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Abstract

Background: A very important issue in lattice theory is how to extend a given operator preserving its algebraic
properties. For lattice-valued fuzzy operators framework, in 2008 Saminger-Platz presented a way to extend t-norms
which was generalized by Palmeira et al. (2011) for t-norms, t-conorms, fuzzy negations and implications, considering
the scenery provided by the (r, s)-sublattice.

Methods: In this paper we investigated how to extend QL-implications and which properties of it are preserved by
the extension method via retractions (EMR).

Results: As results, we proved that properties (LB), (RB), (CC1), (CC2), (CC3), (CC4), (L-NP), (EP) and (IP) are preserved by
EMR.

Conclusions: However, the extension method via retractions fails in preserving the important properties (NP), (OP),
(IBL), (CP), (P) and (LEM).

Keywords: QL-implication, Extension, (r, s)-sublattice, Lattice

Background
Let L and K be nonempty sets and suppose that M is a
subset of L. Given a function f : M −→ K , if we want
to extend the domain of f to cover the whole L, what is
the best choice to define f (x) for the elements x ∈ L\M?
The answer is: it depends! This is very simple if we want
only to construct a new function that has L as its domain.
In this case, it is enough, for example, to define f (x) = a
for a suitable and fixed a belonging to K (i.e., define f as
a constant function for the elements belonging to L\M).
However, this task becomes more complex if we want to
preserve some characteristics and properties of f.
In fuzzy logic, the problem of extending functions

can be considered for lattice-valued fuzzy connectives
(t-norms, t-conorms, negations, and others) since these
connectives are functions, in particular. The pioneer work
in this framework was put forward by Saminger-Platz
et al. in [1] which provides a method to extend a t-norm T
from a complete sublatticeM to a bounded lattice L. Later,
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we have developed in [2] an extension method to extend
t-norms, t-conorms, and fuzzy negations that generalizes
the method proposed in [1] considering a modified notion
of sublattice. Also, we have applied this method for fuzzy
implications in [3].
The class of QL-implications is the generalization for

fuzzy logic of the implications of quantum logic which
raised from the Garrett Birkhoff and John von Neu-
mann conclusion that “propositional calculus of quantum
mechanics has the same structure as an abstract projec-
tive geometry.” It opened the way for the development
algebraic logic that have much weaker properties than
Boolean algebras. Another interesting fact is that projec-
tive geometry is a non-distributive modular lattice.
In this work, we apply the extension method devel-

oped in [2] for QL-implications. To do so, we recall
some elementary concepts related to lattice theory in
Section “Background and literature review.” The extension
method via retractions is presented in Section “Research
design and methodology,” for t-norms, t-conorms, fuzzy
negations, and implications. Section “Methods” is devoted
to present the main results of this paper, namely the
results concerning to the extension of QL-implications.
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This is an extension of one of the best papers awarded
in WEIT 2013 invited to be published at the Journal of the
Brazilian Computer Society (JBCS).

Background and literature review
Lattice-valued fuzzy logic and related theories have been
studied by many researchers since lattice provides a very
good scenery for the real world issues. For example,
in mathematical morphology, lattice appeals to integral
geometry, stereolgy, and random set models; it is mainly
its algebraic facet which has become popular. There are
also many other applications for lattice in image process-
ing. So it is essential to have a very consistent mathemat-
ical theory in order to provide a safe framework to deal
with those issues (see [4, 5]).
In this paper, we rise up a discussion on the lattice-

valued QL-implications and its algebraic extension as a
function. To do so, in which follows, we provide a review
on some important definitions and results.

Bounded lattices: definition and related concepts
We consider here the algebraic notion of lattices the rea-
sons for this choice will be clear from the context. But
a discussion about the other approach to lattices (i.e., as
posets) can be found in [6–8].

Definition 1 Let L be a nonempty set. If ∧L and ∨L are
two binary operations on L, then 〈L,∧L,∨L〉 is a lattice
provided that for each x, y, z∈L, the following properties hold:

1. x ∧L y = y ∧L x and x ∨L y = y ∨L x (symmetry);
2. (x ∧L y) ∧L z = x ∧L (y ∧L z) and

(x ∧L y) ∨L z = x ∨L (y ∧L z) (associativity);
3. x∧L (x∨L y) = x and x∨L (x∧L y) = x (distributivity).

If in 〈L,∧L,∨L〉 there are elements 0L and 1L such that,
for all x ∈ L, x ∧L 1L = x and x ∨L 0L = x, then
〈L,∧L,∨L, 0L, 1L〉 is called a bounded lattice. Moreover, it
is known that, given a lattice L, the relation x ≤L y if and
only if x ∧L y = x defines a partial order on L. Recall also
that a lattice L is called a complete lattice if every subset of
it has a supremum and an infimum element1.

