SG10 5
l— SGg Mo 4—‘ -
M4 = , (() 6
, (@)
(¢22)) —
Lt A o "
[4 L 3 33
I Mo l Mg SGy e
G1 L) L d
Mg l o LS
SGj3 W Ve
I—;m: G4
ﬂm)) Stimuli \ Gs Mi1
‘ Sensor SGn Generator I
Sn
—_—— M
o=l) {'ﬁ‘ H2
¢m~ Gateway My Mediator D1 M2
Gn SG; r

—— e

rﬂl‘ D2

(

H2

D

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

(18 drone bases) and transmits the information collected
through its own 3G gateway (a gateway that will be in
the vicinity). Eighteen gateways are spread along the river
boards. Mediators were produced as much as necessary
to mediate these constituents, and 20 gateways were also
used to receive these transmissions.

FMSoS monitors occurrences of floods in an urban area.
Rivers cross the city and, when the rains are intense, floods
frequently occur, causing losses, damage, and imminent
danger for the population. FMSoS is composed by five
different types of constituents:

1. Smart sensors, which are fixed embedded systems
monitoring flood occurrences in urban areas, located
on river edges

2. Gateways, which gather data from constituents and
share them with other systems

3. Crowdsourcing systems, which are mobile
applications used by citizens for real-time
communication of water level rising

4. Drones, which are UAVs also concerned to
complement sensors observations by monitoring the
river water level while they fly over it, sending
pictures if some change in the water level occurs; and

5. Drone bases, which are fixed basis from where
drones departure, and for where they come back to
recharge battery, and transmit their data

Our FMSoS is concerned with one specific mission:
emitting flood alerts to public authorities that can draw
strategies to protect the population. It consists of a collabo-
rative SoS, with no a central authority that orchestrates the
constituents functionalities to accomplish missions. Data
are gathered in gateways, analyzed according to flood risk,
and a status (alert or no alert) is transmitted to pub-
lic authorities. Figure 4 gives an illustration of FMSoS
deployed in a river!®. Sensors are spread on the river’s
edges with a regular distance among them, and mediators
exist between every pair of sensors in a pre-established
distance between them. Data collected by sensors are
transmitted until reaching the gateway. Besides, drones
fly on the river and return to their bases to recharge and
eventually communicate with gateways to alert about a
flood threat. In parallel, people that walk close to the river
can also contribute by communicating that water level is
increasing if they perceive this happening. In case of flood,
gateways emit alarms for public authorities. Authorities
cross data coming from all the constituents to draw a con-
clusion of an imminent flood, taking decisions to protect
the population.

FMSoS exhibits the following characteristics [1, 8]'°:

® Operational independence of the constituents: Each
constituent (sensor, crowdsourcing system, or drone)
operates in a way that is independent of other

Page 9 of 22

constituents, as they belong to different city councils
and have different missions in the region of Séo
Carlos.

® Managerial independence of constituents: A diversity
of stakeholders and enterprises might independently
own, deliver, and manage different constituents that
compose FMSoS. Moreover, each constituent has its
own management strategy for transmission vs.
energy consumption and will act under the authority

of the different city councils.
e Distribution: All the constituents interoperate

through a communication network.
e Evolutionary development: SoS evolves as a

consequence of changes in the configuration or

functionality of constituents.
e Emergent behavior: One unique constituent could

not deliver a flood alert by itself. For instance, if only
one sensor, or crowdsourcing system or drone
performs its activities in an urban area, it could not
notify a flood on time, being not effective. It might
emit a false alert, since the flood could be limited to
another place. Hence, the flood alert is a result of the
interoperability among a diversity of constituents
working in cooperation, which spread along the
riverbank.

For each one of the constituent types, a specific type
of stimuli generator was automatically produced using
our model transformation approach. For each constituent
type, connections were specified in SOSADL with the
environment modifier to support the automatic deriva-
tion of stimuli generators. Mediators do not need a stimuli
generator as they receive stimuli from other constituents,
and they do not have environment connections. We dis-
cuss the rationale behind each one of the environment
connections for each type of constituent, as follows:

e Smart sensors: battery (power level), coordinate (GPS
location), water level, and power threshold.
Rationale: they receive battery level and power
threshold, and a coordinate to start their work. After
that, the stimuli generator will deliver water level to
them, imitating the data obtained by sensors to verify

if the SoS will detect possible floods.
e Gateways: battery (power level), coordinate (GPS

location), and power threshold.
Rationale: The gateway (materialized by an industrial

computer linked to the internet) provides the base
station for collecting these measures and processing
them, possibly warning the risk of imminent flood
[8]. Data are transmitted from other constituents and
gathered in gateways. Hence, only power level,
coordinate, and power threshold are necessary.

e Crowdsourcing systems: battery (power level),
coordinate (GPS location), visual perception, and
power threshold.

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

Page 10 of 22

View from top

—River's flow sense—>»

50 meters
50 meters

e |

4 s Gateway

|E| Mediator

((('))) Sensor

Pie Communication

@ ((TI))) Drone Base

—

& UAYV - Drone

a)

-
A person using a
crowdsourcing
system

/

Fig. 4 An illustration of part of a FMSoS

Rationale: crowdsourcing systems are apps that
enable population to communicate a possible flood
threat by interacting with mobile. It is possible to
communicate the risk level and to send pictures to
show the situation. These systems do not interact
with environment, but with humans. Hence,
operational aspects are documented as environment
issues (power level, coordinate, and power threshold),
and a specified behavior enables citizen to send
information according to a pre-defined danger scale
and pictures that endorse their perception [58].
However, this perception also represents the
environment. Hence, we defined in SOSADL that the
danger level is a pre-defined value (between 1 and 6, 1
being no risk, and 6 being flood effectively occurring)
that can be classified by the human user according to
what he/she sees. Figure 5 shows a real picture of a
human dummy painted in a river wall in front of

USP. People use it as a reference to classify the flood
risks according to the aforementioned levels. In turn,
Fig. 6 shows how the numbers and the co-related
water level appear in the mobile app so that a person
can classify the risk. Looking at the painting available
in Fig. 5, it can classify the risk according to the scale
available in Fig. 6, and send to gateways. Then, an
environment connection called perception was
defined in SoSADL specification, enabling that these
pre-defined data can be sent according to what the
user selects. Then, it is still possible to automatically
create a stimuli generator that delivers these data.
Drones: battery (power level), coordinate (GPS
location), water depth, and power threshold, image,
and distance flown.

Rationale: Most professional radio control systems
reach 2 km of radius extension. A drone has an
average autonomy range of 10 min. After that, it is

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13 Page 11 of 22

will be responsible for taking a photo of the place that
has altered water height and send via 3G to
responsible authorities, initiating the alert. Photos are
taken only when the water depth exceeds a given
threshold. For measurement purposes, the £1own
distance will also be delivered constantly to the
drone, within the limit of 2.4 km. The GPS
position is also delivered constantly by the
stimulus generator, changing its values over time, to
simulate the autonomous movement.

e Drone basis: battery (power level), coordinate (GPS
location), and power threshold.
Rationale: This is the radio control basis, for where
drones come back to recharge battery. Only its own
battery level, coordinate, and power threshold are
necessary to model its environment of interest.

Case study protocol

The case study was conducted according to the following
steps [57]: (i) case study design (preparation and planning
for data collection), (ii) execution (collection of evidence),
(iii) analysis of collected data, and (iv) reporting.

Scenario: Our case study consists of a Flood Monitoring
SoS (FMSoS) concerned to monitor a river that crosses
Fig. 5 A real picture of a human dummy used to classify flood risk an urban area, aiming to detect potential flash floods, i.e.,
floods that can occur quickly with huge damage and risk
for population. It consists of the description of part of a

required to come back and recharge its battery. Its SoS already in operation in Sao Carlos, Brazil, monitoring
average speed is 16 m per second. Hence, it can fly the Monjolinho river that crosses the urban area and that
5 min to go and return in the next 5 min to recharge. causes recurrent flash floods, causing damage and losses.

