Tosta et al. Journal of the Brazilian Computer
Society (2015) 21:16
DOI 10.1186/513173-015-0035-y

Journal of
the Brazilian Computer Society

RESEARCH Open Access

Improving workflow design by mining

reusable tasks

@ CrossMark

Frederico E. Tosta', Vanessa Braganholo?”, Leonardo Murta? and Marta Mattoso?

Abstract

results.

Background: With the increasing popularity of scientific workflow management systems (SWfMS), more and more
workflow specifications are becoming available. Such specifications contain precious knowledge that can be reused
to produce new workflows. It is a fact that provenance data can help reusing third party code. However, finding the
dependencies among programs without the support of a tool is not a trivial activity and, in many cases, becomes a
barrier to build more sophisticated models and analysis. Due to the huge number of task versions available and their
configuration parameters, this activity is highly error prone and counterproductive.

Methods: In this work, we propose workflow recommender (WR), a recommendation service that aims at suggesting
frequent combinations of workflow tasks for reuse. It works similarly to an e-commerce application that applies data
mining techniques to help users find items they would like to purchase, predicting a list based on other user’s choices.

Results: Our experiments show that our approach is effective both in terms of performance and precision of the

Conclusions: The approach is general in the sense that it can be coupled to any SWfMS.

Keywords: Workflows; Sequence mining; Workflow composition; Workflow reuse

Background

Introduction

Scientific experiments are usually composed of pipelined
programs, which manipulate large amounts of data. Typi-
cally, these experiments are built manually by connecting
inputs and outputs of programs, thus producing an exe-
cution flow [1]. This execution flow, also known as a
scientific workflow, can be generically seen as a graph com-
posed of a set of tasks that are connected through ports.
Nodes represent tasks, and edges determine how data
flows through tasks. Usually, after executing the work-
flow, the outputs are analyzed and a new design cycle
begins: parameters are changed and tasks are replaced,
all with the aim of producing better results. Moreover,
scientific experiments frequently use third-party code,
services provided by scientific workflow management sys-
tems (SWEMS), and proprietary code. Figuring out how

*Correspondence: vanessa@ic.uff.br
IC, Fluminense Federal University, Niterdi, RJ, Brazil
Full list of author information is available at the end of the article

@ Springer

this diversity of tasks can be connected in a single work-
flow is difficult, especially because this design process is
ad hoc.

An alternative to help solving this problem is to
take advantage of provenance information provided by
SWIEMS [1]. To figure out how to connect two tasks, the
scientist can use provenance queries instead of ad hoc
search on the Web. Despite that, reusing a task often
involves reusing complementary tasks. Finding dependen-
cies among tasks through provenance queries, without
additional support, is not trivial. Due to the huge number
of task versions available and their configuration param-
eters, this activity may become heavily error prone and
counterproductive. Even if a powerful workflow prove-
nance support is provided, such as the one offered by
Vistrails [2, 3], identifying adequate combinations of tasks
can be time-consuming and may involve designing com-
plex queries on provenance databases.

Many existing works use provenance for supporting
workflow design. Some of them [4-10] allow similar-
ity search of workflows. However, they do not deal with
the problem of suggesting new tasks to the user during

© 2015 Tosta et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-015-0035-y-x&domain=pdf
mailto: vanessa@ic.uff.br
http://creativecommons.org/licenses/by/4.0/

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

workflow design. Other existing works [4, 11-23] pro-
pose the use of recommendation systems for scientific
workflow design. However, most approaches miss the very
sequential nature of workflows. Some recommend only
a single task at each step. Others do not consider the
previously inserted tasks during recommendation. The
ones that recognize the sequential nature of workflows
restrict the recommendation to contiguous sequences,
being unable to deal with noise (optional tasks). Moreover,
there are approaches that do not distinguish acciden-
tal (less frequent) sequences from sequences that can be
really seen as patterns, providing less useful recommen-
dations. Finally, some approaches suffer from scalability
problems when the number of workflows increases.

Our work aims at reducing the burden of scientists by
helping them during the experimental design. We started
by observing that some sequences of tasks are common
to several different workflows within a given domain
[11, 14-16, 21]. For example, in a set of scientific experi-
ments from a given domain, task D appears after a specific
non-contiguous sequence of tasks A — ... - B —

. — C with a certain frequency f. The idea then is that,
when a scientist is modeling a workflow and includes the
sequence A - ... > B — ... — C, we could sug-
gest the use of D after that sequence. This works similarly
to an e-commerce application that applies data mining
techniques to help users find items they would like to pur-
chase, predicting a list based on other user’s choices. Our
goal is to speed up the design of new workflows based on
the history of previously designed workflows, hoping that
past experiences may help to improve the quality of future
workflows.