Example 1 The set [ 0, 1] endowed with the operations
defined by x ∧ y = min{x, y} and x ∨ y = max{x, y} for
all x, y ∈[ 0, 1] is a (complete) bounded lattice in the sense
of Definition 1 which has 0 as the bottom and 1 as the top
element.

Remark 1 In order to simplify the notation, throughout
this paper when we say that L is a bounded lattice, it means
that L has a structure as in Definition 1.

Definition 2 Let (L,∧L,∨L, 0L, 1L) and (M,∧M,∨M,
0M, 1M) be bounded lattices. A mapping f : L −→ M is

said to be a lattice homomorphism if, for all x, y ∈ L, we
have

1. f (x ∧L y) = f (x) ∧M f (y)
2. f (x ∨L y) = f (x) ∨M f (y)
3. f (0L) = 0M and f (1L) = 1M .

Remark 2 Recall that, an injective (a surjective) lattice
homomorphism is called a monomorphism (epimorphism)
and a bijective lattice homomorphism is called an isomor-
phism. An automorphism is an isomorphism from a lattice
onto itself.

Proposition 1 [2] Every lattice homomorphism pre-
serves the order.

Proposition 2 [9] Let L be a bounded lattice. Then, a
function ρ : L −→ L is an automorphism if and only if (1)
ρ is bijective and (2) x ≤L y if and only if ρ(x) ≤L ρ(y).

From now on, lattice homomorphisms will be called just
homomorphisms for simplicity.

Definition 3 Given a function f : Ln → L, the action
of an L-automorphism ρ over f results in the function f ρ :
Ln → L defined as

f ρ(x1, . . . , xn) = ρ−1(f (ρ(x1), . . . , ρ(xn))) (1)

In this case, f ρ is said to be a conjugate of f (see [10]).

Let f : Ln → L be a conjugate of g : Ln → L. If
f (x1, . . . , xn) ≤L g(x1, . . . , xn) for each x1, . . . , xn ∈ L then
we denote it by f ≤ g.

Retracts and sublattices
In general, given a bounded lattice L and a nonempty sub-
set M ⊆ L, it is said that M is a sublattice of L if, for
all x, y ∈ M, the following conditions hold: x ∧L y ∈ M
and x ∨L y ∈ M. In other words, M equipped with the
restriction of the operations ∧L and ∨L inherits the lattice
structure of L.
We would like to work in a generalized notion of sublat-

tice in which the conditionM ⊆ L is somewhat weakened.

Definition 4 [11] A homomorphism r of a lattice L onto
a lattice M is said to be a retraction if there exists a homo-
morphism s of M into L which satisfies r◦s = idM. A lattice
M is called a retract of a lattice L if there is a retraction r,
of L onto M, and s is then called a pseudo-inverse of r.

Definition 5 Let L andM be arbitrary bounded lattices.
We say that M is a (r, s)-sublattice of L if M is a retract of
L (i.e., M is a sublattice of L up to isomorphisms). In other
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words, M is a (r, s)-sublattice of L if there is a retraction r
of L onto M with pseudo-inverse s : M → L.

The purpose of defining (r, s)-sublattices as done in
Definition 5 is to provide a relaxed notion of this concept.
It is done an identification ofM with a subset K = s(M) of
L in order to carry on some properties ofM toK, including
its lattice structure via retraction r. In this case, K works
as an algebraic copy of M embedded into L since r is a
homomorphism.

Remark 3 Throughout this paper, the concept of (r, s)-
sublattice as in Definition 5 is used. Whenever the usual
definition of sublattice is used and this is not clear from the
context, this sublattice will be called ordinary sublattice.

The main advantage behind the idea of using this
relaxed version of sublattice is that it allows us to verify
the validity for L of a property which is invariant under
homomorphisms from a latticeM without requiringM be
a subset of L.

Definition 6 Every retraction r : L −→ M (with pseudo-
inverse s) which satisfies s◦ r ≤ idL2 (idL ≤ s◦ r) is called a
lower (an upper) retraction. In this case, M is called a lower
(an upper) retract of L.

Notice that both in Definitions 5 and 6, the pseudo-
inverse s of a retraction r cannot be unique. This is an
advantage of our notion of sublattice since if there exist
more than one pseudo-inverse for the same retraction, it is
possible to identify M with a subset of L in different ways
what give us the possibility to choose the best one for our
proposes. But we must be clear that when we say that M
is a (lower, upper or neither) (r, s)-sublattice of L, we are
considering the existence of at least one pseudo-inverse
s and fixing it. No matter which pseudo-inverse is taken,
every result presented here remains working.