Then, he can fly a route of 2400 m one way, and

2400 m back. As the Monjolinho River, where we are ~ Goal: The goalis to evaluate with regard to its correctness
applying the case study, has an extension of 43 km, it ~if stimuli generators automatically produced are able to
will take 18 drones to individually cover 2.4 km each. trigger and feed a simulation until the end of its execution.
We will call the drone connection as water depth,

since it measures the height of water differently from Rationale: Our approach was designed to support sim-
the sensor. In addition, a connection called image ulations of SoS software architectures by automatically

Level 1 Level 2 Level 3 Level 4 Level 5

Fig. 6 Water level with a human dummy

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

producing stimuli generators. As such, we claim that to
be reliable, a simulation must reproduce the conditions
under which a SoS operates, considering both its sur-
rounding environment (such as rain and temperature)
and constituents’ operational conditions (such as battery
level and GPS location). Then, our evaluation is based on
the success of our approach to support automatic pro-
duction of stimuli generators that can (i) reproduce the
surrounding environment and constituents’ operational
conditions and (ii) maintain the simulation running until
the end of data input. Considering that we use a soft-
ware architecture description as the basis to produce three
different types of stimuli generators. If the software archi-
tecture is faithfully described and the generation method
is correct, the stimuli generators created will address our
claims. Then, we established the following research ques-
tion: How is it possible to automatically obtain a functional
stimuli generator that reproduces environmental condi-
tions to the simulation of a SoS? To answer this question,
we established a model-based approach that produces
such stimuli generators from a SoS software architecture
description and established the following goal to the case
study (that matches our first research question). From this
general goal, we derived the following research questions
with their respective metrics:

RQI: Are the (automatically created) stimuli generators
functional?

Rationale. This question establishes whether or not the
stimuli generators automatically generated are functional,
that is, if they can work into the context of a simulation
after deployed, exactly how they were created, without any
manual intervention or modification.

Metric: success fee: percentage of data correctly deliv-
ered to the correspondent constituent, considering the
amount of that data that is intended to be delivered.

RQ2: Is the stimuli generator capable of triggering a
simulation correctly?

Rationale. The simulation only starts when the cor-
rect stimuli are received by the constituents and they
start their operation, making the entire SoS operate. This
research question evaluates if the simulation starts correctly.

Metric: efficiency: A participant observes if the simula-
tion is successfully triggered by the stimuli received during
its entire execution cycle.

RQ3: Is the stimuli generator capable of supporting an
entire simulation execution correctly?

Rationale. The aim of a stimuli generator is supporting a
simulation with a continuous emission of stimuli that keep
the simulation running.

Metric: number of problems during simulation execu-
tion: given by the proportion of errors during simulations
compared to the total execution of the simulation.

Page 12 of 22

Research instruments

We used a FMSoS to collect all data used in the simula-
tion. We adopted Eclipse Modeling Framework (EMF) as
the platform to develop SoOSADL models based on Xtext.
Xtend is the transformation language, MS4ME'® is the
simulation platform, and DEVS (in particular, a DEVS
dialect called DEVS) is the formalism for running the
generated simulation models.

Data preparation

We obtained data collected by the sensors that are under
supervision of a Brazilian entity responsible for moni-
toring natural disasters (Brazilian Center for Monitoring
and Warnings of Natural Disasters - CEMADEN) [59].
These data were parsed and stored in a text file. Stimuli
generator are fed with them, emitting them to the simu-
lation, stimulating it until the end of the execution. The
input of data triggers the constituents operation, cause
their interoperability, reach the gateway, are processed
creating new data that correspond to positive or nega-
tive flood alerts. We also collect these data to analyze
results.

We chose a large sample of data collected by the real
EMSoS from November 23, 2015, to December 31, 2015.
This interval was important because during these months
a number of floods occurred. This enabled us to estab-
lish whether or not our simulation results in a diversity
of situations. We sent 1000 samples for each sensor, being
sent every 5 min, and 1000 for crowdsourcing systems.
Considering that we only had data to feed sensors in a
simulation, we adapted them so to have similar data for
stimuli generators for crowdsourcing systems and drones.
For crowdsourcing systems, the aforementioned scale was
used to classify risk between 0 and 6. So we could simulate
how people would react and behave due to the changes in
water level registered before by sensors. Then, we created
a dataset correspondent to the data used to feed sensors.
This dataset is available externally!”. For drones, we used
5000 drone data, since the drone receives every 500 m
a measurement and 2500 m flown every 5 min, total-
ing this amount for the entire days that we consider in
our sample.

Analysis procedures of collected data

Stimuli-SoS approach is concerned of the automatic pro-
duction of stimuli generators. Hence, we need to evaluate
if the stimuli generators automatically produced (i) con-
form to an expected structure of a DEVS model that send
stimuli to a simulation and (ii) are functional, correctly
delivering data to the respective constituents that wait for
their stimuli. Thus, a quantitative analysis can be adopted
to (i) measure the correctness and similarity of stimuli
generators to the expected form of a functional DEVS
atomic model that deliver data, (ii) evaluate if the stimuli

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

generator keep its operation, delivering data along the
entire simulation cycle, and (iii) evaluate if the simulation
is correctly triggered and maintained in operation until
the end of the input procedure. Hence, we adopted a
quantitative analysis in our case study [57]. We follow
a systematic approach divided in well-established steps,
reporting the collection and measurement of pre-defined
expected data, observing and measuring the scenario via
simulation according to pre-defined metrics, and drawing
conclusions from these results to answer the research
questions established.

Reporting

We report our results based on the steps systematically
followed to achieve the derivation of the stimuli genera-
tors for FMSoS constituents. A video shows a summary of
the entire procedure!®.

1. SoS software architecture specification

The specification of the software architectural descrip-
tion of the FMSoS was conceived as a joint work
between SofTware ARchitecture Team (START/ICMC) at
University of Sdo Paulo and ArchWare (IRISA) at Uni-
versity of South Britanny, in France. Such specification
was conducted by a team of four people using SoOSADL
language. This step was accomplished after 2 months of
work and received four iterations to perform refinements
on the SoOSADL syntax, to cover some gaps that were not
identified before and to refine the software architectural
description itself until reaching an acceptable format. We
specified an FMSoS architecture with 42 sensors, 9 crowd-
sourcing systems, and 18 drones, as described in Fig. 3.
Such specification was validated by a peer-review pro-
cedure composed by the SoSADL creator and other SoS

Page 13 of 22

experts. The complete SOSADL architecture specification
is available externally'®.

2. Automatic derivation of stimuli generators

After the accomplishment of the first step, the automatic
derivation step was conducted. The software architectural
description produced in step 1 was used as input for this
step, being processed by the model transformation script,
delivering a stimuli generator for sensors that compose the
FMSoS. At this step, a distinct stimuli generator is pro-
duced for each distinct type of constituent. In FMSoS case,
three types of stimuli generator are conceived: one stim-
uli generator for sensors, another one for crowdsourcing
systems, and another for drone system. The transforma-
tion runs and delivers the code in 2 s. The products of
this activity (the stimuli generators themselves) were eval-
uated using the metrics defined in RQ1 (similarity and
correctness).

Figure 7 illustrates how an automaton is derived from
SoSADL system specification to create a functional stim-
uli generator. In DEVS, transitions can occur due to (i)
a data received, expressed as ?data, (ii) a data sent,
expressed as !data, and (iii) a spontaneous transition,
without any input or output. This is the approach we used
to generate atomic models for each one of the constituent
types??. In turn, derivation of the stimuli generator is quite
different. In SOSADL, there is a special type of connection
called environment, which abstracts interaction of an SoS
with the surrounding environment, emitting outputs to
the environment, or receiving stimulus from it, e.g., when
the system is a sensor, as shown in the code available in
Fig. 7. Some parts are hidden since they do not influence
in the discussion of stimuli generation derivation. It is
possible to see that the gate energy offers two envi-
ronment connections (Lines 12 and 13): one to receive a

system Sensor(lps:Coordinate) is {

gate measurement is {
environment connection sense is in { RawData }
connection pass is in { MeasureData }
connection measure is out { MeasureData }

}

gate energy is {
environment connection threshold is in { Energy }
environment connection power is in { Energy }

¥

gate location is {
environment connection coordinate is out {Coordinate }
¥
¥

Fig. 7 lllustration of how an automaton is derived from SoSADL system specification to create a functional stimuli generator

Stimuli
Generator
s
Icoordinate
s2 (J
sO
T Ithreshold
Isense (j
\ s3
s4 (-mv:

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

threshold (a limit of energy that is considered enough
to keep the sensor in operation) and power that is used to
receive the level of battery available. Connection sense
is that one responsible to receive raw data, i.e., the water
level from that is being measured from the river by sensor
actuators. Lastly, connection coordinate receives GPS
coordinate from the sensor GPS.

SoSADL models are analyzed by the transformation
algorithm, searching for environment connections. Each
connection specified as an environment connection
(underlined in Fig. 7) produces one transition in the speci-
fication of the state diagram in the resulting stimuli gener-
ator. Hence, the stimuli generator consists of a special type
of model that has a continuous behavior (a behavior mate-
rialized as a loop) to emit stimuli by output state transi-
tions, starting and maintaining the SoS operation. Figure 7
depicts a state diagram equivalent that is created with
state transitions created to deliver each of one of the con-
nection data types underlined. It delivers the aforemen-
tioned data and comes back to the state s0, forming a loop
that continuously offer stimuli for SoS simulation. Order
is not important, as constituents are only triggered when
the data received matches the input data expected in the
state transition in which its operation is at that moment.

