
de Souza et al. Journal of the Brazilian Computer
Society (2015) 21:19
DOI 10.1186/s13173-015-0038-8

RESEARCH Open Access

A hybrid particle swarm optimization and
harmony search algorithm approach for
multi-objective test case selection
Luciano Soares de Souza1,2*, Ricardo Bastos Cavalcante Prudêncio2 and Flávia A. de Barros2

Abstract

Background: Test case (TC) selection is considered a hard problem, due to the high number of possible
combinations to consider. Search-based optimization strategies arise as a promising way to treat this problem, as they
explore the space of possible solutions (subsets of TCs), seeking the solution that best satisfies the given test
adequacy criterion. The TC subsets are evaluated by an objective function, which must be optimized. In particular, we
focus onmulti-objective optimization (MOO) search-based strategies, which are able to properly treat TC selection
problems with more than one test adequacy criterion.

Methods: In this paper, we proposed two MOO algorithms (BMOPSO-CDR and BMOPSO-CDRHS) and present
experimental results comparing both with two baseline algorithms: NSGA-II and MBHS. The experiments covered
both structural and functional testing scenarios.

Results: The results show better performance of the BMOPSO-CDRHS algorithm for almost of all experiments.
Furthermore, the performance of the algorithms was not impacted by the type of testing being used.

Conclusions: The hybridization indeed improved the performance of the MOO PSO used as baseline and the
proposed hybrid algorithm demonstrated to be competitive compared with other MOO algorithms.

Keywords: Multi-objective test case selection; Software testing; Particle swarm optimization; Harmony search;
Multi-objective optimization

Background
This work addresses a currently very relevant issue in our
industrialized society: the quality of the software embed-
ded in products being offered to customers, ranging from
a simple cell phone or a microwave oven to cars. Clearly,
in competitive markets, companies which develop poor-
quality products may quickly lose their customers. Yet,
there are several situations in which software failure may
cost lives, such as in the aircraft industry. Hence, software
companies and organizations which embed software-
controlled elements in their products must undergo every
effort to drastically reduce and preferably eliminate any
defects [1].

*Correspondence: luciano.souza@ifnmg.edu.br
1Federal Institute of Education Science and Technology of the North of Minas
Gerais (IFNMG), Humberto Mallard Avenue, Pirapora - MG, Brazil
2Center of Informatics (CIn), Federal University of Pernambuco (UFPE), Recife -
PE, Brazil

In order to increase the quality of products, companies
perform software testing activities, aiming to detect faults
in the software through its execution [2]. The related lit-
erature presents two main approaches for software (SW)
testing: structural (white box) and functional (black box)
testing. Structural testing investigates the behavior of the
software through directly accessing its code. Functional
testing, in turn, investigates whether the software func-
tionalities of the final product are responding/behaving as
expected without using knowledge about the code [3].
In both approaches, the testing process relies on the

(manual or automatic) generation and execution of one or
more test suites (TSs). Each TS consists of a set of (related)
test cases and has a different goal. A test case (TC), in turn,
consists of “a set of inputs, execution conditions, and a set
pass/fail conditions” [3].
The testing process usually deploys some SWmetrics to

help determining the state of the SW or the adequacy of

© 2015 de Souza et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-015-0038-8-x&domain=pdf
mailto: luciano.souza@ifnmg.edu.br
http://creativecommons.org/licenses/by/4.0/

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 2 of 20

the testing itself. Each testing approach deploys different
metrics (quantitative measures) to evaluate the quality of
a test suite (or of the testing process as a whole) [4].
For structural testing, the most commonly used met-

ric is code coverage, which reveals the amount of source
code that is exercised by a particular test suite. Examples
of code coveragemetrics are statement, branch, condition,
path, and function coverage. It is possible to deploy more
than one coverage criteria to measure the percentage of
code executed by the test suite.
Within the functional approach, the metrics vary

according to the adopted testing method (e.g.,
specification-based testing, use case testing, model-based
testing, among others) [1]. In the functional specification-
based testing, test cases are created based on the SW
requirements and (formal) specifications. This metric is
known as requirement coverage. Similarly, for use case
testing, the used metric is use case coverage.
As already mentioned, the above cited metrics can be

used to evaluate the adequacy of a test suite to exercise
a particular SW, with respect to the chosen coverage cri-
terion. As such, they are usually named as test adequacy
criteria or even more precisely coverage-based test ade-
quacy criterion [5]. A test suite is considered adequate to
exercise a given SW when it provides the desired cover-
age of the chosen test adequacy criterion. In fact, we seek
TSs which fully satisfy the adequacy criterion, with the
idea that they would assure a satisfactory level of fault
detection.1
It is worth mentioning that the same test suite may be

considered adequate to test a SW regarding a particular
criterion and not adequate to test the same SW under a
different criterion. For instance, consider a white box test-
ing scenario which uses statement coverage as adequacy
criterion. In this case, an adequate TS would be expected
to exercise 100 % of the code statements at least once.
However, if the adopted metric is path coverage, an ade-
quate TS would be expected to exercise all possible paths
in the SW at least once.
Note that, in real testing sets, it is not always possible

(due to any testing environment constraints) to test 100 %
of the code. In such cases, testers tend to establish less
ambitious adequacy criteria, such as testing 90 or 80 % of
the code.
Now looking at the testing process as a whole, we note

that some of its activities may be very time consuming
when manually performed. First of all, the manual cre-
ation of test cases can be very complex, due to the number
of TC combinations to be considered. Yet, in order to pro-
vide test suites which fully attend the adopted adequacy
criterion, testers usually produce very large TSs, which
also impacts on the time needed to fully execute them.
Finally, the results obtained with the execution of each TC
must be analyzed.

Clearly, this is an expensive and time-consuming pro-
cess, whichmay reach about 40 % of total costs involved in
software development [6]. As such, automation emerges
as the key solution for improving the efficiency and effec-
tiveness of the testing process, as well as to reduce its
costs.
We can cite here strategies and tools for the automatic

generation of test suite from some given software speci-
fication (e.g., Autolink [7], TaRGeT [8], and LTSBT [9]).
Although they speed up the test generation process, these
tools/strategies tend to generate very large TSs (regard-
less the adopted TC generation approach), in order to
fully satisfy the adopted test adequacy criterion. However,
as mentioned above, the execution of large TSs is a very
expensive task, demanding a great deal of the company’s
available resources (time and execution team) [10].
Fortunately, it is possible to identify in large TSs redun-

dant TCs concerning a requirement or piece of code (i.e.,
two or more TCs covering the same requirement or piece
of code). Thus, we can envision ways to reduce the TSs in
order to fit the available resources without seriously com-
promising the coverage of the adequacy criterion and thus
the quality of the testing process.
The task of reducing a test suite based on a selection cri-

terion is known as test case selection. Given an input TS,
TC selection aims to find a relevant TC subset regard-
ing the adopted test adequacy criterion, such that the test
cases that do not improve the reduced TS coverage can be
eliminated. Clearly, the selection criterion relies upon the
coverage of the adopted adequacy criterion.