We introduced a preliminary solution to this problem
in a previous work [15]. In that initial solution, a single
task is suggested at each step. In this paper, we intro-
duce a novel approach named workflow recommender
(WR), which extends those previous ideas by allowing a
set of tasks to be suggested to the user. Thus, given a
sequence of tasks, we suggest other sequences of tasks
that frequently appears after that initial sequence of tasks
in the frequent workflows. To evaluate our approach,
we compare WR with VisComplete [14], the state-of-
the-art recommendation system. The results are promis-
ing: the performance of our approach was superior to
VisComplete in terms of memory consumption and exe-
cution time, especially when large numbers of workflows
were involved, without sacrificing the precision of the
results.

The remaining of this paper is organized as follows. We
present related works in the “Related work” section. Our
approach is presented in the “Workflow recommender”
section. The “Results and discussion” section discusses
our experimental results. Finally, we conclude and discuss
future work in the “Conclusions” section.

Page 2 of 16

Related work

The challenges regarding scientific workflow reuse reside
in taking advantage of existing workflows to compose new
ones. In fact, there has been several works on similarity
search of workflows [4—10]. However, these works do not
deal with the problem of suggesting new tasks to the user
during workflow design.

At the same time, SW{MS are providing more function-
alities and additional tasks are becoming available. As a
consequence, combining them in a workflow is becoming
more complex. SWMS like Taverna [24], Kepler [25], and
VisTrails [2] offer rich graphical interfaces in which previ-
ously registered tasks can be dragged to the user’s work-
flow. The search for tasks is limited, since they are usually
based on input/output ports as well as user-informed tags.
Knowledge of which task can be plugged together is still
tacit.

A large set of sample workflows is needed for one to
gain experience in configuring the workflow tasks flow
[18]. These repositories, such as myExperiment [26, 27]
and CrowdLabs [28], contain hundreds of workflows with
different goals. Browsing all of them to gain experience
in how to connect workflow tasks is counterproductive
and time-consuming. To minimize this problem, recom-
mendation systems for scientific workflows have been
proposed [4, 11-23]. We describe them in the remaining
of this section.

SmartLink

The main goal of SmartLink [11] is to minimize the exist-
ing problems in visual programmable dataflow systems
[2, 29]. SmartLink keeps a database that stores informa-
tion of how workflow tasks are connected (they call these
connections links). A sequence of links from one task to
another is called a path. For each link, SmartLink stores
an integer value that represents how many times that
link has occurred in the workflows. The database is then
used to help scientists to build new workflows. The sys-
tem is able to answer queries such as “How can I connect
these two tasks?” and “What can be connected to this
task?”

SmartLink’s recommendations are based on the task
ports. Understanding and choosing tasks is difficult.
Choosing a port to be the base for the recommen-
dation is even harder. Furthermore, SmartLink does
not take previously inserted tasks into consideration
when making a recommendation, which decreases the
recommendation quality. In fact, the system consid-
ers only the source and target ports to calculate its
recommendation.

FlowRecommender
FlowRecommender [16] uses the notion of confidence to
recommend workflow tasks. The approach works in two

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

steps. First, the workflow repository is analyzed so that
patterns can be extracted. These patterns are based on
the notion of upstream sub-paths. An upstream sub-path
of a task ¢ of workflow w is any path that occurs before
t. As an example, in the workflow A — B — C, the
set of upstream sub-paths of C is {4,B,A — B}. Then,
the next step is to calculate the confidence of task ¢ for
each of its upstream sub-paths p. Confidence is calcu-
lated as the probability that ¢ appears given that p has
already appeared in the workflow. The confidence val-
ues that are greater than a given threshold k are kept
and used to find the influencing upstream sub-path. The
influencing upstream sub-path of a task ¢ of a workflow
w is the upstream sub-path p with the largest confidence
and smallest distance (distance is calculated by counting
the number of edges from the first task of p to the last
task of w). Then, the influencing upstream sub-paths of
all tasks of all workflows in the database are stored in a
pattern table, which is used in the second phase of the
approach.

The second phase is performed online. When a work-
flow is being constructed, FlowRecommender is activated
to suggest new tasks. During the recommendation phase,
the last task ¢ of the workflow w is analyzed regarding its
output types. Then, a set of candidate tasks is retrieved.
The candidate tasks are those with input types match-
ing the output types of t. For each of these candidates,
the influencing upstream sub-path p is retrieved from
the pattern table. Then, these paths are compared to the
workflow w by using a similarity function that takes into
account the sequence and location of tasks in p and w.
FlowRecommender finally suggests a set of candidates
to complete w, ordered by similarity. When no match is
found, the suggestion is based on the input/output types
only.