Listing 2 DEVS code for a stimuli generator.

coordinate!
threshold!
power!
sense !

generates
generates
generates
generates

output on
output on
output on
output on

to start hold imn si
from sO go to si!
after sl output coordinate!
from s1 go to s2!

10 hold in s2 for time 1!

11 after s2 output threshold!
12 from s2 go to s3!

13 hold in s3 for time 1!

14 after s3 output power!

15 from s3 go to s4!

16 after s4 output sense!

17 from s4 go to sO!

for time 1!

© 00O Uik WN -

Listing 2 shows the code in DEVS that specifies part of
the stimuli generator produced using our approach. The
stimuli generator is created not only with the automaton
that guides its operation, but also with specification
of ports, data types, and all the apparatus necessary to
make it executable and to enable the execution of the
target simulation (some parts are hidden for the reader
convenience). In listing 2, the stimuli generator has four
output ports (lines 1 to 4) that delivers the collection of

Page 14 of 22

the geographic positions (coordinate), power threshold,
power level (battery energy), and the water level sensed
by sensors.

3. Inclusion of stimuli generators in the target simulation
model

After the automatic derivation, the stimuli generator
must be deployed in the simulation code specified in
DEVS and already deployed in MS4ME environment.
This step consists of moving the stimuli generator file to
the simulation project in MS4ME environment. MS4ME
environment automatically generates a Java file that cor-
responds to the execution entity of each stimuli generator.
The SoS architectural description in DEVS is also adapted
to include stimuli generators and to specify that they
must emit data to their corresponding constituents, that
is, those that hold environment connections that were
used as input to produce the respective stimuli genera-
tors. Figure 3 illustrates an example of FMSoS architecture
during simulation. Mediators enable transmission of data
received by sensors from stimuli generators until the near-
est gateway. This activity was evaluated by checking if,
after deployed, the simulation become executable.

4. Simulation execution and monitoring

The simulation took for 6 h and 20 min (6.20 h) in Pro-
cessor Intel core i5-3230M 2.60 GHz (x64), with 4 GB of
RAM Memory, HD of 1 TB, and running Ubuntu 16.04
64 bits. The data corresponds to 38 days of monitoring
data from the Monjolinho River. Data were stored in text
files and delivered by the stimuli generators along the
FMSoS, feeding the simulation. This step was evaluated
according to the metrics established in research questions
two and three (efficiency and number of problems during
simulation execution).

We established a four-window strategy implemented at
the gateways that receive data from constituents to con-
firm floods. For each four data that subsequently arrives,
the gateway checks it by pairs (three possible combina-
tion of pairs of four data that arrives). If at least one
pair that arrived have both their depth levels equals to or
major than 100 cm (the threshold established for that city),
a flood alarm is triggered. Experts remarked that one
sensor could trigger a false alarm due to the possibility
of sediment accumulation, which can increase the mea-
sured collected in a location, but that does not represent
a flood. Hence, taking pairs was considered a valid strat-
egy. Table 2 illustrates an example. It corresponds to real
data that arrived sequentially at the gateway. Each four
data that arrive are chronologically ordered, and pairs of
data given by (52,S3), (S1,S3), and (S3,54) are analyzed.
If at least one of the pairs has two measures equal or
greater than 100 cm, a flood is confirmed. We did allow
the sum of four measures that generate false alarms (for
example, S1 = 90 cm, S2 = 90 ¢cm, S3 = 90 cm, S4 =
130 cm). This can represent an increasing in the level of

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

Table 2 A sample of data sent by sensors

Sensor Timestamp Depth (cm) Alert
S2 2015-11-23 01:58 58 NO
S1 2015-11-23 02:03 56

S3 2015-11-23 02:03 54

S4 2015-11-23 02:03 57

water, but not a flood. Subsequent measures will confirm
if it is an actual flood or not. After all the data were ana-
lyzed, we compared our results to the original results to
evaluate the confidence of the automatically generated
simulation.

However, it is possible to remark in Table 2, data do not
arrive in order. Hence, if a flood occurs, S1 will be the first
to increase its measure, followed by S2, S3, and S4. Thus,
a false negative can occur due to the delay to arrive at the
gateway and possible losses of data. One possible situa-
tion occurs when only one transmit data with more than
100 cm to the gateway, because it was the last one in that
sequence of four measures, but the other measures, even
if not 100 cm yet, can have already slightly increased, indi-
cating a possible a flood coming. To avoid this, a new test
was done: we added both measures of the other combina-
tions that were not checked in the first cycle to avoid false
diagnostics. For example, considering Table 2, we obtain
the values of depth from (S2 + S3), (S2 + S4), and (S1 + S4).

After the simulation terminated, we analyzed the per-
ceptions from the observation and answered the research
questions, as follows. Figure 8 shows the biggest aver-
ages of depth of water reached in each of the days ana-
lyzed. Considering that the four-window strategy exhibits
a threat of flood, days November 23 and December 21 and
30 are the most relevant. Other moments exhibit values
bigger than 100 cm, but only as a momentary occurrence.
The graphic enables us to analyze that the stimuli genera-
tor was capable of delivering the data continuously during
all the simulation execution. Next, we discuss the answers
to the research questions.

700

600

500

400

300

Page 15 of 22

RQI: Are the (automatically created) stimuli generators
functional?

Yes. The stimuli generators were analyzed by a special-
ist that agreed that it contains all necessary structures
to deliver the expected behavior. Moreover, we observed
their behavior during the simulation execution, and the
data that arrived in the gateways. Of the data, 100% were
correctly delivered to the simulation.

RQ2: Are the stimuli generators capable of triggering a
simulation correctly?

Yes. We followed the entire cycle of operation of the
simulation. The stimuli generators were capable of receiv-
ing the input data from the database and generating the
expected stimuli for the constituents, triggering the SoS
interoperability. Hence, the stimuli generator was well
succeeded. Three types of stimuli generators were derived
from the specifications in SoSADL, as available exter-
nally?!. For all of them, they were able to receive data
stored in text files and deliver them to the simulation.

RQ3: Is the stimuli generator capable of supporting an
entire simulation execution correctly?

During the entire cycle, the generator stimulated the
simulation, completing the operation cycles of this SoS.
The group of samples were grouped in four measures each
to give a flood alert or not, depending on the analysis of
the data. We followed the same strategy implemented in
the real gateway: from four data that arrives, if two are
above the threshold, the flood alert is triggered. Twenty-
nine flood alerts occurred along some hours of flood
(considering that each group of four data received that
whose sum was more than the threshold triggered the
alert). During the considered period, besides one effective
flood (November 23), in which the level of water arrived
at almost 7 m, two other real threats of flood occurred on
December 7 and 21. With no failures, the stimuli gener-
ator was capable of supporting the simulation during its
entire cycle of operation.

Discussion

Our solution promotes the automatic production of stim-
uli generators from architectural descriptions of SoS. It
can create a distinct stimuli generator for each distinct
type of constituent that forms a SoS. We applied the same
methodology to produce three different types of func-
tional stimuli generators: one for a smart sensor, one for
crowdsourcing system, and another one for a drone, diver-
sifying our data sources and characterizing the required
multiple source of data of a case study.

Considering our context, requirement elicitation for
Flood Monitoring SoS was a joint effort between several
institutions, such as ICMC/USP, IRISA/UBS, CEMADEN,
and Franhoufer Institute. They elaborated the require-
ments, describing the surrounding environment for such
SoS. After that, we used this document as an input to

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

create the architectural description in SOSADL. Despite
the environment being highly dynamic, a SoS is concerned
only with a subset of the possible stimuli that can be
received. Stimuli set completeness is a SoS requirement
engineering issue. Considering a Flood Monitoring SoS
as an example, data used in our example (such as water
level) are relevant and enough to draw conclusions about
a possible flood and the respective flood alert (as this is
the intended purpose for this SoS). Dynamics of the envi-
ronment is handled by the sensors actuators themselves
(at hardware level). Oscillations in values are passed to
software-level, received, and processed to draw actions.
Then, we believe that the success of our approach relies
on the effectiveness of a SoS to deal with the set of
environment data delivered to it (even if this data set is
specific and restrict). Moreover, at simulation level, we
can observe how SoS will behave considering the spe-
cific data received. If we notice that data delivered are
not sufficient to draw conclusions, a new study can be
conducted to increase data expected in order to increase
precision of floods detection. However, considering the
data set that we worked on and these types of constituents,
SoS was able to detect all the flood threats that effectively
occurred. Hence, we can conjecture that the stimuli set
completeness is acceptable.