Test case selection
TC selection can be manually or automatically performed.
Nevertheless, manual selection is very time consuming,
as a huge number of TC combinations must be consid-
ered when searching for an adequate TC subset. Besides, it
depends upon a human expert’s previous knowledge (the
test engineer). As such, it does not always preserve the
coverage of the test adequacy criterion [11].
Thus, we investigate here strategies to automate this

task. We can identify in the related literature several
techniques/strategies for automatic TC selection. On one
side, we count on deterministic approaches, among which
we cite: data flow analysis [12], symbolic execution [13],
dynamic partitioning [14], control flow graphs [15], tex-
tual differences in the code [16], model-based testing [17],
and TC selection based on a similarity functions [11].
The main problem with these approaches is that they may
be inappropriate when dealing with large TSs, since the
computational cost may be prohibitive [18, 19].
In this light, we turn our attention to search-based

strategies, which according to [20] is a more promising
way to treat the TC selection problem. These techniques
explore the space of possible solutions (subsets of TCs),

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 3 of 20

seeking the solution (reduced TS) that best attends the
given test adequacy criterion.
Unlike the deterministic strategies, these search-based

techniques are able to deal with large TSs at a feasible cost,
delivering very good TC subsets regarding test adequacy
criterion coverage. We will detail this approach in what
follows, since the present work developed search-based
solutions for the TC selection problem.

Search-based test case selection
When analyzing the available search-based strategies, we
initially disregard random search since, when dealing with
large and complex search spaces, random choices sel-
dom deliver a good TC subset regarding the adopted test
adequacy criterion.
On the other extreme, we have the exhaustive (brute-

force) search strategies, aiming to determine the best
reduced TS by enumerating all possible solutions. How-
ever, they may be unfeasible for large TSs, due to the high
computational cost to evaluate all possible TC combina-
tions [19].
We then focus our attention on more sophisticated

optimization techniques [21], such as simulated anneal-
ing, genetic algorithms, and particle swarm optimization
(PSO). These techniques deal with problems in which
there is usually a large set of possible solutions (i.e., a large
search space). The quality of a solution in a search space
is evaluated by an application-specific objective function,
which has to be optimized. Optimization techniques aim
to find, in a reasonable time, good solutions in terms of
the objective function.
In our context, solutions in the search space are TC

subsets. The objective function to be optimized measures
the coverage of adopted test adequacy criterion offered
by each solution. The optimization technique iteratively
explores the search space of TC subsets, looking for a
solution with highest coverage of the given test adequacy
criterion [22, 23].
Note that when the TC selection problem involves

more than one test adequacy criterion, the search strat-
egy should deploy one objective function to each different
adequacy criterion. These cases are properly treated by
multi-objective optimization techniques.2
It is worthmentioning here the test environments which

must deal with restrictions, such as the available time to
execute the TS (see [20]). In such cases, the above cited
techniques can also be successfully deployed; however
they may reflect the search restriction in some way. Our
previous work using PSO falls within this case [23, 24].
In those works, we formulated the TC selection problem
as a constrained optimization task in which the objec-
tive function to be optimized concerns the functional
requirements coverage, and the execution effort is used as
a constraint in the search process.

Multi-objective optimization TC selection
So far, few works have investigated the use of multiple
selection criteria. Some approaches to this problem com-
bine the existing selection criteria into a unique objective
function using weights or some other heuristics [25–27].
The main drawbacks of these works are the following:

(1) they demand a human expert or previous knowledge
in order to set a priori appropriate weights to the multiple
criteria or to create heuristics to combine them; and (2)
they do not offer to the tester a set of (optional) solutions
in terms of the search objective functions, so that tester
would have the flexibility to choose the solution that best
fits the current testing context.
Considering the above scenario, recent studies have

investigated the use of multi-objective optimization
(MOO) strategies by mapping each existing selection cri-
terion into a different search objective function.
These works use concepts of Pareto optimization [21],

returning to the tester a set of solutions which are non-
dominated considering the objective functions. This way,
the tester/final user is able to verify the relations among
the varied objectives and choose the solution that best
fits the available resources for test execution. Examples
of works within this approach are [28–36], which in its
majority adopted evolutionary techniques.

Overview of the developed work
Following this new and promising trend, our current
work proposed two MOO algorithms for multi-objective
TC selection: (1) the Binary Multi-Objective Particle
Swarm Optimization with Crowding Distance and Roul-
lete Wheel (BMOPSO-CDR) and (2) a hybrid version
(BMOPSO-CDRHS) which combines the BMOPSO-CDR
with the Harmony Search (HS) algorithm. Each algorithm
provides to the user a set of solutions (test suites) with
different combinations of the objective’s values. The user
may then choose the solution that best fits the available
resources. It is important to highlight that, although the
focus of our research is the TC selection problem, the pro-
posed algorithms can also be applied to MOO in other
contexts.
The motivation of our work is twofold. First, we aimed

to investigate the use of multi-objective PSO and HS tech-
niques to the problem of TC selection, which has not
been deeply investigated yet. The HS algorithm [37] has
drawn more attention from search-based community due
to its excellent characteristics such as easy implementa-
tion and good optimization ability. But, to the best of
our knowledge, only our previous work [38] investigated
the HS algorithm in the context of TC selection. Sec-
ond, we aimed to investigate the use of hybrid techniques
in our problem. Hybrid optimization techniques have
achieved very good results but in different applications.
We expected to achieve good results in the TC selection

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 4 of 20

problem as well, by combining two competitive optimiza-
tion approaches. Therefore, this is a promising study area
that we will explore further.
In [38], we presented the preliminary experiments

which evaluated the proposed algorithms. In the cur-
rent work, we provide a more detailed description of the
algorithms as well as a deeper experimental analysis. In
order to consider a more diverse set of experiments, we
addressed both structural and functional testing, differ-
ent from [38] which addressed only structural testing. For
structural testing, the experiments were performed here
using five programs (flex, grep, gzip, sed, and space) from
the Software-artifact Infrastructure Repository (SIR) pro-
grams [39]. For functional testing, in turn, two suites from
the context of a Motorola mobile device were adopted.
The proposed algorithms optimized two objectives simul-
taneously: maximize branch coverage (structural testing)
or functional requirement coverage (functional testing)
while minimizing execution cost (time). We point out that
it is not the purpose of this work to discuss which objec-
tives are more important for the TC selection problem.
Branch coverage and functional requirement coverage are
likely good candidates for assessing the quality of a TS,
and execution time is one realistic measure of cost.
In the experiments, we initially investigated the influ-

ence of the HS parameters on the performance of the
proposed algorithms. Following, the proposed algorithms
were compared to two baselines: (1) the Non-dominated
Sorting Genetic Algorithm (NSGA-II) [40]; (2) the Multi-
Objective Binary Harmony Search Algorithm (MBHS)
[41]. The proposed hybrid algorithm achieved a statis-
tically significant gain in performance compared to the
baselines.
The following section (“Methods”) will introduce

a formalization of the problem being tackled here.
The proposed algorithms will be described in detail.
The subsequent section (“Results and discussion”) will
present the experiments performed to evaluate the
proposed algorithms, discussing the obtained results.
Finally, we have the conclusions and future directions of
research.

Methods
In the current work, we proposed new MOO algorithms
for the problem of TC selection with multiple criteria. An
MOO problem considers a set of k objective functions
f1(x), f2(x), . . . , fk(x) where x is an individual solution for
the problem being solved. The output of an MOO algo-
rithm is usually a population of non-dominated solutions
considering the objective functions. Formally, let x and
x′ be two different solutions. We say that x dominates x′
(denoted by x ≺ x′) if x is better than x′ for at least
one objective function and x is not worse than x′ for any

objective function. x is said to be not dominated if there is
no other solution xi in the current population, such that
xi ≺ x. The set of non-dominated solutions in the objec-
tive space returned by an MOO algorithm is known as
Pareto frontier [21].
As said, we proposed to solve the problem of TC selec-

tion with multiple criteria by the hybridization of PSO
and HS techniques. The PSO algorithm is a population-
based search approach, inspired by the behavior of birds’
flocks [42] and has shown to be a simple and efficient
algorithm compared to other search techniques, includ-
ing for instance the widespread genetic algorithms [43].
The basic PSO algorithm starts its search process with a
random population (also called swarm) of particles. Each
particle represents a candidate solution for the problem
being solved and it has four main attributes:

1. the position (t) in the search space (each position
represents an individual solution for the optimization
problem);

2. the current velocity (v), indicating a direction of
movement in the search space;

3. the best position (t̂) found by the particle (the
memory of the particle);

4. the best position (ĝ) found by the particle’s
neighborhood (the social guide of the particle).