FlowRecommender uses the concept of confidence to
calculate the suggestions. We claim that using confidence
is not enough. Suppose we have a database with 100 work-
flows. In these workflows, suppose the sequence A — B
appears only once. Thus, the confidence of B, given the
upstream sub-path A is 100%. Also, consider that the
sequence X — B appears 40 times and that X — C
appears 10 times. Thus, the confidence of B given the
upstream sub-path X is 80 %. Despite that the path A —
B appears only once, it generates a higher confidence
than another path that appears 40 times and thus should
be more relevant. Using support would solve this issue
because the support of A — B is 1% and the support
of X — B is 40%. Also, FlowRecommender always rec-
ommends a single task at each interaction with the user.
To complete a workflow with 30 tasks, it would be nec-
essary to interact 29 times with the user. This would not
happen could they recommend entire paths instead of
single tasks.

Page30f 16

VisComplete

VisComplete [14] is currently the state-of-the-art sys-
tem for recommending completions to workflows during
design. It aims at helping users to design visualizations
by considering a collection P of previously created work-
flows. VisComplete is able to suggest parts of workflows,
based on common subgraphs in the collection, to com-
plete workflows that are under development.

The problem of completing workflows is defined as fol-
lows. Given a partial graph G, find a set of completions
C(G) that reflect the existing structures in a collection of
(finalized) graphs. Each completion of G, G¢, is a super-
graph of G. To find C(G), VisComplete uses two steps.
First, the collection of workflows P is pre-processed to
create a path summary Ppath. Ppath is a compact rep-
resentation of P that summarizes relationships between
common structures in the collection. Then, given a partial
workflow G, Py, is used to identify tasks and connections
that were used with G in the collection P.

Predictions are based on an anchor task. From this task,
the path summary is used to identify nodes that are most
likely to follow these paths. VisComplete follows both a
top-down and a bottom-up approach, since the direction
of the connections may vary. The approach is iterative, so
at each insertion of a task, new suggestions are made by
using the added task as an anchor.

Since the generation of paths is not based on a data
mining technique, VisComplete fails in recommending
completions to workflows that have noise or infrequently
used tasks. Noise tasks are those that are almost never
used. These noise tasks, in our view, do not alter the
main goal of the workflow being designed. We advocate
that they could be discarded during the recommendation
search. To better illustrate the problem, consider a fre-
quent sequence of tasks that is stored in the collection
of paths: A - B — C — D. Consider also that a
workflow is being developed using the following sequence:
A — X — B, where X is a noise task and cannot be found
in any existing sequence in the collection of paths (e.g., an
optional filtering task). Since the sequence A — X — B
does not appear in the collection of paths, VisComplete is
not able to recommend the completion C — D connected
to B in this example.

Approaches based on case-based reasoning

Case-based reasoning (CBR) is a problem-solving tech-
nique aimed at easing the reuse of past experience in
the form of cases. A case represents a problem situation
together with the experiences gained during a problem-
solving episode, which includes a solution [23]. In order
to use CBR in the context of workflow composition, one
needs to adapt workflows into cases. There are several
works that deal with this problem [13, 17, 23, 30]. The
works of Leake and Kendall-Morwick [13], Chinthaka

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

et al. [17], and Minor et al. [23] deal with the specific
problem of using CBR to aid workflow composition.

Phala [13] uses case-based reasoning to suggest addi-
tions to workflows during design. It uses the workflow
constructed so far as a query. The results above a sim-
ilarity threshold are shown to the user as suggestions.
The suggestions are mined from retrospective provenance
data! [1, 31]. (Leake and Kendall-Morwick [13] refer to
retrospective provenance as “execution traces,” terminol-
ogy also adopted in other works [32]). The reason for
this is that execution traces are simpler than the work-
flow structure, since they are basically sequential. This
requires an additional step at query time, since the query is
the workflow specification and not an execution trace. To
cope with this difference, non-deterministic control flows
are removed from the workflow before it is sent as a query
to the case repository (each execution trace is considered
a case). The authors claim that it would be useful to use
prospective provenance instead of retrospective.

A vyear later, authors from the same research group
proposed a new strategy, also based on case-based rea-
soning, but now using the workflow structure [17]. In this
approach, cases consist of annotated workflows. Scientists
need to annotate inputs and outputs of their workflows in
order for them to be considered in the recommendation
process.

Minor et al. [23] focus on business workflows and
allow them to be modified during runtime, which is dif-
ferent from the approaches we discuss in this section.
However, it can also be used at design time. They use
Agile Workflow Technology and a specific modeling lan-
guage (Cake) to be able to modify the workflow at run-
time. Although neither of them is targeted to eScience,
some of the ideas could be transposed to scientific work-
flow composition. In this Agile approach, the workflow is
first transformed into a case. Then, the case repository is
searched and similar cases are retrieved. The best case
is chosen based on a similarity threshold. Then, the next
step is to determine the exact place in the target workflow
that must be altered (change location). To do so, they use
the concept of anchors. After this process, the workflow
is modified. A controversial aspect of this work is that the
modification may be a delete instead of an insert, which
may be counterproductive for the user.