We also addressed scale, heterogeneity, and autonomy;,
which are important concerns for SoS. About the scale, we
run an example with 69 constituents, without considering
gateways, mediators, and drone bases. For all constituent
types, stimuli generators were automatically derived and
worked correctly. About the heterogeneity, we used five
different types of constituents. About autonomy, all of
these constituents exhibit their own structure, behavior,
and independent operation.

It is important to highlight how much the adoption of
stimuli generators reduces the manual work of the SoS
simulation. To perform this work manually, considering
that each of the stimuli would consist of a click, each
click demands a reasoning from the human analyst. If
each click needs 10 s to be decided and executed by a
human, in a sample of 1000 data for each crowdsourcing
system, 1000 for each sensor, and 5000 for each drone,
this would result in an amount of 141,000 samples to be
entered by the human user into an architecture of 42 sen-
sors, 9 crowdsourcing systems, and 18 drones. Therefore,
this work would require 1,410,000 s, which amounts to
almost 392 h of work, or almost 50 days of work in 8-h
days. Our procedure needed little more than 6 h to run.

Contributions
The contributions of our approach are listed as follows:

e Productivity: We claim that Stimuli-SoS contributes
to the productivity in the SoS engineering. Using our
approach, we simulated 38 days in little more than

Page 16 of 22

6 h. The effort necessary to correctly simulate the
activities of a human to reproduce real data
accordingly would be significantly larger than using
our solution, as discussed earlier. Thus, our approach
is almost 65 times more productive than a manual
approach, considering the architecture we used.
Reuse: Programming the model transformation to
automatically produce a stimuli generator by one
specialist with integral dedication took 5 days of work
(a total of approximately 40 h). Despite the learning
curve associated to DEVS modeling, Xtend
programming, and domain-specific knowledge to
adapt model transformations, the model
transformation can be reused in a myriad of other
domains. Producing a stimuli generator for each type
of constituent of a SoS takes the same amount of
time. The same specialist that produced the model
transformation also produced an operational stimuli
generator to realize the final format that should be
achieved.

Model-based engineering for SoS: Application of
model-based methods in SoS engineering is still at
the beginning [10]. Moreover, a recent study reveals
that MBE has been adopted for the development of
SoS (around 60% of included studies in a systematic
mapping applied MBE for development of SoS [43]).
MBE has been applied in SoS context for managing
systems complexity, developing candidate
architectures, and verifying design decisions early in
the development process. Thus, we believe that our
approach contributes to SoS software engineering by
establishing a novel model-based approach to
support SoS simulation and environment modeling.
The automatic generation of stimuli generator for
simulation of software architectures of SoS purposes
is a contribution for Software Engineering for SoS
and SoSE, as these techniques were broadly adopted
for hardware benchmarking, but rarely applied in
software engineering, in particular, software
engineering for SoS;

Environment modeling: Environment modeling is an
emerging issue, not only for simulation domain or
SoS domain, but also for modern software
engineering as a whole [60, 61]. It is important to
improve techniques and methods to model the
surrounding environment in which systems will be
deployed, predicting situations that could not be dealt
with effectively without this type of modeling and
preventing failures not envisioned before. These are
vital issues as SoS becomes increasingly autonomous
and ubiquitous, working on domains such as flood
monitoring [2] and crisis management [62].
Stimuli-SoS workflow: Stimuli generators are
produced using a SoS software architecture

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

description as input, following well-defined
systematic steps that achieve the production of
functional stimuli generators deployed in a
simulation. The proposed workflow is also a
contribution of our work, as it exhibits potential to be
reproduced in other scenarios and contributes by
prescribing how to produce this type of simulation
structure.

Threats to validity

Considering conclusion validity, we conjecture that it is
not a remarkable threat for this study, since we do not have
a statistical strength in our conclusions and we do not
compare our approach with others, but use an exploratory
study to draw our conclusions and justify our claims.
Considering internal validity, we can raise the strategy
to divide the data received by the gateway in a four-
window strategy. As this is the number of constituents,
we do not perform remarkable partitions in data. Hence,
we consider that this is not a significant threat. Con-
sidering construction validity, we draw our conclusions
based on an approach that was systematically followed to
automatically derive stimuli generators. Hence, we more
observe than we measure. Further quantitative studies
must be carried out to compare other forthcoming gener-
ations for different domains and that one we worked on
here. Considering external validity, we run a case study
in which, using approach, three different types of stimuli
generators were produced, each one for a different type
of system: a crowdsourcing system, a drone, and a sen-
sor. As such, we increased our sources of evidence, even
considering that all of them work in the same single simu-
lation. Further investigation must be carried out, but there
is some potential to application in other domains and
generalization.

Regarding other threats, we can mention the possibil-
ity of failures if the SoS architect does not qualify the
environment connections in SoOSADL with the keyword
environment. If it occurs, simulation can fail because
expected input can be never received. Indeed, any error
regarding the declaration of environment connections at
design time can affect the final simulation. Moreover,
more accurate evaluation in larger contexts and applica-
tions are still required. Our approach was evaluated in
regards to its success to support automatic production
of stimuli generators that can correctly (i) reproduce the
surrounding environment and constituents operational
conditions. Considering that we use a software architec-
ture description as the basis to produce stimuli generators,
if the software architecture is not faithfully described,
the stimuli generators created can not be correctly pro-
duced. We relieved this threat by submitting the software
architecture description to a specialist. Another threat to
validity is the correctness of the model transformation. To

Page 17 of 22

minimize the impact of this threat, a specialist conducted
a manual inspection and carefully evaluated if each trans-
formation rule produced exactly the expected output
considering each input given.

Related work

Recent studies have investigated the adoption of simu-
lation in software engineering [63], and simulation has
certainly been applied for SoS development [16, 36, 64].
Additionally, initiatives have invested in the simula-
tion of software architectures, but not specifically for
software architectures of SoS, such as SySML [65],
MatLab/Simulink [66], Palladio?? [67], Bogado et al. [36],
and Alexander et al. [68]. Other initiatives invested in
modeling and simulating SoS, but with no support for
software architecture concept [15].

The development of stimuli generators for simulation
purposes is not a new trend [35, 37, 38]. Initiatives
have investigated the adoption of stimuli generators for
hardware benchmarking. For example, Al-Hashimi [37]
describes the use of stimuli generators to produce digital
input signals for simulation purposes of analogic-digital
systems. Kitchen and Kuehlmann present an approach to
stimulate simulations of hardware with a stimuli gener-
ator that performs a random generation of input stimuli
that obey a set of declaratively specified input constraints.
Rahman and Lombigit [33] describe the development of
a software that systematically generates stimulus required
for code simulation (functional and timing) of new digi-
tal processors in gamma spectroscopy system. Yang et al.
[35] adopts simulations for verification purposes to evalu-
ate the correctness of system-on-chips. They apply stimuli
generator to offer a broader coverage of test cases aim-
ing to confirm the correctness of the chip operation.
Thus, they do not work on top of software architec-
tures, automating only the generation of the stimuli but
not the infrastructure that will forward stimuli to the
simulation.

For simulations in the context of SoS software engi-
neering and software architecture, only few works have
investigated stimuli generators. Table 3 compares the
closest related approaches considering the following six
characteristics addressed by our approach:

1. Description of SoS software architectures : Does the

highlighted approach adopt some formalism to
describe SoS software architectures?

Table 3 Comparison between co-related approaches

Approach 1 2 3 4 5 6

DEVS [15] No No Yes Yes Yes No
Kewley et al. [69] No No No No No No
Soyez [70] No No Yes No No No
Stimuli-SoS Yes Yes Yes Yes Yes Yes

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

2. Simulation of SoS software architectures: Does the
approach support simulation of SoS software
architectures?

3. Environment modeling: Does this approach adopt
some type of environment modeling for simulation
purposes?

4. Environment simulation: Does the approach adopt
some type of environment simulation?

5. Adoption of stimuli generator: Does the approach
adopt stimuli generator as the technique to inject
inputs into the simulation?

6. Automatic derivation of stimuli generator: Does the
approach prescribe some type of automatic
derivation or mechanisms to stimulate a simulation?

DEVS is a well-established formalism for simulating SoS
in virtual environments [15]. DEVS deals with the system
architecture, i.e., a simulation model in DEVS consid-
ers software and hardware aspects of all the constituents
that compose a SoS, and for the SoS itself. DEVS takes
into account several important characteristics of soft-
ware architectures, such as data types, constituent systems
(represented as atomic models), constituent behaviors
(expressed as labeled input diagrams), SoS dynamics, and
how constituent exchange data (coupled models), events,
and the overall organization of such constituents. How-
ever, it does not preserve the architectural details of SoS
software architecture specification and relies on a low-
level abstraction formalism, as discussed before.