For a number of iterations, the particles fly through
the search space, being influenced by their own experi-
ence t̂ and by the experience of their neighbors ĝ. Par-
ticles change position and velocity continuously, aiming
to reach better positions and to improve the considered
objective functions.

Problem formulation
In this work, the particle’s positions were defined as
binary vectors representing candidate subsets of TCs to
be applied in the software testing process. Let T =
{T1, . . . ,Tn} be a test suite with n test cases. A particle’s
position is defined as t = (t1, . . . , tn), in which tj ∈ {0, 1}
indicates the presence (1) or absence (0) of the test case Tj
within the subset of selected TCs.
As said, two objective functions were adopted: cover-

age (branch or functional requirements) and execution
cost. The coverage (function to be maximized) consists
of the ratio (in percentage) between the amount of code
branches or functional requirements covered by a solu-
tion t in comparison to the amount of covered by T.
Formally, let C = {C1, . . . ,Ck} be a given set of k
branches/functional requirements covered by the original
suite T. Let F(Tj) be a function that returns the subset
of branches/functional requirements in C covered by the
individual test case Tj. The coverage of a solution t is
given by:

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 5 of 20

C_Coverage(t) = 100 ×
∣∣∣⋃tj=1

{
F

(
Tj

)}∣∣∣
k

(1)

In Eq. (1),
⋃

tj=1{F(Tj)} is the union of branches/ func-
tional requirement subsets covered by the selected test
cases (i.e., Tj for which tj = 1).
The execution cost (function to be minimized) repre-

sents the amount of time required to execute the selected
suite. Formally, each test case Tj ∈ T has a cost score cj.
The total cost of a solution t is given by:

Cost(t) =
∑
tj=1

cj (2)

Finally, the proposed algorithms are used to deliver a
good Pareto frontier regarding the objective functions
C_Coverage and Cost.

The BMOPSO-CDR algorithm
The BMOPSO-CDR was firstly presented in [44]. It uses
an External Archive (EA) to store the non-dominated
solutions found by the particles during the search process.
See [44] for more details of BMOPSO-CDR algorithm.
The following summarizes the BMOPSO-CDR:

1. Randomly initialize the swarm, evaluate each particle
according to the considered objective functions, and
then store in the EA the particles’ positions that are
non-dominated solutions;

2. WHILE stop criterion is not verified DO

(a) Compute the velocity v of each particle as:

v ← ωv + C1r1(t̂ − t) + C2r2(ĝ − t) (3)

where ω represents the inertia factor; r1 and
r2 are random values in the interval [0,1]; C1
and C2 are constants. The social guide (ĝ) is
defined as one of the non-dominated
solutions stored in the current EA and it is
selected by using the Roulette Wheel.

(b) Compute the new position t of each particle
for each dimension tj as:

tj =
{
1, if r3 ≤ sig(vj)
0, otherwise (4)

where r3 is a random number sampled in the
interval [0,1] and sig(vj) is defined as:

sig(vj) = 1
1 + e−vj (5)

(c) Use the mutation operator as proposed by
[45];

(d) Evaluate each particle of the swarm and
update the solutions stored in the EA;

(e) Update the particle’s memory t̂;

3. ENDWHILE and return the current EA as the
Pareto frontier.

The BCMOPSO-CDRHS algorithm
The Harmony Search algorithm (see [37]) is inspired by
the musical process of searching for a perfect harmony.
It imitates the musician seeking to find pleasing har-
mony determined by an aesthetic standard, just as the
optimization process seeks to find a global optimal solu-
tion determined by an objective function [46]. The har-
monies in music are analogous to the points in a search
space, and the musician’s improvisations are analogous to
search operators in optimization techniques [47]. HS has
been successfully applied to several discrete optimization
problems [41, 46, 47].
The HS algorithm starts by creating random harmonies

(solutions) and storing them into a set called harmony
memory (HM). The HM is used, during all the optimiza-
tion process, to store the best harmonies found by the
algorithm. After the initialization of the HM, the improvi-
sation begins and it is controlled by three operators3:

1. Harmony memory considering operator (HMCO): it
creates a new harmony from a current one by
exchanging components (dimensions) from the other
HMmembers. The HMCO is adopted with a
probability defined by the parameter harmony
memory considering rate (HMCR). This operator
controls the balance between the exploration and
exploitation when performing the improvisation;

2. Random selection operator (RSO): it randomly
changes a component of a harmony to generate a
new one. It is also controlled by the HMCR, in such a
way that the probability of randomly changing a
harmony component is 1 - HMCR;

3. Pitch adjustment operator (PAO): controls when a
harmony will suffer a pitch adjustment (analogous to
a local search mechanism) after HMCO. The PAO is
always performed after HMCO with a probability
defined by the pitch adjustment rate (PAR).

At the end of the improvisation, if the new harmony
obtained after applying the operators is better than the
worst harmony in the HM, it will be stored into the HM
and the worst harmony is removed. This process contin-
ues until a stop criterion is reached. As an alternative to
the sequential update of the HM, one could also apply
the parallel update strategy (see [46] for more details). In
this strategy, a number of NGC new harmonies are gener-
ated before updating the HM. The sequential strategy is a
special case (i.e., when NGC = 1).
In order to create the hybrid BCMOPSO-CDRHS, we

adapted the Discrete Harmony Search algorithm from
[46]. In our work, the HM corresponds to the EA (each

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 6 of 20

particle is treated as a harmony) and, hence there is
no need to initialize the HM. The HS operators will be
applied to the particles produced in the end of each PSO
iteration, i.e., we introduced the HS improvisation process
after the step (e) of the main loop (2) of BMOPSO-CDR.
For each PSO particle, we create NGC new solutions t by
applying the improvisation operator as follows:

1. For each dimension of a harmony DO

tj =
{
tkj , if r1 ≤ HMCR
RSO, otherwise

(6)

RSO =
{
1, if r2 ≤ 0.5
0, otherwise (7)

where tj is j th component to update in the harmony;
r1 and r2 are random values in the interval [0,1]; and
tkj is the j th component of a harmony tk randomly
chosen from the HM;

(a) If the element of the new harmony came from
HM (i.e., if r1 ≤ HMCR) then

tj =
{
Gj, if r3 ≤ PAR
tj, otherwise

(8)

where r3 is a random value in the interval
[0,1]; Gj is the j th element of the best solution
stored in HM.
Since we deal with multiple objective
functions, there is no best single solution in
the HM. Hence, we used the Roulette Wheel
with Crowding Distance4 (from BMOPSO-
CDR) in order to select G that will be the
same used for all new candidate harmonies.

2. Update the HM (EA) by adding the non-dominated
created harmonies and by removing the dominated
solutions from HM. The improvisation process is
repeated for 205 iterations.

Results and discussion
This section presents the experiments performed in order
to evaluate the search algorithms implemented in this
work. In addition to the aforementioned algorithms, we
also implemented the well-known NSGA-II algorithm
[40], and the only (to the best of our knowledge) pro-
posed Multi-Objective Binary Harmony Search (MBHS)
algorithm [41]. These algorithms were implemented in
order to compare whether our proposed algorithms are
competitive as multi-objective optimization techniques.
As said, the developed methods were evaluated in two

different scenarios: for structural testing and for func-
tional testing, which will be described as follows.