Our previous approach

Our previous approach [15] was conceived to allow incre-
mental recommendation, where, for each selected task, a
single following task is suggested. Initially, the relations
among tasks are extracted. Each of these relations is stored
as a pair (s,), where s is the source task and ¢ is the target
task. For each pair, we also store the ports through which
they are connected. When a user adds a new task ¢’ to the
workflow that is being developed, the system proactively

Page 4 of 16

finds the most relevant task that can be connected to ¢.
Moreover, it also indicates how they can be connected.
The main limitation of this approach is that it suggests a
single task at each step.

There is also some other related approaches that work
at a more conceptual level. Some of them focus on
workflow reuse by providing composition at a high
abstraction level [12, 18, 20, 22], automatically generating
the executable workflow. Others generate the workflow
from execution trace logs and retrospective provenance
[33-35]. Still, others offer a recommendation system
that relies on social network analysis [19, 21]. Despite
extremely relevant, these approaches act over more
abstract representations of workflows or at very low
level representations (execution logs and traces) and can
be seen as complementary to this and other related
works on workflow recommendation presented in this
section.

Methods

Workflow recommender

A problem that is shared by related work is that they
do not evaluate the task sequence as a whole. We thus
introduce a novel approach named WR to overcome the
aforementioned problems of the existing approaches in
literature. WR contributes with the adoption of a well-
known data mining technique to recommend tasks to a
workflow under design: sequence mining [36, 37]. The
use of a sequence mining algorithm has the following
positive aspects: (i) it has been defined to identify and
manage noise tasks, providing useful recommendations
even in situations where there is no perfect path match
in previous workflows; (ii) it is focused on a sequence
of events, taking precedence order into account; (iii) it
is robust and stable and has been extensively tested by
commercial applications of different domains for years;
(iv) it has a dozen of different implementations available,
which provide equivalent results but differ on perfor-
mance; and (v) it is fomented by an active research net-
work that can come up with better implementations in the
future.

Note that several SWfMS are script-based, such as Swift
[38], Pegasus [39], and SciCumulus [40], and thus, no
graphical interface is provided for workflow design. How-
ever, they all deal with data flows that can be represented
as directed acyclic graphs (DAG). Our approach is gen-
eral in the sense that it does not depend on any system
in particular, nor on graphical interfaces. As long as the
workflow is a DAG, our approach can be applied. In
the remaining of this section, we detail how the classic
sequence mining problem was adapted to our context.
Moreover, we present an overview of WR and detalil its
two main phases: preparation phase and query and rec-
ommendation phase.

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

Sequence mining in the context of scientific workflows
Since a workflow is composed of a sequence of tasks, we
need to consider these sequences to recommend com-
pletions. In data mining, sequence mining is a success-
ful technique for finding frequent sequential events in a
dataset. However, to be able to use sequence mining, we
first need to evaluate the correspondence of concepts used
by the algorithm to the scientific workflow scenario.

We introduce an example to ease the understanding of
how sequence mining could be used with scientific work-
flows. This example is based on the e-commerce domain,
since it has successfully adopted sequence mining to rec-
ommend purchases to users. Table 1 shows a customer
whose ID is 6, the date in which (s)he purchased some
items, and the ID of the items (s)he purchased. Addition-
ally, Table 2 shows the transaction sequence of several
customers.

Graphically, the transactions of customer 6 can be rep-
resented as shown in Fig. 1, where the top item represents
the first transaction and the bottom item represents the
last transaction. Now, consider a workflow composed of
seven tasks, as shown in Fig. 2a. We can decompose this
workflow into several paths, as shown in Fig. 2b, each
of them representing a possible execution sequence. The
path between two tasks ¢; and tp in a workflow W con-
tains the sequence of tasks that indirectly links #; to £. As
an example, given the workflow presented in Fig. 2a, the
path between A and FisA —- C —- D — E — F. Each
path can be seen as a sequence of tasks, where the top one
is executed first and the bottom one is executed last. For-
mally, the decomposition D of a workflow W into its set
of paths is represented as D(W) = {P1, P, ..., P,}, where
n > 1 and P; is a path. The set of paths D(W) can be used
to reconstruct Was W ={P1® P, d ... ®P,}.