Kewley et al. claim that constituents should be simu-
lated by isolated simulations and that such simulations
should be federated, that is, they should interoperate in
a synergistic way to form the whole simulation of a SoS
[69]. They adopt a framework called SySHub to play the
role of glue that enables federations of models to support
SoS simulation. However, they do not work on the level
of software architecture (simulation or representation),
despite the fact that they consider distributed interac-
tive simulation (DIS) and high-level architecture (HLA)
as potential architectural and interoperability methods for
description and federated simulations of SoS [71]. How-
ever, even these notations do not tackle the concepts
we address in our approach related to software architec-
ture. They consider environment modeling as a potential
forthcoming contribution of the SySHub system. How-
ever, we did not find continuity at this research topic
or more recent papers that report supporting environ-
mental modeling in SySHub context. Therefore, automatic
derivation of stimuli generator is not currently covered in
that approach.

Soyez et al. propose an agent-based tool to support
modeling of static and dynamic aspects of SoS [70]. Their
formalism is based on the multi-level agent-based model
IRM4MLS, which allows the representation of multiple

Page 18 of 22

entities that can interoperate at different levels, i.e., a
constituent can be itself an SoS, hence supporting differ-
ent levels of granularity [72]. To evaluate their approach,
they implemented a co-simulation of a directed SoS cop-
ing with a reconfiguration problem in the domain of
intelligent autonomous vehicles. Despite the use of co-
simulation, they do not provide any evidence of concerns
with the notion of software architecture, nor automatic
code generation or stimuli generators. They support the
modeling of environment and claim that their formalism
is suitable for simulation. However, there is no evidence
strengthening their claim.

Considering these previous works, there is a gap
regarding the automatic derivation of stimuli generators
based on software architectural descriptions of SoS. Our
approach bridges these gaps and contributes by advancing
the state of the art about simulation of software archi-
tectures of SoS. The next section discusses threats to
validity.

By the nature of SoS, environments are only partially
known at design time [8]. It is important to emphasize
that our approach is to generate stimuli for simulation, not
to automatically create the data to be used in the simula-
tion. A prototype of the data is created that is functional,
but there is no technique for creating data that is reliable
to reality. Currently, this type of data is collected from
other sources, and inserted via Java code into the body
of the stimulus generator. Nonetheless, there is an impor-
tant contribution towards environmental modeling in SoS
engineering. In this stage of the contribution, we automat-
ically create a virtual entity for the simulation capable of
delivering the data in a rhythmic rhythm, imitating the
surrounding environment from the data provided to the
stimulus generator to feed the simulation. In a next step,
we intend to invest in the automatic creation of these data
by a more accurate description of the environment. The
next section brings final remarks and potential for future
research.

Final remarks and forthcoming steps

This article presented Stimuli-SoS, an approach to sys-
tematically and automatically derive stimuli generators to
support the execution of simulation of SoS. We estab-
lished the following research question to be answered:
How is it possible to automatically obtain a functional
stimuli generator that reproduces environmental condi-
tions to the simulation of a SoS? We concluded that the
stimuli generators automatically created:

1. conform with the expected format. The

transformation derived is what was expected;
2. were capable of receiving input data from the

database and generating expected stimuli for the
constituents, triggering the SoS;

3. were capable of correctly supporting an entire
simulation execution; and

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

4. reproduce the environmental conditions of an SoS to
become simulations functional without manual
intervention.

Potential applications and forthcoming investigation
can be conducted relying on the advances produced by
our research. Co-simulation, for instance, is an impor-
tant but significant challenge. It exhibits the potential
to establish a communication between industrial simu-
lators. However, even for the context of simulation of
single subsystems that compose a whole monolithic sys-
tem, co-simulation is still a matter of investigation [41, 73].
Stimuli generators have the potential to be the interface
that enables receiving the injection of values from indus-
trial simulators. The automatic derivation of these stimuli
generators from software architectural descriptions of SoS
with support for environment modeling may enhance
the fidelity of the code generated and the proximity
with the environmental modeling provided by industrial
simulators.

Simulations have been recognized as source of empir-
ical evidences for software engineering [63]. Hence, the
adoption of our approach can leverage the research on
empirical software engineering supported by simulations.
Adopting our approach can aid in the automation of
simulation-based studies, deriving stimuli generators to
be applied during the simulation operation.

Stimuli generators materialize an infrastructure to sup-
port Verification, Validation, and Testing (VV&T) activ-
ities in an automated way [74]. They can be applied to
benchmark a SoS, working as a platform for VV&T of SoS.
Each transition in an atomic model can work as a test case,
and data can be provided by external files that hold test
cases that are automatically generated by a testing tool
[74, 75]. Moreover, VV&T for SoS is currently a challeng-
ing research issue and point of investigation in software
engineering for SoS [43].

Our approach also exhibits a potential to become an
architectural pattern for modeling of simulations. As stim-
ulating a simulation is a recurrent problem, we can estab-
lish a stimuli generator as a systematic and repetitive
solution that can be adapted according to the context in
which it will be applied.

Simulation is an important branch of software engineer-
ing for SoS. It exhibits a remarkable potential to be largely
adopted in software engineering for SoS in the forthcom-
ing years. Then, investigating potentials of automation
in the coverage of tests and correctness of operation is
paramount to avoid damages, losses, and financial prob-
lems that could be brought by an SoS deployed with
errors. We believe that our approach can contribute
to leverage the degree of trustworthiness delivered by
an SoS.

Page 19 of 22

Endnotes

! Throughout this manuscript, SoS will be used inter-
changeably to express singular and plural. Moreover, for
the context of this text, SoS denotes software-intensive
SoS.

2 http://www.omg.org/spec/UML/2.5/

3 http://www.omg.org/spec/SysML/1.4/

*http://www.compass-project.eu/

>http://danse-ip.eu/home/

6 Mediators are architectural elements that establish
communication between two or more constituents [76]

7 Additional details about the syntax of architecture
descriptions in SOSADL can be found in [8].

8 https://www.mathworks.com/products/simulink.html

% http://www.omgsysml.org/

19SPEM - Software & Systems Process Engineering
Metamodel: http://www.omg.org/spec/SPEM/

" https://goo.gl/vPbKcL

2 http://www.ana.gov.br/

B http://www.cprm.gov.br/

14 Credits for the images used to compose the figure:
http://goo.gl/TTOlAa, http://goo.gl/QCUAKY, http://
g00.gl/a9Y0Dw, https://goo.gl/rFkY]6, https://goo.gl/
8Y0jYj, https://goo.gl/XyWEZw, https://goo.gl/VpftdV,
https://goo.gl/dfMPLI.

15Moreover, our example scenario also covers con-
stituents heterogeneity, autonomy, and SoS scale, char-
acteristics that are commonly assigned to SoS, as well
[78].

16 http://www.ms4dsystems.com/pages/ms4me.php

17 http://www.inf.ufg.br/~valdemarneto/
journalMaterials/stimuli-sos.html

¥ https://vimeo.com/220144774

9 https://goo.gl/xk5h3z

20We do not discuss this mechanism with details in this
paper, since the focus is the representation and derivation
of a stimulus generator. Other details are discussed in a
forthcoming paper.

L https://goo.gl/xk5h3z

2 http://www.palladio-simulator.com/

Additional file

Additional file 1: Additional listings for the reader convenience. (PDF
136 kb)

http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/SysML/1.4/
http://www.compass-project.eu/
http://danse-ip.eu/home/
https://www.mathworks.com/products/simulink.html
http://www.omgsysml.org/
http://www.omg.org/spec/SPEM/
https://goo.gl/vPbKcL
http://www.ana.gov.br/
http://www.cprm.gov.br/
http://goo.gl/TTOlAa
http://goo.gl/QCUAKY
http://goo.gl/a9Y0Dw
http://goo.gl/a9Y0Dw
https://goo.gl/rFkYJ6
https://goo.gl/8YojYj
https://goo.gl/8YojYj
https://goo.gl/XyWEZw
https://goo.gl/VpftdV
https://goo.gl/dfMPLl
http://www.ms4systems.com/pages/ms4me.php
http://www.inf.ufg.br/~valdemarneto/journalMaterials/stimuli-sos.html
http://www.inf.ufg.br/~valdemarneto/journalMaterials/stimuli-sos.html
https://vimeo.com/220144774
https://goo.gl/xk5h3z
https://goo.gl/xk5h3z
http://www.palladio-simulator.com/
http://dx.doi.org/10.1186/s13173-017-0062-y

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

Abbreviations

ADL: Architectural description language; CEMADEN: Brazilian center for
monitoring and warnings of natural disasters; DEVS: Discrete event systems
specification; DEVSNL: Discrete event systems specification natural language;
EMF: Eclipse modeling framework; FMSoS: Flood monitoring system-of-system;
GPS: Global positioning system; HLA: High-level architecture; IRISA: Institut de
Recherche en Informatique et Systemes Aléatoires; M&S: Modeling and
simulation; MATLAB: MATrix LABoratory; MBE: Model-based engineering;
MS4ME: Modeling and Simulation Modeling Environment; SoS:
System-of-system; SosADL: Systems-of-systems architectural description
language; SPEM: Software & systems process engineering metamodel; SySML:
Systems modeling language; UML: Unified modeling language; VW&T:
Verification, validation and test; V&V: Verification and validation

Acknowledgements

We thank Prof. Dr. Leslie Foulds (INF/UFG) for the language review; and Dr.
Flavio Horita (CEMADEN) by providing data that we use and adapt to serve as
input to our stimuli generators.