Structural testing
For the structural testing scenario the experiments were
performed using five programs (flex, grep, gzip, sed,
space) from the Software-Artifact Infrastructure Reposi-
tory (SIR) [39], which are commonly adopted as bench-
marks for experiments. Flex, grep, gzip, and sed are unix
utilities obtained from the Gnu site. The space program,
from the European Space Agency, is an interpreter for
an array definition language (ADL). The space program
has several test suites, hence we choose one of the suites
with most code coverage. For the other SIR programs,
we choose the largest available suite. Details about these
programs can be observed on Table 1.
Since there is no cost information for these suites, we

estimated the execution cost of each TC by using the
Valgrind profiling tool [48], as proposed in [30]. TC exe-
cution time is hard to measure accurately since it involves
many external parameters that can affect the execution
time, such as a different hardware, application software,
and operating system. In order to circumvent these issues,
we used Valgrind, which executes the program binary
code in an emulated, virtual CPU [30]. The computa-
tional cost of each test case was measured by counting
the number of virtual instruction codes executed by the
emulated environment. These counts allow to argue that
they are directly proportional to the cost of the TC execu-
tion. Additionally, for the same reasons, we computed the
branch coverage information by using the profiling tool
gcov from the GNU compiler gcc (also proposed in [30]).

Functional testing
For the functional testing scenario, we used two test suites
(integration and regression) from the context of mobile
devices6. For the functional testing selection, we selected
two test suites related to mobile devices: an integration
suite (IS), which is focused on testing whether the various
features of a mobile device can work together, i.e., whether
the integration of the features behaves as expected; and a
regression suite (RS), which is aimed at testing whether
updates to a specific main feature (e.g., the message fea-
ture) have not introduced faults into the already developed
(and previously tested) feature functionalities. Both suites
have 80 TCs, each one representing a functional testing
scenario. Contrarily to the structural suites, where each

Table 1 Details about the SIR programs

Program Lines of code Test suite size

Flex 15,297 567

Grep 15,633 806

Gzip 8889 213

Sed 19,737 370

Space 6199 160

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 7 of 20

Table 2 Mean value and standard deviation of NGC - BMOPSO-CDRHS

NGC 1 10 15 20 30

Flex HV 0.836 0.846 0.848 0.848 0.848
(0.004) (0.004) (0.004) (0.003) (0.004)

GD 0.003 0.002 0.002 0.001 0.001
(4.6E-4) (4.2E-4) (5.3E-4) (4.8E-4) (3.8E-4)

IGD 0.003 0.002 0.001 0.001 0.001
(5.3E-4) (3.7E-4) (3.8E-4) (3.0E-4) (3.3E-4)

C 1.0 0.998 0.996 0.996 0.996
(0.0) (0.006) (0.012) (0.046) (0.018)

Grep HV 0.772 0.782 0.782 0.785 0.786
(0.005) (0.006) (0.004) (0.004) (0.004)

GD 0.002 0.001 0.001 0.001 0.001
(4.2E-4) (3.0E-4) (3.6E-4) (2.6E-4) (3.2E-4)

IGD 0.002 0.001 0.001 0.001 0.001
(3.6E-4) (4.3E-4) (4.9E-4) (3.3E-4) (3.7E-4)

C 1.0 0.999 0.999 0.996 0.991
(0.0) (0.005) (0.004) (0.010) (0.024)

Gzip HV 0.953 0.961 0.963 0.961 0.963
(0.003) (0.003) (0.003) (0.003) (0.004)

GD 0.004 0.002 0.002 0.002 0.002
(6.6E-4) (7.4E-4) (6.3E-4) (8.1E-4) (0.001)

IGD 0.004 0.003 0.002 0.003 0.002
(7.2E-4) (8.6E-4) (8.4E-4) (0.001) (0.001)

C 1.0 0.994 0.986 0.995 0.996
(0.0) (0.018) (0.035) (0.022) (0.013)

Sed HV 0.847 0.862 0.861 0.863 0.864
(0.004) (0.006) (0.004) (0.005) (0.004)

GD 0.004 0.003 0.003 0.002 0.002
(0.001) (0.001) (0.002) (0.001) (0.001)

IGD 0.005 0.002 0.003 0.003 0.002
(6.6E-4) (7.7E-4) (6.5E-4) (7.6E-4) (5.9E-4)

C 1.0 1.0 1.0 0.988 0.998
(0.0) (0.0) (0.0) (0.043) (0.009)

Space HV 0.938 0.949 0.949 0.949 0.949
(0.004) (0.004) (0.003) (0.002) (0.003)

GD 0.002 0.001 0.001 9.2E-4 9.1E-4
(2.2E-4) (2.8E-4) (3.2E-4) (1.5E-4) (1.8E-4)

IGD 0.002 0.001 0.001 0.001 0.001
(8.8E-4) (7.8E-4) (7.2E-4) (9.2E-4) (7.7E-4)

C 1.0 0.994 0.991 0.989 0.996
(0.0) (0.010) (0.012) (0.019) (0.007)

IS HV 0.714 0.719 0.719 0.719 0.719
(0.001) (7.0E-4) (6.4E-4) (5.8E-4) (7.1E-4)

GD 2.6E-4 1.5E-4 1.5E-4 1.4E-4 1.5E-4
(2.4E-5) (1.4E-5) (1.5E-5) (1.1E-5) (1.3E-5)

IGD 6.1E-4 3.1E-4 3.0E-4 2.8E-4 2.7E-4
(2.3E-4) (1.0E-4) (1.1E-4) (8.2E-5) (9.0E-5)

C 0.979 0.857 0.870 0.849 0.854
(0.012) (0.040) (0.036) (0.049) (0.047)

RS HV 0.910 0.912 0.912 0.912 0.912
(0.001) (3.7E-4) (4.1E-4) (4.2E-4) (3.4E-4)

GD 2.9E-4 1.8E-4 1.5E-4 1.8E-4 1.4E-4
(5.8E-5) (3.7E-5) (4.5E-5) (4.8E-5) (4.6E-5)

IGD 0.001 4.1E-4 3.8E-4 3.3E-4 3.8E-4
(7.8E-4) (2.2E-4) (2.7E-4) (1.2E-4) (2.8E-4)

C 0.781 0.493 0.417 0.450 0.439
(0.099) (0.086) (0.098) (0.072) (0.081)

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 8 of 20

Table 3 Mean value and standard deviation of NGC - MBHS

NGC 1 10 15 20 30

Flex HV 0.833 0.832 0.833 0.832 0.833
(0.003) (0.003) (0.003) (0.002) (0.002)

GD 0.001 0.001 0.001 0.001 0.001
(4.2E-4) (4.5E-4) (4.4E-4) (2.7E-4) (5.2E-4)

IGD 0.001 0.001 0.001 0.001 0.001
(2.2E-4) (1.7E-4) (2.2E-4) (1.4E-4) (2.1E-4)

C 0.995 0.984 0.998 0.998 0.997
(0.018) (0.027) (0.006) (0.007) (0.011)

Grep HV 0.770 0.770 0.772 0.771 0.773
(0.003) (0.003) (0.004) (0.004) (0.004)

GD 0.001 0.001 0.001 0.001 0.001
(3.6E-4) (4.4E-4) (4.5E-4) (4.7E-4) (3.3E-4)

IGD 0.001 0.001 0.001 0.001 0.001
(2.3E-4) (2.7E-4) (2.1E-4) (2.7E-4) (2.7E-4)

C 0.992 0.995 0.996 0.996 0.995
(0.015) (0.013) (0.013) (0.009) (0.010)

Gzip HV 0.941 0.943 0.941 0.942 0.941
(0.003) (0.003) (0.002) (0.003) (0.003)