Observing Figs. 1 and 2b, we realize that the shape
that represents both structures is identical. As depicted
in Table 3, in the e-commerce domain, customers buy
items in different moments in time. As a result, it is pos-
sible to identify buying sequences that frequently occur.
For instance, an intuitive frequent sequence of purchases
related to the “The Lord of the Rings” film would be “The
Fellowship of the Ring” followed by “The Two Towers”
followed by “The Return of the King”. This way, after
detecting that someone bought “The Fellowship of the
Ring” followed by “The Two Towers”, a recommendation

Table 1 Items bought by a customer [36]

Customer ID Timestamp Bought items
6 June 25,1993 30
6 June 30, 1993 40
6 July 10, 1993 70
6 July 15,1993 90

Page 50f 16

Table 2 Customer sequences [36]

Customer ID Sequence of bought items
1 < (30) (90) >

2 < (1020) (30) (4060 70) >
3 <(305070) >

4 < (30) (40 70) (90) >

5 < (90) >

6 < (30) (40) (70) (90) >

of “The Return of the King” could naturally emerge. Simi-
larly, in the scientific experiment domain, scientists design
workflows containing tasks with dependencies among
them. As a result, it is possible to identify task sequences
(i.e., paths) that frequently occur.

By contrasting these concepts from the e-commerce
domain and the scientific experiment domain, we could
also adapt the data mining problem introduced by
Agrawal and Ramakrishnan [36] as follows.

Problem definition

Given a database DB of workflow paths (task sequences),
the problem of mining sequential patterns in workflows
is to find the maximal paths (i.e., paths that are not con-
tained in any other path) among all paths that have a
minimum support. Each such maximal path represents a
path pattern.

Overview of WR approach

Figure 3 illustrates the overview of our approach, WR.
Since the steps we need to execute are time- and resource-
consuming, we decided to split WR in two phases: (1)
preparation and (2) query and recommendation.

The preparation phase occurs once, before the query
and recommendation phase. It is responsible for pre-
processing the data from previously designed workflows
and for executing the sequence mining algorithm. The
query and recommendation phase is responsible for pro-
cessing user queries and recommending workflow paths
during workflow design.

Preparation phase

As previously discussed, the preparation phase is respon-
sible for preparing the data from previously designed
workflows, allowing the execution of the sequence min-
ing algorithm over them. Figure 2 exemplifies the path
extraction activity. The goal of this activity is to extract
maximal paths (those that are not contained in any other
path in the same workflow). WR, as well as the approach
proposed by Agrawal and Ramakrishnan [36], only con-
siders the maximal path as input for the data mining algo-
rithm, since it avoids repetitive counting of intermediate
paths in the same workflow.

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

30

40

70

90

Fig. 1 Graphical representation of a customer transaction sequence

Page 6 of 16

As illustrated in Fig. 4, during the maximal path extrac-
tion, paths are segregated according to the domain of
the workflow. For instance, paths found in bioinformatics
workflows are stored separated from paths found in 3D
modeling workflows. This allows us to infer a more pre-
cise recommendation because it increases the support of
the paths belonging to the domain of the workflow under
design. However, this step requires user input to classify
the workflows according to their domains.

To exemplify, consider the paths shown in Fig. 5, where
path X, from the bioinformatics domain, occurs 100 times
in the database, i.e., 100 workflows use this path in their
composition, and that path Y, from the oil domain, occurs
500 times. Consider also that the total number of paths
in the database is 1000, from which 200 belong to the
bioinformatics domain and 800 to the oil domain. More-
over, suppose a user is developing a new workflow in the
bioinformatics domain. When (s)he reaches the stage of
development represented by path Z in Fig. 5, (s)he asks
WR for a recommendation with a minimum support of
20 %. If we consider the complete database (bioinformat-
ics and oil paths), the system would recommend path Y
with 50% (500/1000) of support. This is because path
Y is the only path that contains path Z and has a sup-
port above 20 %. Despite having the same tasks as path
Z, path X would not be recommended because, in this
case, its support would be 10 % (100/1000). Thus, the user
would receive an incorrect recommendation to insert task
w after task B in the workflow. However, if we consider
only the paths from the bioinformatics domain, the results
are completely different. In this case, path X would have a
support of 50 % (100/200) and would be displayed to the
user as a recommendation. Path Y would not be taken
into account, since it does not belong to the bioinformat-
ics domain. In this case, the next task to be inserted into
the workflow would be task C.

It is interesting to notice that lower support thresh-
old emphasizes completeness, leading to possible false
positives. On the other hand, higher support threshold
emphasizes correctness, leading to possible false nega-
tives. This way, the threshold configuration becomes an
important task to balance the number and quality of the
recommendations.

We also assign weights to the workflows to allow better
accuracy in our recommendations. Workflows that are
frequently executed may have a higher degree of reliabil-
ity in the arrangement of their tasks and therefore may
contain paths that are more reliable. Those workflows
receive a higher weight, leading to higher support in the
recommendations of their paths. However, it is worth not-
ing that assigning weights to the workflows can generate
side effects: it can dramatically change the support of all
paths in the database and, often, exclude paths from the
set of paths’ pattern. The algorithm we adopted to assign

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

Page 7 of 16

(b)

Ve
o
o

T o M |« O «— O |[«—| >

® D —S «—® |«
T ¢ M [« O « O |« W
@ ¢ M |[«—| O « O |« W

Fig. 2 Workflow (a) and its paths (b)

weights consists of considering the number of executions
of a given workflow. Suppose that a workflow W has been
executed # times. Moreover, also suppose that this work-
flow has a set P of paths {P1, P, Ps, . . ., P;}. When we store
these paths in the database, we store each of them # times.
This way, the effect is equivalent to a situation where the
paths in p occur in # different workflows.