Example 2 Let M and L be bounded lattices as shown in
Fig. 1. A mapping r : L −→ M given by r(x) = sup{z ∈
M | s(z) ≤L x} is a lower retraction whose pseudo-inverse is
the mapping s : M −→ L defined by s(1M) = 1L, s(a) = v,
s(b) = x, s(c) = y, s(d) = z and s(0M) = 0L. Therefore,
it follows that M is a (r, s)-sublattice of L in the sense of
Definition 5.

Remark 4 Note that given a lower retraction, it is some-
times possible to define an upper retraction with the same
pseudo-inverse. For instance, let L and M be lattices as
shown in Fig. 1. If r is a lower retraction with pseudo-
inverse s as defined in the Example 2, then the function
r′ given by r′(x) = inf{z ∈ M | s(z) �L x} is an upper

Fig. 1 Hasse diagrams of latticesM and L

retraction since idL � s ◦ r′. It is easy to check that s is also
a pseudo-inverse of r′.

It is worth noting that ifM is a (r, s)-sublattice of L then
there is a retraction r from L ontoM, but it is not required
to r to be a lower or an upper retraction. Nevertheless, as
shown in the Remark above, there may be more than one
retraction from L onto M with the same pseudo-inverse.
This is a very useful particularity of Definition 5 and we
would like to highlight it in a definition.

Definition 7 Let M be a (r1, s)-sublattice of L. We say
that

1. M is a lower (r1, s)-sublattice of L if r1 is a lower
retraction. Notation:M < L with respect to (r1, s)

2. M is an upper (r1, s)-sublattice of L whenever r1 is an
upper retraction. Notation:M > L with respect to
(r1, s)

3. If r1 is a lower retraction and there is an upper
retraction r2 : L −→ M such that its pseudo-inverse
is also s, then M is called a full (r1, r2, s)-sublattice of
L. Notation:M � L with respect to (r1, r2, s).

Remark 5 Let L be a complete bounded lattice. We
define the case when M is a complete and lower (respec-
tively upper) (r, s)-sublattice of L by M � L (by M � L).

An immediate consequence of the definition of lower
(upper) retraction is that if M � L then it follows that
s ◦ r1 � idL � s ◦ r2.

Fuzzy connectives
In which follows, we define some well-known interpre-
tation of the classical connectives in lattice-valued fuzzy
logic [12–14].

Definition 8 Let L be a bounded lattice. A binary oper-
ation T(S) : L × L −→ L is a t-norm (t-conorm) if, for all
x, y, z ∈ L, it satisfies:
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1. T(x, y) = T(y, x) (S(x, y) = S(y, x)) (commutativity)
2. T(x,T(y, z)) = T(T(x, y), z)

(S(x, S(y, z)) = S(S(x, y), z)) (associativity)
3. If x �L y then T(x, z) �L T(y, z) (S(x, z) �L S(y, z)),

∀ z ∈ L (monotonicity)
4. T(x, 1L) = x (S(x, 0L) = x) (boundary condition).

Dually, it is possible to define the concept of t-conorms.

Definition 9 Let L be a bounded lattice. A binary oper-
ation S : L × L −→ L is said be a t-conorm if, for all
x, y, z ∈ L, we have:

1. S(x, y) = S(y, x) (commutativity)
2. S(x, S(y, z)) = S(S(x, y), z) (associativity)
3. If x �L y then S(x, z) �L S(y, z), ∀ z ∈ L

(monotonicity)
4. S(x, 0L) = x (boundary condition).

Definition 10 A function N : L −→ L is called a fuzzy
negation if it satisfies:

(N1) N(0L) = 1L and N(1L) = 0L
(N2) If x �L y then N(y) �L N(x), for all x, y ∈ L.

Moreover, the negation N is strong if it also satisfies the
involution property, namely

(N3) N(N(x)) = x, for all x ∈ L

In case N satisfies

(N4) N(x) ∈ {0L, 1L} if and only if x = 0L or x = 1L,

it is called frontier. In addition, every element x ∈ L such
that N(x) = x is said to be an equilibrium point of N.
From the point of view of lattice theory, a strong nega-

tion corresponds to what is known as involution (see
[6]).

Definition 11 Let T be a t-norm on the complete lattice
L. The function NT : L → L given by

NT (x) = sup{y ∈ L | T(x, y) = 0L} (2)

is a fuzzy negation, called natural negation of T or the
negation induced by T.