Funding
Nucleo de Informacao e Coordencao do br NIC.br for the waiver received.

Availability of data and materials

The data we used to be processed during the simulation is not public. Hence,
we can not make it available. However, we believe that all the necessary data
to understand our findings are available at the body of this manuscript.

Authors’ contributions

VWGN contributed to all sections. CEP created figures and wrote excerpts to all
sections. LG contributed to background section and evaluation. MG
contributed to evaluation and review of the entire article. WM contributed by
running a new case study, models specification, and textual reporting. FO
contributed by analyzing case study results. EYN contributed in the entire
manuscript, besides supervising this research. All authors read and approved
the final manuscript.

Author’s information

VVGN - Permanent Software Engineering lecturer at Informatics Institute of
Universidade Federal de Goids, Goidnia, Brazil. He is also a PhD candidate in a
co-tutelle program between University of Sdo Paulo (Sdo Carlos, Brazil) and
Université de Bretagne-Sud (Vannes, France). He received his bachelor's
degree (2009) and Msc (2012) in Computer Science from Universidade Federal
de Goias, Goiania, Brazil. In 2015, he was one of the general chairs of XI
Brazilian Symposium on Information Systems (SBSI, in cooperation with ACM),
in Goiania, Brazil. Currently, he is a member of the Special Committee of
Information Systems of the Brazilian Computer Society (CESI/SBC), and also an
SBC Associate and ACM Member. His research interests are focused on
software-intensive systems-of-systems, model-based software engineering,
software architectures, and simulation.

CEP - PhD in Computer Science by ITA, full professor at Pontifical University of
Sao Paulo, and post-doc research at University of Sdo Paulo.

LG - PhD candidate at University of Sdo Paulo at Sao Carlos.

MG - PhD candidate at University of Sdo Paulo at Sdo Carlos.

WM - Undergraduate student at University of Sdo Paulo at Sdo Carlos.

FO - Full professor of Computer Science (holding a Research Excellence Award
from the Ministry of Higher Education and Research of France) serving as
Research Director at the UMR CNRS IRISA, in Britany, France. He received his
BEng from ITA, Sao José dos Campos, SP, Brazil, and his MSc, PhD and HDR
from the University of Grenoble, France. He has published over 200 refereed
journal and conference papers and has been editor of over 15 journal special
issues and research books. He has served on programme committees of over
100 international conferences, e.g., ICSE, ESEC/FSE, has chaired more than 10
of them, of which the French, European, and IEEE/IFIP International
Conferences on Software Architecture (CAL, ECSA, ICSA). His research interests
are centred on formal languages, processes, and tools to support the efficient
architecture of complex software-intensive systems and systems-of-systems.
EYN - MS (1998) and PhD (2006) in Computer Science from the University of
Sao Paulo (USP), Brazil. She conducted her post-doctoral in 2011-2012 in
Fraunhofer IESE, Germany, and in 2014-2015 at University of South Brittany,
France. She is associate professor in the Department of Computer Systems at
University of Sdo Paulo, Brazil. Her main research interests are software

Page 20 of 22

architecture, reference architectures, systems-of-systems, software testing, and
evidence-based software engineering. She is a member of the IEEE and SBC
(Brazilian Computer Society).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

University of Sao Paulo, Av. Trabalhador Sancarlense, 400, 13566-590 S&o
Carlos, Brazil. ?University of South Brittany, Rue André Lwoff, 56000 Vannes,
France. 3Universidade Federal de Goias, Alameda das Palmeiras, 74690-900
Goiania, Brazil. “Pontifical University of Sao Paulo, R. Monte Alegre, 05014-901
S&o Paulo, Brazil.

Received: 26 January 2017 Accepted: 28 September 2017
Published online: 13 October 2017

References

1. Maier MW (1998) Architecting principles for systems-of-systems. Syst Eng
1(4):267-284

2. Oquendo F (2016) Software architecture challenges and emerging
research in software-intensive systems-of-systems. In: 10th European
Conference on Software Architecture. Springer, Copenhagen. pp 3-21

3. Guessi M, Oquendo F, Nakagawa EY (2016) Checking the architectural
feasibility of systems-of-systems using formal descriptions. In: 2016 11th
System of Systems Engineering Conference (SoSE). IEEE, Kongsberg.
pp 1-6

4. Graciano Neto VWV, Paes CEB, Oquendo F, Nakagawa EY (2016) Supporting
simulation of systems-of-systems software architectures by a
model-driven derivation of a stimulus generator. In: Proceedings of
Workshop on Distributed Development, Software Ecosystems and
Systems of Systems, ser. WDES' 16. SBC, Maringd. pp 61-70

5. ROAD2SOS (2013)) Road2sos project - roadmaps for systems-of-systems
engineering. http://road2sos-project.eu/cms/front_content.php.
Accessed June 2016

6. Nielsen CB, Larsen PG, Fitzgerald J, Woodcock J, Peleska J (2015) Systems
of systems engineering: basic concepts, model-based techniques, and
research directions. ACM Comput Surv 48(2):18:1-18:41. [Online].
Available: http://doi.acm.org/10.1145/2794381

7. Chiprianov V, Falkner K, Szabo C, Puddy G (2014) Architectural support for
model-driven performance prediction of distributed real-time embedded
systems of systems. In: Avgeriou P, Zdun U (eds). 8th European Conference
on Software Architecture, ser. ECSA. Springer, Vienna. pp 357-364

8. Oquendo F (2016) Formally describing the software architecture of
systems-of-systems with SosADL. In: 11th IEEE System of Systems
Engineering Conference (SoSE). IEEE, Kongsberg. pp 1-6

9. Cerrudo C (2015) Keeping smart cities smart: preempting emerging cyber
attacks in U.S. cities. Tech Rep

10. Steinhogl W (2015) Trustworthy systems of systems—a prerequisite for
the digitalization of industry. ERCIM News 2015(102):1-2

11. Nami M, Suryn W (2013) Software trustworthiness: past, present and
future. In: Yuan Y, Wu X, Lu Y (eds). Trustworthy Computing and Services:
International Conference, ISCTCS 2012, Beijing, China, Revised Selected
Papers. Springer Berlin Heidelberg, Berlin. pp 1-12

12. Graciano Neto VW, Oquendo F, Nakagawa EY (2016) Systems-of-systems:
challenges for information systems research in the next 10 years. In:
Proceedings of Big Research Challenges in Information Systems in Brazil
(2016-2026) at Brazilian Symposium on Information Systems, ser.
GRANDSI-BR/SBSI. SBC, Florianopolis. pp 1-3

13. Wachholder D, Stary C (2015) Enabling emergent behavior in
systems-of-systems through bigraph-based modeling. In: 2011 6th
International Conference on Systems of Systems Engineering (SoSE). IEEE,
San Antonio. pp 334-339

14. Mittal S, Rainey L (2015) Harnessing emergence: the control and design of
emergent behavior in system of systems engineering. In: SCS. SCSI, San
Diego. pp 1-10

http://road2sos-project.eu/cms/front_content.php
http://doi.acm.org/10.1145/2794381

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

20.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31

32.