Finally, with all paths extracted from the workflows and
inserted into the path database, the next step of the prepa-
ration phase is to run the sequential mining algorithm on
all databases (complete database and domain-segregated
databases). The mining algorithm generates a set of path
patterns for each of these databases. This set of path pat-
terns serves as a basis to generate recommendations. In
this phase, we also analyze all the paths and generate a
list containing all tasks that are present in at least one of
the path patterns. We call this list as the list of minimal
sequences, and we use it in the next phase of our approach.
With the preparation phase completed, the next step is the
query and recommendation phase.

Query and recommendation phase

As previously discussed, the query and recommendation
phase is responsible for receiving user queries and return-
ing the best recommendations, reverse ordered by rele-
vance. The recommendations are nothing more than the

most frequent sequences found by the sequence mining
algorithm, which in practice are the most common paths
found in the workflows. Since the databases are already
loaded with the most common paths and the user has cho-
sen which domain (s)he wants to get recommendations for
(or has chosen to use the complete database, which con-
tains all paths), the user can start the search process to
receive recommendations.

The query and recommendation phase begins every
time a user sends a query to the system, as depicted in
Fig. 6. This query, handled by step Receive Query (1), is
represented by an incomplete path of the workflow, which
can contain one or more tasks. In the example of Fig. 6,
the query path is A — B. The next step, Clean Query (2),
is responsible for eliminating from this query the tasks
that are not present in the list of minimal sequences, i.e.,
it eliminates tasks that do not appear in any path pattern.
The query result is not affected by this removal, since the
search for paths that contain the removed tasks would
have returned empty anyway. The reduction of the input
sequence actually reduces the computational resources
needed to execute the next steps. To illustrate the Clear
Query (2) step, consider that a user wants to obtain a rec-
ommendation for the pathA — B — C — Y, where Y
is a task that is not present in any path pattern. After the
Clean Query (2) step, the query becomes A — B — C,

Table 3 E-commerce concepts mapped into scientific workflow concepts

Domain Concepts
E-commerce Customer Timestamp Item Buying sequence
Scientific experiment Scientists Dependency Task Workflow path

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

Page 8 of 16

Path Extraction

Data Mining

Fig. 3 WR approach

Recommendation Preparation

(Cleaning Expansion
|

Path Search
Show Results

since Y is not present in the list of minimal sequences.
This cleaning allows recommending sequences of type
A - B - C — (X), where (X) is, in turn, a path con-
taining one or more tasks, to be recommended to the user.
This would not be possible if the task Y was present.

The third step of the query and recommendation phase,
Expand Query (3), is aimed to find the possible subse-
quences contained in the query produced in the previous
step. To illustrate, consider Fig. 7. Figure 7a shows a pos-
sible query, and Fig. 7b shows all subsequences generated
from the query. With this procedure, it is possible to gen-
erate recommendations for all the branches of a workflow.
To exemplify this type of recommendation, consider the
query from the previous example. Figure 8a displays the
recommendations found by the system to the sub-path
A — B, which is the task Y, and to the sub-path B — C,
which is the task X. Figure 8b shows the workflow after
these recommendations are incorporated.

The Expand Query (3) step also favors tasks that have a
high degree of synergy, even when they contain noise tasks
between them. To illustrate, consider that a user wishes to

obtain a recommendation for path A — W — B, where
all three tasks are present in the list of minimal sequences,
but no maximum path contains these three tasks simulta-
neously. Consider also that the path4A — B — Chasa
very high support. If the query were strictly A - W — B,
the system would not return any results, but with the exe-
cution of Expand Query (3) step, the sub-queries A — W,
W — B,and A — B would be generated, among others,
and a recommendation of task C would be generated to
the path A — B, resulting in the pathA — W — B — C.

Finally, the Search (4) step is responsible for searching
the selected databases to find path patterns that contain
some of the combinations of paths generated in the pre-
vious step. A path P; is contained in a path P if all tasks
in P; are in Py in the same order, without necessarily
being directly connected. For example, C — D and A —
C — D are contained in A - B — C — D. How-
eve, D - A — B is not contained in A — B —
C — D. Thus, it is possible to obtain a recommenda-
tion for the two ends of the path, i.e., in both directions
of the workflow. The final product of this step is a list

Workflows

with domain
and execution
information

. Input data
‘:‘ Transitional data
. Algorithm
\:‘ Final data

-

Fig. 4 WR preparation phase overview

-

e
»
[
Path
Pattern

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

C W

Path X Path Y Path Z
100 occurrences 500 occurrences In development
(Bioinformatics (Ol (Bioinformatics

domain) domain) domain)

Fig. 5 Paths separated by domains

of path patterns, ordered by relevance and separated by
domain. The last stage of the query and recommendation
phase, the Recommendation (5) step, consists of showing
to the user, in a reverse order, the results obtained in the
previous step.