Similarly, we can define a natural negation of a t-conorm
S as follows.

Definition 12 Let S be a t-conorm on the complete
lattice L. The function NS : L → L given by

NS(x) = inf{y ∈ L | S(x, y) = 1L} (3)

is a fuzzy negation, called natural negation of S or the
negation induced by S.

Proposition 3 Let T be a t-norm and S be a t-conorm on
complete lattice L. Thus

1. if T(x, y) = 0L for some x, y ∈ L then y � NT (x)
2. if S(x, y) = 1L for some x, y ∈ L then y � NS(x)
3. if z < NT (x) for some x, y ∈ L then T(x, z) = 0L
4. if z > NS(x) for some x, y ∈ L then S(x, z) = 1L

Proof Similar to Remark 2.3.2(iii) of [15].

Finally, we present the notion of fuzzy implication.
There are some different interpretations of this fuzzy
operator in the literature (see [15–20]) since there is no
consensus on the way to define it just that fuzzy implica-
tion have to behavior at least as in the crisp case. Here, we
consider the notion presented in [15] because we believe
such a definition has the properties necessary for a fuzzy
implication.

Definition 13 A function I : L × L −→ L is a fuzzy
implication on L if for each x, y, z ∈ L the following
properties hold:

1. (FPA) if x �L y then I(y, z) �L I(x, z) (first place
antitonicity)

2. (SPI) if y �L z then I(x, y) �L I(x, z) (second place
isotonicity)

3. (CC1) I(0L, 0L) = 1L (corner condition 1)
4. (CC2) I(1L, 1L) = 1L (corner condition 2)
5. (CC3) I(1L, 0L) = 0L (corner condition 3)

Consider also the following properties of an implication
I on L:

(LB) I(0L, y) = 1L, for all y ∈ L
(RB) I(x, 1L) = 1L, for all x ∈ L
(CC4) I(0L, 1L) = 1L
(NP) I(1L, y) = y for each y ∈ L (left neutrality
principle)
(L-NP) I(1L, y) �L y for each y ∈ L
(EP) I(x, I(y, z)) = I(y, I(x, z)) for all x, y, z ∈ L
(exchange principle)
(IP) I(x, x) = 1L for each x ∈ L (identity principle)
(OP) I(x, y) = 1L if and only if x � y (ordering
property)
(IBL) I(x, I(x, y)) = I(x, y) for all x, y, z ∈ L (iterative
Boolean law)
(CP) I(x, y) = I(N(y),N(x)) for each x, y ∈ L with N
a fuzzy negation on L (law of contraposition)
(L-CP) I(N(x), y) = I(N(y), x) (law of left
contraposition)
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(R-CP) I(x,N(y)) = I(y,N(x)) (law of right
contraposition)
(P) I(x, y) = 0L if and only if x = 1L and y = 0L
(Positivety)
(LEM) S(N(x), x) = 1L for each x ∈ L (law of
excluded middle)

Note that, a special class of fuzzy implication can be nat-
urally obtained by generalizing the implication operator
from the quantum logic, namely p → q ⇔ ¬p ∨ (p ∧ q).
For bounded lattices, this implication is given as follows.

Definition 14 A function I : L × L → L is called a QL-
implication if there exist a t-norm T, a t-conorm S and a
fuzzy negation N such that

I(x, y) = S(N(x),T(x, y)) (4)

for all x, y ∈ L, is a fuzzy implication. If I is a QL-
implication generated by the triple 〈T , S,N〉, then we will
often denote it by IT ,S,N .

Remark 6 [15] Notice that not all function I satisfying
Eq. (4) is a fuzzy implication. For instance, if L =[ 0, 1], T
is the drastic t-norm, i.e.,

T(x, y) =
⎧⎨
⎩

x, y = 1;
y, x = 1;
0, otherwise.

then the function

IT ,S,N (x, y) =
⎧⎨
⎩

1, y = 1;
y, x = 1;

N(x), otherwise.

is not always a fuzzy implication, even if S and N satisfy
(LEM).

Definition 15 Let T, S, and N be a t-norm, a t-conorm,
and fuzzy negation on L, respectively. Then, the function
NIT ,S,N : L → L given by

NIT ,S,N (x) = IT ,S,N (x, 0L) (5)

for all x ∈ L is a fuzzy negation. Usually NIT ,S,N is called
the natural negation generated from IT ,S,N .