33

Zeigler BP, Sarjoughian HS, Duboz R, Souli J-C (2012) Guide to modeling
and simulation of systems of systems. Springer, Berlim

Graciano Neto W, Guessi M, Oliveira LBR, Oquendo F, Nakagawa EY (2014)
Investigating the model-driven development for systems-of-systems. In:
Proceedings of the 2014 European Conference on Software Architecture
Workshops, ser. ECSAW "14. ACM, Vienna. pp 22:1-22:8

Vangheluwe H (2008) Foundations of modelling and simulation of
complex systems. Electron Commun EASST 10:1-12

Sanchez-Montanes MA, Konig P, Verschure PFMJ (2002) Learning sensory
maps with real-world stimuli in real time using a biophysically realistic
learning rule. IEEE Trans Neural Netw 13(3):619-632

Rajkumar RR, Lee |, Sha L, Stankovic J (2010) Cyber-physical systems:

the next computing revolution. In: Proceedings of the 47th

Design Automation Conference, ser. DAC '10. ACM, New York.

pp 731-736. [Online]. Available: http://doi.acm.org/10.1145/1837274.
1837461

Selic B (2012) MDE basics with a UML focus. In: Proceedings of 12th
International School on Formal Methods for the Design of Computer,
Communication and Software Systems: Model-Driven Engineering.
Bertinoro. p 1. talk available at: www.sti.uniurb.it/events/sfm12mde/
slides/selic.pdf. Accessed 8 Oct 2017

Hehenberger P, Vogel-Heuser B, Bradley D, Eynard B, Tomiyama T,
Achiche S (2016) Design, modelling, simulation and integration of cyber
physical systems: methods and applications. Comput Ind 82:273-289.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0166361516300902

France R, Rumpe B (2007) Model-driven development of complex
software: a research roadmap. In: 2007 Future of Software Engineering,
ser. FOSE '07. IEEE Computer Society, Washington. pp 37-54. [Online].
Available: http://dx.doi.org/10.1109/FOSE.2007.14

Carle P, Kervarc R, Cuisinier R, Huynh N, Bedouét J, Riviere T, Noulard E
(2012) Simulation of systems of systems. Aerospacelab 4:1-10. [Online].
Available https://hal.archives-ouvertes.fr/hal-01184315. Accessed 8 Oct
2017

Baldwin WC, Sauser B, Cloutier R (2015) Simulation approaches for system
of systems: events-based versus agent based modeling. Procedia
Comput Sci 44:363-372. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S1877050915002689

Falkner K, Szabo C, Chiprianov V, Puddy G, Rieckmann M, Fraser D,
Aston C (2016) Model-driven performance prediction of systems of
systems. Softw Syst Model:1-27. [Online]. Available: http://dx.doi.org/10.
1007/s10270-016-0547-8. Accessed 8 Oct 2017

Banks J (1999) Introduction to simulation. In: Proceedings of the 31st
Conference on Winter Simulation: Simulation—a Bridge to the Future -
Volume 1, ser. WSC '99. ACM, New York. pp 7-13. [Online]. Available:
http://doi.acm.org/10.1145/324138.324142

Bosch J (2000) Design and use of software architectures: adopting and
evolving a product-line approach. Addison-Wesley, New York

Santos DS, Oliveira BMG, Oquendo F, Delamaro M, Nakagawa EY (2014)
Towards the evaluation of system-of-systems software architectures. In:
Proceedings of Workshop on Distributed Development, Software
Ecosystems and Systems of Systems, ser. WDES. SBC, Maceio.

pp 53-57

Chalmers DJ (2006) Strong and weak emergence. In: Davies P, Clayton P
(eds). The Re-Emergence of Emergence. Oxford University Press, Oxford
Choi BK, Kang D (2013) Modeling and simulation of discrete event
systems, 1st ed. Wiley Publishing, Mapo-Gu Seoul

BKCASE Editorial Board (2017) The Guide to the Systems Engineering
Body of Knowledge (SEBoK), v. 1.8. R.D. Adcock (EIC). Hoboken, NJ: The
Trustees of the Stevens Institute of Technology. Accessed DATE. www.
sebokwiki.org. BKCASE is managed and maintained by the Stevens
Institute of Technology Systems Engineering Research Center, the
International Council on Systems Engineering, and the Institute of
Electrical and Electronics Engineers Computer Society.
http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_
Body_of_Knowledge_(SEBoK). Accessed 8 Oct 2017

Bruneau J, Consel C Diasim: a simulator for pervasive computing
applications. Softw Pract Experience 43(8):885-909. [Online]. Available:
http://dx.doi.org/10.1002/spe.2130

Rahman NAA, Ramli AR, Lombigit L, Abdullah NA, Khalid MAH (2014)
Stimulus generation technique for code simulation of FPGA based

34

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Page 21 of 22

gamma spectroscopy system. In: ADVANCING NUCLEAR RESEARCH AND
ENERGY DEVELOPMENT: Proceedings of the International Nuclear
Science, Technology & Engineering Conference 2013 (iNuSTEC2013), vol
1584, no. 1. AIP Publishing, Melville. pp 77-83

Piccolboni L, Pravadelli G (2014) Simplified stimuli generation for scenario
and assertion based verification. In: 2014 15th Latin American Test
Workshop - LATW. IEEE, Fortaleza. pp 1-6

Yang S, Wille R, GroRe D, Drechler R (2012) Coverage-driven stimuli
generation. In: 2012 15th Euromicro Conference on Digital System
Design. IEEE, Cesme. pp 525-528

Bogado V, Gonnet S, Leone H (2014) Modeling and simulation of software
architecture in discrete event system specification for quality evaluation.
Simulation 90(3):290-319. [Online]. Available: http://dx.doi.org/10.1177/
0037549713518586

Al-Hashimi B (1995) The art of simulation using PSpice: analog and digital,
1st ed. CRC Press, Inc,, Boca Raton

Kitchen N, Kuehlmann A (2007) Stimulus generation for constrained
random simulation. In: Proceedings of the 2007 IEEE/ACM International
Conference on Computer-aided design, ser. ICCAD ‘07. IEEE Press, San
Jose. pp 258-265. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1326073.1326127

Plaza SM, Markov IL, Bertacco V (2007) Toggle: a coverage-guided random
stimulus generator. In: Proc. International Workshop on Logic and
Synthesis (IWLS). IEEE, San Diego. pp 351-357

Barton PI, Pantelides CC (1994) Modeling of combined
discrete/continuous processes. AIChE J 40(6):966-979. [Online]. Available:
http://dx.doi.org/10.1002/aic.690400608

. Gomes C (2016) Foundations for continuous time hierarchical

co-simulation. In: ACM Student Research Competition at MODELS. CEUR,
Saint Malo. pp 7-13

Graciano Neto W, Guessi M, de Oliveira LBR, Oquendo F, Garcés L,
Nakagawa EY (2015) A conceptual map of model-driven development for
systems-of-systems. In: Proceedings of Workshop on Distributed
Development, Software Ecosystems and Systems of Systems, ser. WDES'
15. SBC, Belo Horizonte. pp 89-92

Lana CA, Souza NM, Delamaro ME, Nakagawa EY, Oquendo F,
Maldonado JC (2016) Systems-of-systems development: initiatives,
trends, and challenges. In: Proceedings of XLII Conferencia
Latinoamericana de Informa, ser. CLEI "16. IEEE Press, Valparaiso. pp 1-10
Sendall S, Kozaczynski W (2003) Model transformation: the heart and soul
of model-driven software development. IEEE Softw 20(5):42-45. [Online].
Available: http://dx.doi.org/10.1109/MS.2003.1231150

Bettini L (2013) Implementing domain-specific languages with Xtext and
Xtend. Packt Publishing, Birmingham

Eclipse (2012) Acceleo. [Online]. Available: http://www.eclipse.org/
acceleo/. Accessed 8 Oct 2017

Sun'Y, Demirezen Z, Lukman T, Mernik M, Gray J (2008) Model
transformations require formal semantics. In: Lawall J, Réveillére L (eds).
Domain-Specific Program Development. ACM, Nashville. p 5
ISO/IEC/IEEE (2011) Systems and software engineering - Architecture
description. International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC)/Institute of
Electrical and Electronics Engineers (IEEE), Geneva. ISO/IEC/IEEE 42010
Guessi M, Graciano Neto W, Bianchi T, Felizardo KR, Oquendo F,
Nakagawa EY (2015) A systematic literature review on the description of
software architectures for systems of systems. In: Proceedings of ACM
Symposium on Applied Computing, ser. SAC, Salamanca. pp 1433-1440
Foster H, Mukhija A, Rosenblum DS, Uchitel S (2011) Rigorous software
engineering for service-oriented systems: results of the SENSORIA Project
on software engineering for service-oriented computing. Springer, Berlin.
ch. Specification and Analysis of Dynamically-Reconfigurable Service
Architectures, [Online]. Available http://dx.doi.org/10.1007/978-3-642-
20401-2_20. Accessed 8 Oct 2017

Allen R, Garlan D (1997) A formal basis for architectural connection. ACM
Trans Softw Eng Methodol 6(3):213-249. [Online]. Available: http://doi.
acm.org/10.1145/258077.258078

Oquendo F (2004) -ADL: An architecture description language based on
the higher-order typed mr-calculus for specifying dynamic and mobile
software architectures. SIGSOFT Softw Eng Notes 29(3):1-14. [Online].
Available: http://doi.acm.org/10.1145/986710.986728