Results and discussion

This section presents an evaluation of the proposed
approach. We evaluated both functional and non-
functional requirements. Functional requirements are
those that describe the behavior of the system and lead
to assessing how precise are the recommendations of the
proposed approach. On the other hand, non-functional
requirements are those that express quality attributes such

Page 9 of 16

as reliability, performance, robustness, etc. and lead to
assessing how fast is the proposed approach. We adopted
VisComplete [14] as a baseline of our experiment, since it
is currently the state-of-the-art recommendation system
for workflows, with very good recommendation results.

For this evaluation, we used a workflow database gently
provided by the creators of VisComplete, which consists
of 3343 workflows related to the visualization domain.
This database is the same that was used in the experi-
ments with VisComplete [14]. Additionally, we used some
examples bundled with the default VisTrails release, which
also belong to the visualization domain. As all work-
flows were related to the visualization domain, it was
not necessary to segregate databases per domain dur-
ing the preparation phase. Moreover, as we did not
have information about the number of executions of
each workflow, we assumed that all workflows have the
same weight.

The evaluation was performed on an Intel Core 2 Quad
2.6-GHz computer, with 3 GB of RAM, and 750 GB of
hard drive, running Microsoft Windows 7 Professional
x64. We used MySQL 5.1 Community Server as the
database. Our prototype was implemented in Python 2.6.
We analyzed different algorithms for sequence mining,
such as AprioriSOME and AprioriAll [36], GSP [37], WAP
[41], and PLWAP [42]. As all of them deal with the same
problem definition, they all provided the same results in
terms of recommendations, only differing in terms of per-
formance. We adopted PLWAP in WR, since it was the
one with the best performance. However, the concrete
implementation of the sequence mining algorithm can
be replaced with no impact in the prototype. Finally, we
used the curve fitting program Fit Lab [43] to analyze the
resulting graphs.

The remainder of this section presents the evaluation of
the preparation phase, the evaluation of the query and rec-
ommendation phase, the evaluation of recommendations

All Paths
Pattern

Domain A
Paths
Pattern

Domain C

Domain B
Paths
Pattern

Paths
Pattern

Bl

Search (4) l

Fig. 6 Query and recommendation phase overview

Recommendation (5)

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

“
B B C
C

(b)

B A B C
3

W [« >

o] @

Fig. 7 Query (a) and sub-queries

in the presence of noise and a brief discussion about some
threats to the validity of this experiment.

Preparation phase evaluation

The requirements assessed in the preparation phase are
all non-functional. We evaluated both the time required
to perform all steps of the preparation phase and the max-
imum amount of memory used during the preparation
process.

Due to difficulties to obtain larger databases to con-
duct the evaluation of non-functional requirements (per-
formance), it was necessary to replicate the database
obtained with the creators of VisComplete, generating
larger and smaller databases in terms of the number of
workflows. Table 4 displays a summary of the amount of
workflows, connections, and paths evaluated. It is impor-
tant to notice that the original database, provided by the
VisComplete team, is database 3, highlighted in italics in
Table 4. The database has 3343 registered workflows, with
51,658 connections between tasks. These workflows were
used as input to the preparation phase. After the path
extraction, 23,623 paths were obtained. The sequence

(@) (b)
A B A

)l
<

A

l

A

B| |C
Yoox

Fig. 8 Recommendations (a) and final workflow (b)

Page 10 of 16

Table 4 Workflows, connections, and paths per base

Database Workflows Connections Paths

1 835 6,461 2,076

2 1,671 20,321 8,294

3 3,343 51,658 23,623
4 6,686 103,316 47,246
5 13,372 206,632 94,492
6 26,744 413,264 188,984
7 53,488 826,528 377,968
8 80,232 1,239,792 755,936

mining identified 2838 pattern paths for a support of
0.5 %. Finally, 65 tasks were extracted from the pattern
paths to form the list of minimal sequences. This list and
the database of pattern paths were used to evaluate the
functional requirements in the query and recommenda-
tion phase.

Table 5 shows the time spent and the memory used to
perform the preparation phase of each database for both
VisComplete and WR. The support threshold chosen to
execute the sequence mining algorithm was 2 %. Figure 9
shows the graphs of the results presented in Table 5.

Analyzing the time graph, it is possible to notice that
although the time required to perform the preparation
phase was higher in WR, the growth is linear, while in
VisComplete, the growth is polynomial (second degree).
This was confirmed by the Fit Lab software [43]. On
the other hand, the memory graph shows that both the
approaches have a linear growth as the number of work-
flows increases. However, as the slope of the memory used
by VisComplete is high, it quickly reached the memory
limit, making it impossible to use VisComplete with more
than 100,000 workflows in our computer.