Proposition 4 [15] Let T be a t-norm, S a t-conorm, and
N a fuzzy negation defined on L. Then

1. IT ,S,N satisfies (SPI), (CC1), (CC2), (CC3), (CC4),
(LB), and (NP)

2. NIT ,S,N = N

Proposition 5 [15] If IT ,S,N is a QL-implication, then the
conjugate of IT ,S,N is also a QL-implication generated from
the conjugate of T, S and N, i.e.,

(IT ,S,N )ρ = ITρ ,Sρ ,Nρ

Research design andmethodology
As explained at the beginning, the main goal of this paper
is to provide a discussion about the extension of lattice-
valued QL-implications applying the method proposed in
[2] in order to verify which properties are preserved by the
extension operator. Because it is a theoretical research the
methodology is basically to state and prove results.

Methods
We start this section presenting the extension method
developed in [2, 21] for t-norms, t-conorms, and fuzzy
negations. Also in this framework, we apply this method
for extending QL-implications considering our previous
study about extension of fuzzy implications described
in [3].

Extension method via retractions (EMR)
We start this section presenting the extension method
developed in [2] for t-norms, t-conorms and fuzzy nega-
tions. Also in this framework, we apply this method
for extending QL-implications considering our previous
study about extension of fuzzy implications described
in [3].
Consider an ordinary sublattice M of a bounded lattice

L (i.e., M ⊆ L) and T a t-norm on M. Since a t-norm is
particularly a function, it is natural to think if it is possible
to extend T from M to L in order to obtain a new t-norm
TE on L.
One of the first published works on this subject was

put forward by Saminger-Platz et al. in [1]. There,
it was proposed a method to extend a given t-norm
T defined on a complete ordinary sublattice M of
lattice L.
Seeking to generalize this extensionmethod considering

the relaxed notion of sublattice as in Definition 5, Palmeira
and Bedregal presented in [2] other way to extend t-
norms, t-conorms, and fuzzy negations as we can see in
the following propositions.

Proposition 6 [2] Let M < L with respect to (r, s). If T is
a t-norm on M then TE : L × L −→ L defined by

TE(x, y) =
{

x ∧L y, if 1L ∈ {x, y}
s(T(r(x), r(y))), otherwise. (6)

is a t-norm which extends T fromM to L.
It is also possible to apply the method of extending

t-norms for t-conorms and fuzzy negations under sim-
ilar conditions as one can see in Propositions 7 and
8 below.
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Proposition 7 [2] Let M > L with respect to (r, s). If S is
a t-conorm on M, then SE : L × L −→ L defined by

SE(x, y) =
{

x ∨L y, if 0L ∈ {x, y}
s(S(r(x), r(y))), otherwise. (7)

is a t-conorm which extends S fromM to L.

Corollary 1 [2] Let M > L with respect to (r, s), ρ be an
automorphism on M and T be a t-norm on M. Moreover,
suppose ψ : L −→ L is an automorphism on L such that
r ◦ ψ = ρ ◦ r. Then, (Sρ)E � (SE)ψ .

Proposition 8 [2] Let M be a (r, s)-sublattice of L and
N : M −→ M be a fuzzy negation. Then

NE(x) = s(N(r(x))) (8)

for each x ∈ L is a fuzzy negation that extends N from M
to L.

It is worth noting that in Proposition 8, it is required
only that r needs to be a retraction (it is not necessary to be
neither a lower nor an upper retraction), and hence if r is a
lower retraction or an upper retraction, the result remains
valid. This fact allows us to extend fuzzy negations in a
more flexible way than t-norms and t-conorms.

Proposition 9 Let T be a t-norm and S be a t-conorm on
lattice M. Thus

1. ifM � L with respect (r1, s) and TE(x, y) = 0L for
some x, y ∈ L then s(r1(y)) � NE

T (x)
2. ifM � L with respect (r2, s) and SE(x, y) = 1L for

some x, y ∈ L then s(r2(y)) � NE
S (x)

3. ifM � L and z < NE
T (x) for some x, z ∈ L then

TE(x, z) = 0L
4. ifM � L and z > NE

S (x) for some x, z ∈ L then
SE(x, z) = 1L

Proof 1. Suppose TE(x, y) = 0L e
NE
T (x) = s(NT (r1(x))) for each x ∈ L. Hence, if

x = 1L or y = 1L, we have that TE(x, y) = x∧ y = 0L.
Without loss of generality, put x = 1L and then
y = 0L. Therefore, 0L = s(r1(y)) < NE

T (x) = 1L. On
the other hand, if x �= 1L and y �= 1L then

s(T(r1(x), r1(y))) = 0L ⇒ T(r1(x), r1(y)) = r(0L)= 0M⇒
⇒ r1(y) � NT (r1(x)) ⇒ s(r1(y)) � NE