GD 0.003 0.003 0.003 0.003 0.003
(9.0E-4) (0.001) (0.001) (0.001) (0.001)

IGD 0.002 0.002 0.002 0.002 0.002
(2.9E-4) (3.4E-4) (3.5E-4) (4.2E-4) (3.4E-4)

C 1.0 0.996 0.994 0.990 0.994
(0.0) (0.012) (0.017) (0.027) (0.021)

Sed HV 0.837 0.835 0.836 0.837 0.836
(0.004) (0.003) (0.004) (0.005) (0.004)

GD 0.002 0.002 0.002 0.002 0.002
(6.0E-4) (8.5E-4) (6.5E-4) (9.3E-4) (8.0E-4)

IGD 0.009 0.009 0.007 0.009 0.008
(0.003) (0.003) (0.004) (0.003) (0.004)

C 0.998 0.996 0.992 0.990 0.994
(0.007) (0.012) (0.021) (0.048) (0.016)

Space HV 0.948 0.946 0.947 0.947 0.946
(0.002) (0.002) (0.003) (0.003) (0.002)

GD 0.001 0.001 0.002 0.001 0.001
(2.0E-4) (1.8E-4) (2.2E-4) (1.9E-4) (1.3E-4)

IGD 0.002 0.002 0.002 0.001 0.001
(7.4E-4) (7.6E-4) (9.1E-4) (7.9E-4) (8.2E-4)

C 0.994 0.993 0.992 0.994 0.997
(0.013) (0.016) (0.019) (0.007) (0.007)

IS HV 0.714 0.715 0.715 0.714 0.715
(0.001) (0.001) (0.001) (0.001) (0.001)

GD 2.2E-4 2.1E-4 2.2E-4 2.2E-4 2.2E-4
(2.4E-5) (1.4E-5) (1.5E-5) (1.1E-5) (1.3E-5)

IGD 4.1E-4 4.0E-4 3.8E-4 4.0E-4 3.8E-4
(1.4E-4) (1.2E-4) (1.0E-4) (1.3E-4) (1.4E-4)

C 0.733 0.760 0.749 0.764 0.774
(0.041) (0.028) (0.034) (0.034) (0.038)

RS HV 0.912 0.912 0.912 0.912 0.912
(5.1E-4) (2.5E-4) (1.9E-4) (2.3E-4) (1.9E-4)

GD 2.0E-4 1.8E-4 2.0E-4 2.0E-4 2.1E-4
(5.0E-5) (4.5E-5) (9.2E-5) (4.8E-5) (4.2E-5)

IGD 1.9E-4 1.9E-4 1.9E-4 2.0E-4 2.0E-4
(3.9E-5) (3.8E-5) (2.3E-5) (2.8E-5) (3.6E-5)

C 0.493 0.515 0.488 0.486 0.503
(0.079) (0.073) (0.067) (0.076) (0.070)

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 9 of 20

suite is intended to test the related program almost as
whole, the used functional suites are related to a much
more complex environment. Hence, just a little portion of
the mobile device operational system is tested.
The cost to execute each test case of the functional suite

was measured by the Test Execution Effort Estimation
Tool, developed by [49]. The effort represents the cost
(in time) needed to manually execute each test case on a
particular mobile device. Each TC has annotated which
requirements it covers, thus we used this information in
order to calculate the functional requirement coverage.

Metrics
In our experiments, we evaluated the results (i.e., the
Pareto frontiers) obtained by the algorithms, for each
test suite, according to four different quality metrics usu-
ally adopted in the literature of multi-objective optimiza-
tion. The following metrics were adopted in this paper,
each one considering a different aspect of the Pareto
frontier.

1. Hypervolume (HV) [50]: computes the size of the
dominated space, which is also called the area under

Fig. 1 HV metric - BMOPSO-CDRHS

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 10 of 20

the curve. A high value of hypervolume is desired in
MOO problems.

2. Generational distance (GD) [21]: The GD reports
how far, on average, one Pareto set (called PFknown) is
from the true Pareto set (called as PFtrue).

3. Inverted generational distance (IGD) [21]: is the
inverse of GD by measuring the distance from the
PFtrue to the PFknown. This metric is complementary
to the GD and aims to reduce the problem when
PFknown has very few points, but they all are clustered

together. So, this metric is affected by the distribution
of the solutions of PFknown comparatively to PFtrue.

4. Coverage (C) [50]: The coverage metric indicates the
amount of the solutions within the non-dominated
set of the first algorithm which dominates the
solutions within the non-dominated set of the second
algorithm.

Both GD and IGD metrics requires that the PFtrue be
known. Unfortunately, for more complex problems (with

Fig. 2 GDmetric - BMOPSO-CDRHS

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 11 of 20

bigger search spaces), as the space and flex programs, it is
impossible to know PFtrue a priori. In these cases, instead,
a reference Pareto frontier (called here PFreference) can be
constructed and used to compare algorithms regarding
the Pareto frontiers they produce (as suggested in [30]).
The reference frontier represents the union of all found
Pareto frontiers, resulting in a set of non-dominated solu-
tions found. Additionally, the C metric reported in this
work refers to the coverage of the optimal set PFreference,
over each algorithm, indicating the amount of solutions

of those algorithms that are dominated, e.g., that are not
optimal.
The results of these metrics were statistically compared

by using theWilcoxon rank-sum test. TheWilcoxon rank-
sum test is a nonparametric hypothesis test that does
not require any assumption on the parametric distribu-
tion of the samples. In the context of this paper, the null
hypothesis states that, regarding the observed metric, two
different algorithms produce equivalent Pareto frontiers.
The α level was set to 0.95, and significant p values suggest

Fig. 3 IGD metric - BMOPSO-CDRHS

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 12 of 20

that the null hypothesis should be rejected in favor of
the alternative hypothesis, which states that the Pareto
frontiers are different.

Parameter study
Before comparing our proposed algorithms (BMOPSO-
CDRHS and BMOPSO-CDR) with the baselines NSGA-II
and MBHS (the main experiment), we performed a study
focused on the HS parameters. Since the use of HS in
multi-objective binary search spaces is new, we aimed to
investigate how sensitive is the algorithm performance to

its parameters as well as to find suitable parameter values
for the test case selection problem. This study was based
on [46] with additional values suggested in [41].
For each of the following experiments, the algorithms

were run 30 times with 200,000 objective function
evaluations.

The NGC parameter
The sequential strategy in the standard HS improvises
only one new candidate at each iteration and then updates
the HM.

Fig. 4 C metric - BMOPSO-CDRHS

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 13 of 20

On the other hand, the parallel strategy generates mul-
tiple candidates in order to update the HM at each iter-
ation7. In a previous work, [38], we adopted the parallel
strategy, without performing any experiment to verify
whether it is actually better than the sequential strategy
in our context. In the present work, we investigated the
use of both the sequential and the parallel strategy as
well as the effect of the number of NGC (new generating
candidates) in the optimization performance.
In our experiments, both algorithms BMOPSO-CDRHS

and MBHS were evaluated using different values of NGC:

1, 10, 15, 20, and 30. We highlight that NGC = 1 corre-
sponds to the sequential strategy. Furthermore, we fixed
the values of the other HS parameters by using the same
values adopted in [38] (HMS = 200, HMCR = 0.9, and
PAR = 0.03). Tables 2 and 3 show the mean and stan-
dard deviation values for each metric. Additionally, we
highlighted the best results in the aforementioned tables
aiming to ease the reading. Furthermore, it is important to
note that as we wanted to measure the effects of the num-
ber of NGC in each algorithm, we formed the PFreference
using only the frontiers of each algorithm separately.