Oquendo F (2016) wr-Calculus for SoS: A foundation for formally
describing software-intensive systems-of-systems. In: 11th IEEE System of

http://doi.acm.org/10.1145/1837274.1837461
http://doi.acm.org/10.1145/1837274.1837461
www.sti.uniurb.it/events/sfm12mde/slides/selic.pdf
www.sti.uniurb.it/events/sfm12mde/slides/selic.pdf
http://www.sciencedirect.com/science/article/pii/S0166361516300902
http://www.sciencedirect.com/science/article/pii/S0166361516300902
http://dx.doi.org/10.1109/FOSE.2007.14
https://hal.archives-ouvertes.fr/hal-01184315
http://www.sciencedirect.com/science/article/pii/S1877050915002689
http://www.sciencedirect.com/science/article/pii/S1877050915002689
http://dx.doi.org/10.1007/s10270-016-0547-8
http://dx.doi.org/10.1007/s10270-016-0547-8
http://doi.acm.org/10.1145/324138.324142
www.sebokwiki.org
www.sebokwiki.org
http://dx.doi.org/http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
http://dx.doi.org/http://sebokwiki.org/wiki/Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)
http://dx.doi.org/10.1002/spe.2130
http://dx.doi.org/10.1177/0037549713518586
http://dx.doi.org/10.1177/0037549713518586
http://dl.acm.org/citation.cfm?id=1326073.1326127
http://dl.acm.org/citation.cfm?id=1326073.1326127
http://dx.doi.org/10.1002/aic.690400608
http://dx.doi.org/10.1109/MS.2003.1231150
http://www.eclipse.org/acceleo/
http://www.eclipse.org/acceleo/
http://dx.doi.org/10.1007/978-3-642-20401-2_20
http://dx.doi.org/10.1007/978-3-642-20401-2_20
http://doi.acm.org/10.1145/258077.258078
http://doi.acm.org/10.1145/258077.258078
http://doi.acm.org/10.1145/986710.986728

Graciano Neto et al. Journal of the Brazilian Computer Society (2017) 23:13

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

67.

68.

69.

70.

71.

72.

73.

Systems Engineering Conference (SoSE). IEEE, Kongsberg. pp 1-6.
[Online]. Available: http:/ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=7542925&isnumber=7542882

Hu J, Huang L, Cao B, Chang X (2014) Extended DEVSML as a model
transformation intermediary to make UML diagrams executable. In: 26th
International Conference on Software Engineering and Knowledge
Engineering (SEKE). Knowledge Systems Institute Graduate School,
Vancouver

Bass L, Clements P, Kazman R (2012) Software architecture in practice.
Addison-Wesley Longman Publishing Co., Inc., Boston

Cavalcante E, Batista TV, Oquendo F (2015) Supporting dynamic software
architectures: from architectural description to implementation. In: The
Working IEEE/IFIP Conference on Software Architecture (WICSA) 2015,
Montreal. pp 31-40. [Online]. Available: http://dx.doi.org/10.1109/WICSA.
2015.21. Accessed 8 Oct 2017

Runeson P, Host M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empirical Softw Engg 14(2):131-164
de Albuquerque JP, Horita FEA, Degrossi LC, dos Santos Rocha R,

de Andrade SC, Restrepo-Estrada C, Leyh W (2017) Leveraging
volunteered geographic information to improve disaster resilience:
lessons learned from AGORA and future research directions. In:
Volunteered Geographic Information and the Future of Geospatial Data.
|Gl Global. pp 158-184

Horita FE, de Albuquerque JP, Degrossi LC, Mendiondo EM, Ueyama J
(2015) Development of a spatial decision support system for flood risk
management in Brazil that combines volunteered geographic
information with wireless sensor networks. Comput Geosci 80:84-94
David O, Lloyd Il JAW, Green T, Rojas K, Leavesley G, Ahuja L (2013) A
software engineering perspective on environmental modeling
framework design: the object modeling system. Environ Model Softw
39:201-213. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1364815212000886. thematic Issue on the Future of
Integrated Modeling Science and Technology

Igbal MZ, Arcuri A, Briand L Environment modeling and simulation for
automated testing of soft real-time embedded software. Softw Syst
Model 14(1):483-524

Santos DS, Oliveira BRN, Duran A, Nakagawa EY Reporting an experience
on the establishment of a quality model for systems-of-systems. In: The
27th International Conference on Software Engineering and Knowledge
Engineering, SEKE 2015, Pittsburgh. pp 304-309

de Franca BBN, Travassos GH (2016) Experimentation with dynamic
simulation models in software engineering: planning and reporting
guidelines. Empir Softw Eng 21(3):1302-1345. [Online]. Available: http://
dx.doi.org/10.1007/510664-015-9386-4

Xia X, Wu J, Liu C, Xu L (2013) A model-driven approach for evaluating
system of systems. In: International Conference on Engineering of
Complex Computer Systems (ICECCS). IEEE, Singapore. pp 56-64

OMG Sysml open source specification project. Accessed June 2016
http://sysml.org/

MATLAB (2010) version 7.10.0 (R2010a). The MathWorks Inc., Natick.
https://www.mathworks.com/products/matlab.html

Becker S, Koziolek H, Reussner R (2009) The Palladio component model
for model-driven performance prediction. J Syst Softw 82(1):3-22.
[Online]. Available: http://dx.doi.org/10.1016/j,js5.2008.03.066

Alexander P, Nicolaescu A, Lichter H (2015) Model-based evaluation and
simulation of software architecture evolution. In: Proceedings of
International Conference on Software Engineering Advances, ser. ICSEA,
Barcelona. pp 153-156

Kewley R, Cook J, Goerger N, Henderson D, Teague E (2008) Federated
simulations for systems of systems integration. In: 2008 Winter Simulation
Conference. [EEE, Miami. pp 1121-1129

Soyez J-B, Morvan G, Merzouki R, Dupont D (2014) A multilevel
agent-based approach to model and simulate systems of systems. In:
InTraDE project final workshop, Lille

|EEE Standard for Modeling and Simulation (M amp;S) High Level
Architecture (HLA)—Framework and Rules. [EEE Std 1516-2010 (Revision
of IEEE Std 1516-2000), pp 1-38

Morvan G, Veremme A, Dupont D (2011) IRM4MLS: the influence reaction
model for multi-level simulation. Springer, Berlin

Schweizer B, Lu D, Li P (2016) Co-simulation method for solver coupling
with algebraic constraints incorporating relaxation techniques. Multibody

74.

75.

76.

77.

78.

Page 22 of 22

Syst Dyn 36(1):1-36. [Online]. Available: http://dx.doi.org/10.1007/
$11044-015-9464-9

Anand S, Burke EK, Chen TY, Clark J, Cohen MB, Grieskamp W, Harman M,
Harrold MJ, McMinn P, et al (2013) An orchestrated survey of
methodologies for automated software test case generation. J Syst Softw
86(8):1978-2001

Korel B (1990) Automated software test data generation. IEEE Trans Softw
Eng 16(8):870-879

Wiederhold G (1992) Mediators in the architecture of future information
systems. Computer 25(3):38-49

Graciano Neto VW (2017) A model-based approach towards the building
of trustworthy software-intensive systems-of-systems. In: Proceedings of
the 39th International Conference on Software Engineering, ICSE 2017 -
Companion Volume. [EEE, Buenos Aires. pp 425-428

Jamshidi M (2009) System of systems engineering—innovations for 21st
century, ser. Wiley Series in Systems Engineering and Management. Wiley

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7542925&isnumber=7542882
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7542925&isnumber=7542882
http://dx.doi.org/10.1109/WICSA.2015.21
http://dx.doi.org/10.1109/WICSA.2015.21
http://www.sciencedirect.com/science/article/pii/S1364815212000886
http://www.sciencedirect.com/science/article/pii/S1364815212000886
http://dx.doi.org/10.1007/s10664-015-9386-4
http://dx.doi.org/10.1007/s10664-015-9386-4
http://sysml.org/
https://www.mathworks.com/products/matlab.html
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1007/s11044-015-9464-9
http://dx.doi.org/10.1007/s11044-015-9464-9

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	Background
	Presentation of Stimuli-SoS
	A systematic approach to derive stimuli generators
	Model transformation

	Evaluation
	Scenario description
	Case study protocol
	Scenario:
	Goal:
	Rationale:
	Metric: success fee:
	Metric: efficiency:
	Metric: number of problems during simulation execution:

	Research instruments
	Data preparation
	Analysis procedures of collected data
	Reporting

	Discussion
	Contributions
	Threats to validity
	Related work

	Final remarks and forthcoming steps
	Additional file
	Additional file 1

	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Author's information
	Competing interests
	Publisher's Note
	Author details
	References