T (x).
2. For this item, we take NE

S (x) = s(NS(r2(x))) for each
x ∈ L. If SE(x, y) = 1L for x �= 0L and y �= 0L then
s(S(r2(x), r2(y))) = 1L. Since r1 is order-preserving,
it follows that S(r2(x), r2(y)) = r1(1L) = 1M , and by
Proposition 3 item 2, r2(y) � NS(r2(x)) which
implies s(r2(y)) � s(NS(r2(x))) = NE

S (x). If x = 0L or

y = 0L, then supposing x = 0L, we have that
1L = SE(x, y) = x ∨ y and hence y = 1L. Therefore,
s(r2(1L)) = 1L = NE

S (0L).
3. If z < NE

T (x) = s(NT (r1(x))) then r1(z) � NT (r1(x)).
By Proposition 3 item 3, we have
T(r1(x), r1(z)) = 0M and hence
s(T(r1(x), r1(z))) = s(0M) = 0L. Thus TE(x, z) = 0L.

4. Consider NE
S as defined at item 2. If

z > NE
S (x) = s(NS(r2(x))) then r2(z) � NS(r2(x)).

Again by Proposition 3, it follows that

S(r2(x), r2(z)) = 1M ⇒ s(S(r2(x), r2(z))
= s(1M) = 1L ⇒ SE(x, z) = 1L

The following theorem presents a way to extend fuzzy
implications by applying the method of extending fuzzy
operators as introduced in [2].

Theorem 1 [3] Let M be a (r, s)-sublattice of L. If I is an
implication on M then the function IE : L × L −→ L given
by

IE(x, y) = s(I(r(x), r(y))) (9)

for all x, y ∈ L, is an implication on L. In this case, IE is
called the extension of I from M to L.

Proposition 10 [3] Under the same conditions as in
Theorem 1, if I is an implication on M satisfying some of
properties (LB), (RB), (CC4), (EP), (IP), (IBL), and (CP),
then IE is an implication on L which satisfies the same
properties.

Proposition 11 [3] Let M be a (r, s)-sublattice of L, ρ

be an automorphism on M and I be an implication on M.
Moreover, suppose ψ : L → L is an automorphism on L
such that r ◦ ψ = ρ ◦ r and ψ−1 ◦ s = s ◦ ρ−1. Then,
(Iρ)E = (IE)ψ .

Results and discussion
The main results are presented in what follows as well as
a critical analysis of them. We start presenting the exten-
sion of the QL-implications in the first subsection and
then a discussion is done for its extension and properties
(EP) and (IP). Finally, a table summarize which properties
of QL-implications are or not preserved by the extension
method.

Extension of QL-implications
As shown in the previous subsection, the extension
method via retractions can be used for extending t-norms,
t-conorms, fuzzy negations, and implications. Now, we
want to apply this method to extend QL-implications
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and test which properties related to this operator can be
preserved by this extension method.

Theorem 2 Let M � L with respect to (r1, r2, s). If IT ,S,N
is a QL-implication on M, then the function given by
IET ,S,N (x, y) = s(IT ,S,N (r1(x), r1(y)) for each x, y ∈ L is a
QL-implication on L.

Proof Straightforward from Theorem 1.

Proposition 12 Let M � L with respect to (r1, r2, s).
If T, S, and N are a t-norm, a t-conorm, and a fuzzy
negation respectively defined on M, such that IT ,S,N is
a QL-implication on M, then the function given by
ITE ,SE ,NE (x, y) = SE(NE(x),TE(x, y)) for each x, y ∈ L is a
QL-implication.

Proof Since r1 and r2 are a lower and an upper retrac-
tions, respectively, we can extend T with respect to (r1, s)
as in (6) and S with respect to (r2, s) as in (7). Moreover,
for each x ∈ L, NE(x) = s(N(r1(x))) is an extension of N
fromM to L (see Proposition 8). In this case, we have that

ITE ,SE ,NE (x, y) = SE(NE(x),TE(x, y))
= s(S(r2(NE(x)), r2(TE(x, y))))
= s(S(r2(s(N(r1(x)))),

r2(s(T(r1(x), r1(y))))))
= s(S(N(r1(x)),T(r1(x), r1(y))))
= s(IT ,S,N (r1(x), r1(y)))

for all x, y ∈ L.
Considering this fact, we shall prove that ITE ,SE ,NE satis-

fies (FPA), (SPI), (CC1), (CC2), and (CC3).
(FPA)
Let x, y ∈ L such that x �L y. Since IT ,S,N is a QL-
implication (in this case, it satisfies (FPA)) and r1(x) �M
r1(y) then, for all z ∈ L, it follows that