Fig. 5 HV metric - MBHS

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 14 of 20

Concerning the BMOPSO-CDRHS algorithm, it is pos-
sible to observe from Table 2 that for almost all metrics,
the sequential strategy is outperformed by the parallel
strategy. Only in three situations the sequential strategy
was equal to the parallel strategy. Hence, the use of parallel
strategy indeed improved the BMOPSO-CDRHS algo-
rithm. Furthermore, we can point out that the value of
NGC = 30 was always the best parameter settings in sta-
tistical terms. Thus, NGC = 30 is recommended and used
as the default value in the next sections.

Differently, we can see in Table 3 that the parallel strat-
egy had not the same impact on the MBHS as on the
BMOPSO-CDRHS. The sequential strategy for most of
the cases was as good as the parallel strategy. In fact,
NGC = 1 (sequential strategy) in some situations was
better than some values of parallel strategy (NGC > 1).
Despite of that, we choose the value of NGC = 20 as the
default value to be used in the next sections because it
was the one that most appeared among the best statistical
results.

Fig. 6 GDmetric - MBHS

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 15 of 20

The HMCR and PAR parameters
The HMCR and PAR parameters are important param-
eters of the HS algorithm as they control the trade-off
between finding globally and locally improved solutions.
Ideally there is a combination of these values that improve
the optimization ability of the HS algorithm. Because of
that, we investigated the influence of these two parameters
simultaneously. In our experiments, HMCR was tunned
from 0.3 to 0.9 with increment 0.2 and PAR was set within
{0.03 0.1 0.3 0.5 0.7 0.9}.
Figures 1, 2, 3, 4, 5, 6, 7 and 8 present the results

obtained by the BMOPSO-CDRHS and the MBHS con-

sidering all evaluation metrics and benchmarks adopted
and by varying the parameters HMCR and PAR. As it can
be observed, the choice of HMCR had a bigger impact on
the quality of the solutions than the choice of PAR. For
all metrics, the best results were obtained when HMCR =
0.9 for both BMOPSO-CDRHS and MBHS algorithms.
Concerning the PAR parameter, we point out that there
was not a single value that was the best for all situations.
In the remaining experiments, we adopted PAR = 0.5
(for BMOPSO-CDRHS) and PAR = 0.3 (for MBHS) since
they were observed more often among the best statistical
results.

Fig. 7 IGD metric - MBHS

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 16 of 20

Fig. 8 C metric - MBHS

It is important to highlight that the best parameter
settings observed in our experiments were sometimes dif-
ferent from the default parameter values suggested in
previous work in the HS literature [38, 46] and [41]. The
previous experiments supported finding parameter val-
ues that are more suitable to the multi-objective test case
selection problem.

Main experiment
In this section, we evaluated whether the proposed binary
multi-objective algorithms were competitive against base-

line methods such as the well-known NSGA-II and other
binary MBHS.
In this experiment, all algorithms were run 30 times

with a total of 200,000 objective function evaluations.
The BMOPSO-CDR and the hybrid BMOPSO-CDRHS
algorithms used 20 particles, mutation rate of 0.5, ω lin-
early decreases from 0.9 to 0.4, constants C1 and C2 1.49,
maximum velocity of 4.0, and EA’s size of 200 solutions.
These values are the same used in [44] and represent
generally used values in the literature. Regarding the HS
parameters, we used the recommended values from the

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 17 of 20

Table 4 Mean value and standard deviation of the algorithms

BMOPSO-CDR BMOPSO-CDRHS MBHS NSGA-II

Flex HV 0.736 0.888 0.882 0.791
(0.004) (0.004) (0.004) (0.013)

GD 0.026 0.001 0.006 0.012
(0.003) (4.1E-4) (0.001) (0.003)

IGD 0.023 0.001 0.003 0.017
(7.8E-4) (4.5E-4) (7.3E-4) (0.002)

C 1.0 0.955 1.0 1.0
(0.0) (0.104) (0.0) (0.0)

Grep HV 0.657 0.821 0.823 0.712
(0.006) (0.004) (0.004) (0.016)

GD 0.028 0.001 0.003 0.004
(0.003) (4.1E-4) (5.7E-4) (0.001)

IGD 0.023 0.002 0.002 0.015
(0.001) (5.1E-4) (3.1E-4) (2.4E-4)

C 1.0 0.963 0.990 1.0
(0.0) (0.058) (0.027) (0.0)

Gzip HV 0.821 0.976 0.973 0.888
(0.008) (0.003) (0.002) (0.019)

GD 0.030 0.001 0.003 0.010
(0.004) (3.3E-4) (6.3E-4) (0.003)

IGD 0.026 0.005 0.004 0.016
(0.001) (0.002) (0.001) (0.002)

C 1.0 0.963 0.998 1.0
(0.0) (0.056) (0.006) (0.0)

Sed HV 0.698 0.908 0.905 0.769
(0.008) (0.005) (0.006) (0.023)

GD 0.050 0.002 0.007 0.017
(0.006) (0.002) (0.002) (0.006)

IGD 0.034 0.002 0.002 0.022
(0.001) (0.001) (4.5E-4) (0.003)

C 1.0 0.957 0.995 1.0
(0.0) (0.071) (0.015) (0.0)

Space HV 0.809 0.965 0.947 0.856
(0.008) (0.001) (0.002) (0.017)

GD 0.019 7.0E-4 0.003 0.002
(0.003) (7.7E-5) (0.001) (7.4E-4)

IGD 0.018 0.003 0.001 0.018
(0.001) (0.001) (3.9E-4) (0.001)

C 1.0 0.968 0.983 0.991
(0.0) (0.024) (0.018) (0.031)

IS HV 0.600 0.719 0.591 0.649
(0.005) (4.0E-4) (0.008) (0.012)

GD 0.007 2.0E-4 0.002 8.4E-4
(4.2E-4) (4.5E-4) (4.4E-4) (2.7E-4)

IGD 0.005 1.9E-4 0.005 0.005
(5.5E-4) (1.9E-5) (5.4E-4) (0.001)

C 1.0 0.835 0.655 0.972
(0.0) (0.030) (0.054) (0.058)

RS HV 0.802 0.912 0.846 0.843
(0.005) (3.7E-4) (0.009) (0.017)

GD 0.012 2.2E-4 0.002 0.001
(0.001) (5.0E-5) (7.0E-4) (7.6E-4)

IGD 0.010 2.4E-4 0.002 0.012
(0.001) (4.0E-5) (2.5E-4) (0.002)

C 1.0 0.667 0.661 0.982
(0.0) (0.070) (0.050) (0.048)

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 18 of 20

parameter study: NGC = 30, HMCR = 0.9, and PAR =
0.5 for BMOPSO-CDRHS; NGC = 20, HMCR = 0.9, and
PAR = 0.3 for MBHS.
The NSGA-II algorithm, in turn, used a mutation rate

of 1/population size, crossover rate of 0.9, and popula-
tion size of 200 individuals. As the NSGA-II and MBHS
algorithms do not use an external archive to store solu-
tions, we decided to use the population size and HMS
of 200 solutions to permit a fair comparison. This way,
all the algorithms are limited to a maximum of 200 non-
dominated solutions.