ITE ,SE ,NE (y, z) = s(IT ,S,N (r1(y), r1(z)))
�L s(IT ,S,N (r1(x), r1(z)))
= ITE ,SE ,NE (x, z)

Analogously, it can be proved that ITE ,SE ,NE satisfies (SPI)
since IT ,S,N satisfies (SPI).
Moreover,

(CC1)

ITE ,SE ,NE (0L, 0L) = s(S(N(r1(0L)),T(r1(0L), r1(0L))))
= s(S(1M, 0M))

= s(1M) = 1L

(CC2)

ITE ,SE ,NE (1L, 1L) = s(S(N(r1(1L)),T(r1(1L), r1(1L))))
= s(S(N(1M),T(1M, 1M)))

= s(1M) = 1L

(CC3)

ITE ,SE ,NE (1L, 0L) = s(S(N(r1(1L)),T(r1(1L), r1(0L))))
= s(S(0M, 0M))

= s(0M) = 0L

Corollary 2 Let M � L with respect to (r1, r2, s). If T,
S, and N are a t-norm, a t-conorm, and a fuzzy negation,
respectively, all of them defined on M, then ITE ,SE ,NE =
IET ,S,N .

Proof For all x, y ∈ L, it follows that

ITE ,SE ,NE (x, y)= SE(NE(x)TE(x, y))
= s(S(r2(s(N(r1(x)))), r2(s(T(r1(x),r1(y))))))
= s(S(N(r1(x)),T(r1(x), r1(y))))
= s(IT ,S,N (r1(x), r1(y))
= IET ,S,N (x, y)

Proposition 13 Let M � L with respect to (r1, r2, s). If T
is a t-norm, S a t-conorm, and N a fuzzy negation defined
on M, respectively, then

1. ITE ,SE ,NE satisfies (SPI), (CC1), (CC2), (CC3), (CC4),
(LB), (RB), and (L-NP)

2. NITE ,SE ,NE = NE

Proof 1. From Proposition 12, we can conclude that
ITE ,SE ,NE satisfies (SPI), (CC1), (CC2), and (CC3). More-
over, for all y ∈ L we have that

ITE,SE,NE (0L,y)= s(S(r2(s(N(r1(0L)))),r2(s(T(r1(0L),r1(y))))))
= s(S(N(r1(0L)),T(r1(0L), r1(y))))
= s(S(1M, 0M))

= s(1M) = 1L

and

ITE,SE,NE (x,1L) = s(S(r2(s(N(r1(x)))),r2(s(T(r1(x),r1(1L))))))
= s(S(N(r1(x)),T(r1(x), r1(1L))))
= s(S(N(r1(x)),T(r1(x), 1M)))

= s(S(N(r1(x)), r1(x)))
= s(1M) = 1L

what means that ITE ,SE ,NE satisfies (LB) and (RB). For
showing that it satisfies (L-NP), it is enough to see that for
each y ∈ L we have

ITE ,SE ,NE (1L, y) = s(S(N(r1(1L)),T(r1(1L), r1(y))))
= s(S(0M, r1(y)))
= s(r1(y)) �L y

It is easy to see that ITE ,SE ,NE satisfies (CC4) since it
satisfies (LB).
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2. For each x ∈ L, it follows that

NITE ,SE ,NE (x) = ITE ,SE ,NE (x, 0L)
= SE(NE(x),TE(x, 0L))
= SE(NE(x), 0L) = NE(x)

In which follows, some results on properties preserved
by the extension method via retractions and demonstrate
proposition about the relationship of extension of QL-
implications and its properties is presented.

QL-implications and exchange principle (EP)
Proposition 14 Let M�L with respect to (r1, r2, s). Sup-

pose T is a t-norm, S a t-conorm, and N a fuzzy negation
defined on M respectively and IT ,S,N is the QL-implication
on M generated by T, S, and N. If IT ,S,N satisfies (EP) then
IET ,S,N satisfies (EP).

Proof For each x, y, z ∈ L, we have that

IET,S,N(x,I
E
T,S,N(y,z))= s(IT ,S,N (r1(x), r1(IET ,S,N (y, z))))

= s(IT,S,N(r1(x), r1(s(IT ,S,N(r1(y),r1(z)))))
= s(IT ,S,N (r1(x), IT ,S,N (r1(y), r1(z))))
= s(IT ,S,N (r1(y), IT ,S,N (r1(x), r1(z))))
= s(IT,S,N(r1(y),r1(s(IT ,S,N(r1(x),r1(z))))))
= s(IT ,S,N (r1(y), r1(IET ,S,N (y, z)))))
= IET ,S,N (y, IET ,S,N (x, z))

QL-implications and identity principle (IP)
Proposition 15 Let M�L with respect to (r1, r2, s). Sup-

pose T is a t-norm, S a t-conorm, and N a fuzzy negation
defined on M respectively and IT ,S,N is the QL-implication
on M generated by T, S, and N. If IT ,S,N satisfies (IP), then
ITE ,SE ,NE satisfies (IP).

Proof Notice that if x = 1L, then

ITE ,SE ,NE (1L, 1L) = SE(NE(1L),TE(1L, 1L))
= SE(0L, 1L) = 1L

On the other hand, supposing x �= 1L, hence

ITE ,SE ,NE (x, 1L)= SE(NE(x),TE(x, x))
= s(S(r2(s(N(r1(x)))), r2(s(T(r1(x), r1(x))))))
= s(S(N(r1(x)),T(r1(x), r1(x))))
= s(IT ,S,N (r1(x), r1(x)))
= s(1M) = 1L

Proposition 16 Let M < L with respect (r1, s). If IT ,S,N
is a QL-implication on M satisfying (IP), then TE(x, x) �
NE
S ◦ NE(x) for all x ∈ L.

Proof For each x ∈ L, we have

TE(x, x) = s(T(r1(x), r1(x)))
� s(NS(N(r1(x))))
= s(NS(r1(s(N(r1(x))))))
= NE

S (NE(x)) = NE
S ◦ NE(x)

QL-implications and identity principle (LEM)
Suppose S is a t-conorm on M and N is a fuzzy negation
onM given byNE(x) = s(N(r2(x)))which satisfy property
(LEM). If 1L �= x ∈ L, then

SE(NE(x), x) = s(S(r(s(N(r2(x)))), r2(x)))
= s(S(N(r2(x)), r2(x)))
= s(r2(x)) � 1L

Since 1L is the top element of lattice L then SE(NE(x), x) =
1L.
In case x = 1L, it follows that SE(NE(1L), 1L) =

s(S(r(s(N(r2(1L)))), r2(1L))) = s(S(N(1M), 1M)) =
s(1M) = 1L. Therefore, we can state that

Proposition 17 Let M > L with respect (r2, s). If S is a
t-conorm on M and N is a fuzzy negation on M given by
NE(x) = s(N(r2(x))) which satisfy property (LEM), then
SE(NE(x), x) = 1L for all x ∈ L.

The table below shows a description about the proper-
ties that are preserved by extension method via retraction
and those that are not preserved by EMR.
This results shows that this extensionmethod is efficient

if one wishes to obtain a minimal extension of the oper-
ator. However, some important properties regarding to
implications are not preserved by this extension method.
For instance ordering property (OP).
As we can in the Table 1, every property resulting from

those x ∈ L/M that not satisfies s(r(x)) = x implies in
some problem for the extension method. This problem
can be solved if we consider a more powerful extension
method (via e-operators, for short EMEP) as one can
see in [9]. The results shown in [9] allow us to say that
the extension method via retraction is better to obtain
minimal extension whereas EMEP is more efficient in
preserving properties.

Conclusions
We have investigated in this paper the behavior of exten-
sion method via retractions when applied for lattice-
valued QL-implications. As occurred for other fuzzy
operators (t-norms, t-conorms, and negations, see [2]), the
results have shown some properties of this class of impli-
cation are not preserved by this method. For instance, it
does not preserve property (NP) (see Proposition 3.6). It is
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Table 1 Properties preserved and not preserved by the extension
method

Property Preserve Not preserved

(LB) X

(RB) X

(CC1) X

(CC2) X

(CC3) X

(CC4) X

(NP) X

(L-NP) X

(EP) X

(IP) X

(OP) X

(IBL) X

(CP) X

(P) X

(LEM) X

desirable to propose an extension method more efficient
in preserving the properties of extended operator.
For future works, we also wish to apply the extension

method we have developed in [9] for QL-implications
(actually, we want to study the extension of a more gen-
eral class of implication operators and its properties) and
make a comparison of the results.

Endnotes
1An element a ∈ L is called a supremum (infimum) if

it is the least (greatest) element in L satisfying property
a � x (a � x) for all x ∈ L.

2If f and g are functions on a lattice L, it is said that f ≤ g
if and only if f (x) ≤L g(x) for all x ∈ L.
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