Results
The results of the metrics for each algorithm are shown
in Table 4 where the best results are highlighted in order
to ease the reading. Differently from the parameter study,
here we want to compare the algorithms with each other,
so the PFreference (used to calculate the GD, IGD, and
C metrics) was formed by the Pareto frontiers of all
algorithms.
From Table 4, we can see that the BMOPSO-CDRHS

outperformed the other algorithms for almost all the
metrics and benchmarks (excepting three situations).
It is possible to observe, from the HV metric, that
the BMOPSO-CDRHS dominates bigger objective space
areas when compared to the others. Furthermore, the GD
values obtained by the algorithm show that its Pareto
frontiers have better convergence to the optimal Pareto
frontier (represented by the PFreference). Additionally, the
results obtained by considering the IGD metric show
that its Pareto frontiers are also well distributed com-
paratively to optimal Pareto set (except on the gzip and
space programs). Finally, the coverage metric indicates
that the BMOPSO-CDRHS algorithm was the least dom-
inated algorithm by the optimal Pareto set, hence several
of its solutions are within the optimal frontier (except on
the integration suite). Furthermore, we point out that the
type of testing scenario does not impact in the results of
the experiments.
In addition to aforementioned results, we also state that

the hybrid mechanism indeed improved the BMOPSO-
CDR algorithm, and that the BMOPSO-CDRHS selection
algorithm is a competitive multi-objective algorithm. It
is also important to highlight that the MBHS algorithm
outperformed, for almost all cases, the NSGA-II and the
BMOPSO-CDR algorithms. Thus, the MBHS is also suit-
able to the problem and further studies can be performed
in order to improve its performance.

Conclusions
In this work, we propose a new hybrid algorithm
by combining the Harmony Search algorithm into the
binary multi-objective PSO for TC selection. The main
contribution of the current work was to investigate

whether this hybridization can improve the multi-
objective PSO both branch/functional requirements cov-
erage and execution cost. Furthermore, we performed
a parameter study in order to verify the appropriate
parameter settings for the HS search operators. We high-
light that the hybrid binary multi-objective PSO with
Harmony Search was only investigated by [38] (our pre-
vious work) in the context of TC selection. Besides,
the developed selection algorithms can be adapted to
other test selection criteria and are not limited to two
objective functions. Furthermore, we expect that the
good results can also be obtained in other application
domains.
In the performed experiments, the hybrid algorithm

(BMOPSO-CDRHS) was the best one when compared to
the BMOPSO-CDR, MBHS, and NSGA-II algorithms for
almost all metrics and benchmarks adopted for structural
and functional test. Hence, we conclude that hybridization
indeed improved the former BMOPSO-CDR algorithm
and the hybrid algorithm is a competitive multi-objective
search strategy.
As future work, we can point the investigation of other

hybrid strategies and perform the same experiments on a
higher number of programs in order to verify whether the
obtained results are equivalent to those presented here,
and also whether these results can be extrapolated to other
testing scenarios. Also we will perform a more complete
parameter study with more settings as well with more
specific aspects of the PSO.

Endnotes
1However, note that 100 % of code coverage do not

ensure the total absence of faults, since the same code
may correctly process a number of inputs and incorrectly
process different inputs. Similarly, for functional testing,
the total coverage of the requirements or use cases does
not guarantee absence of faults in the SW.

2Note that the aforementioned deterministic strategies
do not address the multi-objective TC selection
problems; they only work with a single selection criterion.

3We followed in this paper the nomenclature of HS
presented in [41].

4See [44] for more details on the Roulette Wheel with
Crowding Distance mechanism.

5This value was found by trial and error and further
formal investigation will be performed in order to verify
its influence.

6These suites were created by test engineers of the
Motorola CIn-BTC (Brazil Test Center) research project.

7For more details about the sequential and parallel
strategies, see [46].

Competing interests
The authors declare that they have no competing interests.

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 19 of 20

Authors’ contributions
All authors have contributed to the methodological and experimental aspects
of the research. All authors read and approved the final manuscript.

Acknowledgements
This work was partially supported by the National Institute of Science and
Technology for Software Engineering (INES www.ines.org.br), CNPq, CAPES,
FACEPE, and FAPEMIG.

Received: 23 March 2015 Accepted: 28 September 2015

References
1. Desikan S, Ramesh G. Software testing: principles and practices. Upper

Saddle River, NJ, USA: Prentice Hall Press; 2007.
2. Jorgensen PC. Software testing: a craftsman’s approach. Boston, MA, USA:

Auerbach Publications; 2008.
3. Young M, Pezze M. Software testing and analysis: process, principles and

techniques. Hoboken, NJ, USA: John Wiley & Sons; 2005.
4. Van Vliet H. Software engineering: principles and practice vol. 3. Hoboken,

NJ, USA: Wiley Publishing; 1993.
5. Hutchins M, Foster H, Goradia T, Ostrand T. Experiments of the

effectiveness of dataflow-and controlflow-based test adequacy criteria. In:
Proceedings of the 16th International Conference on Software
Engineering. IEEE Computer Society Press; 1994. p. 191–200.

6. Ramler R, Wolfmaier K. Economic perspectives in test automation—
balancing automated and manual testing with opportunity cost. In:
Workshop on Automation of Software Test. New York, NY, USA: ACM; 2006.

7. Feijs LMG, Goga N, Mauw S, Tretmans J. Test selection, trace distance
and heuristics. In: Proceedings of the IFIP 14th International Conference
on Testing Communicating Systems. Deventer, The Netherlands, The
Netherlands: Kluwer, B.V.; 2002. p. 267–282.

8. Nogueira S, Cartaxo GE, Torres D, Aranha HSE, Marques R. Model based
test generation: an industrial experience. In: First Brazilian Workshop on
Systematic and Automated Software Testing. João Pessoa, PB, Brasil; 2007.
Outubro.

9. Cartaxo GE, Andrade W, Oliveira Neto GF, Machado DLP. Ltsbt: A tool to
generate and select functional test cases for embedded systems. In: 23rd
Annual ACM Symposium on Applied Computing (SAC’2008). Brazil:
Fortaleza; 2008.

10. Harold MJ, Gupta R, Soffa ML. A methodology for controlling the size of a
test suite. ACM Trans Softw Eng Methodol. 1993;2(3):270–285.

11. Cartaxo GE, Machado DLP, Oliveira Neto GF. On the use of a similarity
function for test case selection in the context of model-based testing.
Software Testing, Verification and Reliability. 2009;21(2):270–285.

12. Harrold MJ, Soffa ML. Interprocedual data flow testing. SIGSOFT Softw
Eng Notes. 1989;14(8):158–167. doi:10.1145/75309.75327.

13. Yau SS, Kishimoto Z. A method for revalidating modified programs in the
maintenance phase. In: Proceedings of International Computer Software
and Applications Conference. Tokyo, Japan: IEEE Computer Society Press;
1987.

14. Agrawal H, Horgan JR, Krauser EW, London S. Incremental regression
testing. In: Proceedings of the Conference on Software Maintenance.
ICSM ’93. Washington: IEEE Computer Society; 1993. p. 348–357.

15. Rothermel G, Harrold MJ. A safe, efficient regression test selection
technique. ACM Trans Softw Eng Methodol. 1997;6(2):173–210.

16. Vokolos FI, Frankl PG. Empirical evaluation of the textual differencing
regression testing technique. In: Software Maintenance, 1998.
Proceedings., International Conference On. Washington, DC, USA: IEEE
Computer Society; 1998. p. 44–53.

17. Briand LC, Labiche Y, Soccar G. Automating impact analysis and
regression test selection based on UML designs. In: Software
Maintenance, 2002. Proceedings. International Conference On.
Washington, DC, USA: IEEE Computer Society; 2002. p. 252–261.

18. Yoo S, Harman M. Regression testing minimization, selection and
prioritization: a survey. Software Testing, Verification and Reliability.
2010;22(2):67–120.

19. Lin JW, Huang CY. Analysis of test suite reduction with enhanced
tie-breaking techniques. Inf Softw Technol. 2009;51(4):679–690.

20. Harman M. Making the case for MORTO: multi objective regression test
optimization. In: Fourth International IEEE Conference on Software

Testing, Verification and Validation. Washington, DC, USA: IEEE Computer
Society; 2011. p. 111–114.

21. Coello CAC, Lamont GB, van Veldhuizen DA. Evolutionary algorithms for
solving multi-objective problems. vol. 5. Secaucus, NJ, USA: Springer;
2007.

22. Barltrop K, Clement B, Horvath G, Lee CY. Automated test case selection
for flight systems using genetic algorithms. In: Proceedings of the AIAA
Infotech@Aerospace Conference (I@A 2010). Atlanta: International
Thomson Computer Press; 2010.

23. de Souza LS, Prudêncio RBC, de Barros FA. A constrained particle swarm
optimization approach for test case selection. In: Proceedings of the 22nd
International Conference on Software Engineering and Knowledge
Engineering (SEKE 2010). Redwood City, CA, USA: Knowledge Systems
Institute Graduate School; 2010.

24. de Souza LS, Prudêncio RBC, de Barros FA, da S. Aranha EH. Search
based constrained test case selection using execution effort. Expert
Systems with Applications. 2013;40(12):4887–4896.

25. Black J, Melachrinoudis E, Kaeli D. Bi-criteria models for all-uses test suite
reduction. In: Software Engineering, 2004. ICSE 2004. Proceedings. 26th
International Conference On. Washington, DC, USA: IEEE Computer
Society; 2004. p. 106–115.

26. Mirarab S, Akhlaghi Esfahani S, Tahvildari L. Size-constrained regression
test case selection using multicriteria optimization. IEEE Trans Softw Eng.
2012;38(4):936–956.

27. Wang S, Ali S, Gotlieb A. Minimizing test suites in software product lines
using weight-based genetic algorithms. In: Proceedings of the 15th
Annual Conference on Genetic and Evolutionary Computation. GECCO
’13. New York: ACM; 2013. p. 1493–1500. doi:10.1145/2463372.2463545.
http://doi.acm.org/10.1145/2463372.2463545.

28. Yoo S, Harman M. Pareto efficient multi-objective test case selection. In:
Proceedings of the 2007 International Symposium on Software Testing
and Analysis. New York, NY, USA: ACM; 2007. p. 140–150.

29. Maia CLB, do Carmo RAF, de Freitas FG, de Campos GAL, de Souza JT. A
multi-objective approach for the regression test case selection problem.
In: Proceedings of Anais do XLI Simposio Brasileiro de Pesquisa
Operacional (SBPO 2009); 2009. p. 1824–1835.

30. Yoo S, Harman M. Using hybrid algorithm for pareto efficient
multi-objective test suite minimisation. J Syst Softw. 2010;83:689–701.

31. Yoo S, Nilsson R, Harman M. Faster fault finding at Google using multi
objective regression test optimisation. In: 8th European Software
Engineering Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 11). Szeged, Hungary.
New York, NY, USA: ACM; 2011.

32. Yoo S, Harman M, Ur S. Highly scalable multi objective test suite
minimisation using graphics cards. In: Proceedings of the Third
International Conference on Search Based Software Engineering.
SSBSE’11. Heidelberg: Springer; 2011. p. 219–236.

33. Yoo S, Harman M, Ur S. GPGPU test suite minimisation: search based
software engineering performance improvement using graphics cards.
Empir Softw Eng. 2013;18(3):550–593.

34. De Lucia A, Di Penta M, Oliveto R, Panichella A. On the role of diversity
measures for multi-objective test case selection. In: Automation of
Software Test (AST), 2012 7th International Workshop On. Piscataway, NJ,
USA: IEEE Press; 2012. p. 145–151.

35. Kumari AC, Srinivas K, Gupta MP. Multi-objective test suite minimisation
using quantum-inspired multi-objective differential evolution algorithm.
In: Computational Intelligence Computing Research (ICCIC), 2012 IEEE
International Conference On. Piscataway, NJ, USA: IEEE Press; 2012. p. 1–7.

36. Bozkurt M. Cost-aware pareto optimal test suite minimisation for
service-centric systems. In: Proceeding of the Fifteenth Annual
Conference on Genetic and Evolutionary Computation Conference.
GECCO ’13. New York: ACM; 2013. p. 1429–1436.

37. Geem ZW, Kim JH, Loganathan G. A new heuristic optimization
algorithm: harmony search. Simulation. 2001;76(2):60–68.

38. de Souza LS, Prudêncio RBC, de A. Barros F. Multi-objective test case
selection: a hybrid particles warm optimization and harmony search
algorithm. In: Proceedings of the V Workshop Workshop de Engenharia
de Software Baseada em Busca (WESB 2014). Maceio; 2014.

39. Do H, Elbaum S, Rothermel G. Supporting controlled experimentation
with testing techniques: an infrastructure and its potential impact. Empir
Softw Eng. 2005;10(4):405–435. doi:10.1007/s10664-005-3861-2.

http://dx.doi.org/10.1145/75309.75327
http://dx.doi.org/10.1145/2463372.2463545
http://doi.acm.org/10.1145/2463372.2463545
http://dx.doi.org/10.1007/s10664-005-3861-2

de Souza et al. Journal of the Brazilian Computer Society (2015) 21:19 Page 20 of 20

40. Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated
sorting genetic algorithm for multi-objective optimization: Nsga-ii. In:
Parallel Problem Solving from Nature PPSN VI. Lecture Notes in Computer
Science. Vol. 1917. Berlin, Heidelberg: Springer; 2000. p. 849–858.

41. Wang L, Mao Y, Niu Q, Fei M. A multi-objective binary harmony search
algorithm. In: Advances in Swarm Intelligence. Springer; 2011. p. 74–81.

42. Kennedy J, Eberhart RC. Particle swarm optimization. In: Proceedings of
the IEEE International Joint Conference on Neural Networks; 1995. p.
1942–1948.

43. Eberhart RC, Shi Y. Comparison between genetic algorithms and particle
swarm optimization. LNCS. 1998;1447:611–616.

44. de Souza LS, de Miranda PBC, Prudêncio RBC, de Barros FA. A
multi-objective particle swarm optimization for test case selection based
on functional requirements coverage and execution effort. In: In
Proceedings of the 23rd International Conference on Tools with Artificial
Intelligence (ICTAI 2011). Boca Raton; 2011.

45. Coello C, Pulido G, Lechuga M. Handling multiple objectives with
particle swarm optimization. IEEE Trans Evol Comput. 2004;8(3):256–279.

46. Wang L, Xu Y, Mao Y, Fei M. A discrete harmony search algorithm. In: Life
System Modeling and Intelligent Computing. Springer; 2010. p. 37–43.

47. Afkhami S, Ma’rouzi OR, Soleimani A. A binary harmony search algorithm
for solving the maximum clique problem. Int J Comput Appl.
2013;69:38–43.

48. Nethercote N, Seward J. Valgrind: A program supervision framework. In:
In Third Workshop on Runtime Verification; 2003.

49. Aranha E, Borba P. Using process simulation to assess the test design
effort reduction of a model-based testing approach. In: ICSP; 2008.
p. 282–293.

50. Deb K, Kalyanmoy D. Multi-objective optimization using evolutionary
algorithms, 1st edn. New York, NY, USA: Wiley; 2001.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Test case selection
	Search-based test case selection
	Multi-objective optimization TC selection

	Overview of the developed work

	Methods
	Problem formulation
	The BMOPSO-CDR algorithm
	The BCMOPSO-CDRHS algorithm

	Results and discussion
	Structural testing
	Functional testing
	Metrics
	Parameter study
	The NGC parameter
	The HMCR and PAR parameters

	Main experiment
	Results

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