The graph analysis shows that WR has advantages in
both aspects. In situations where large databases are in
place, our approach is still able to process the workflows

Table 5 Time spent and memory usage values for the
preparation phase

Database VisComplete WR
Time (s) Memory (MB) Time (s) Memory (MB)

1 0 10 10 9

2 1 51 35 15

3 4 112 80 30

4 9 204 151 54

5 25 401 301 100

6 74 778 586 193

7 250 1,530 1,245 378

8 803 2,388 1,805 540

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

Page 11 of 16

Time spent in the Preparation Phase
2000
1800
1600
1400
= 1200
GEJ 1000 =& VisComplete
.': Y
o = W
400 //
200 —r ————
0 et
0 20000 40000 60000 80000
Number of Workflows
Memory usage in the Preparation Phase
2508
@ /
2 2008
= /
o
E 1508
S / —&—VisComplete
1008
/ WR
508 / —
8 =
0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Number of Workflows
Fig. 9 Time spent and memory usage graphs for the preparation phase

in linear time and with low memory consumption, if com-
pared to VisComplete. Moreover, as previously discussed,
it is important to consider that the preparation phase is
carried out sporadically and can be performed using idle
time. Only the query phase needs to be executed online,
for each user demand.

Query and recommendation phase evaluation

The non-functional requirements evaluated in the query
and recommendation phase were the time spent and the
memory required to load the database of pattern paths
and the list of minimal sequences produced by the prepa-
ration phase. We used the same databases listed in Table 4
to perform this evaluation. The obtained results are listed
in Table 6 and depicted in Fig. 10.

The analysis of the graphs with Lab Fit software shows
that WR has a linear growth with a very low slope regard-
ing the time spent, while VisComplete once again has a
second-degree polynomial growth.

Regarding the memory usage, VisComplete has a lin-
ear consumption in function of the number of workflows,
while the memory consumption of our approach is con-
stant for any number of workflows greater than 3343. This
probably occurs due to the replication step. As the paths
support does not change to all databases derived from
database 3, the mining algorithm always produces the
same pattern paths. Consequently, the amount of memory
to load these pattern paths does not change.

These results show that WR has a significant advan-
tage over VisComplete to load the databases. This occurs
mainly because of the reduced number of paths after the
execution of the sequence mining algorithm.

Table 7 shows the total number of paths in each database
and the number of pattern paths for a support threshold
of 2 %. It is possible to observe that the reduction in the
number of paths to be analyzed is greater than 90 % for all
cases. As previously stated, databases 4, 5, 6, 7, and 8 were
generated via the replication of database 3. Due to that, the
path support does not change and, hence, the generated
pattern paths are the same.

Table 6 Time spent and memory usage values for the query and
recommendation phase

Database VisComplete WR
Time (s) Memory (MB) Time (s) Memory (MB)
1 0.23 17 0.09 6
2 0.72 126 0.17 7
3 1.85 148 043 9
4 343 184 0.82 9
5 7.50 255 1.61 9
6 18.18 397 320 9
7 5037 681 6.34 9
8 94.00 963 9.50 9

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

Page 12 of 16

Time spent in the Query and Recommendation Phase

e

-~

-

-~

=&—VisComplete

-

Time(s)
w
o

/

40 /

WR

30 /

40000

1000

Number of Workflows

Memory usage in the Query and Recommendation Phase

60000 80000

900

A

_—

800

—

700
600 —

/

=—&—VisComplete

500
400 —
300 —

Memory (MB)

200 /

WR

100

0) —

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Number of Workflows
Fig. 10 Time spent and memory usage graphs for the query and recommendation phases

The remaining evaluations in this section are related
to the functional requirements of the approach, ie.,
the recommendation results. We used only the origi-
nal database (database 3) in this evaluation for both
approaches.

It was necessary to define a dependent variable that
indicates the degree of similarity between two paths to
allow assessment of the functional requirements of our
approach. This similarity function, called S, serves for
choosing which of the recommendations is the best and is
explained in the following.

Consider that someone wants to model the workflow
shown in Fig. 11b, which we call intended workflow.

Table 7 Comparison of paths and pattern paths

Database Paths Pattern paths Reduction (%)
1 2,076 169 91.86
2 8,294 282 96.60
3 23,623 1,039 95.60
4 47,246 1,039 97.80
5 94,492 1,039 98.90
6 188,984 1,039 99.45
7 377,968 1,039 99.73
8 755,936 1,039 99.86

When searching for a recommendation after adding the
first task, vekSphereSource, the system returned two alter-
native paths: A (Fig. 11a) and B (Fig. 11c). Consider that
the support of path B is higher and, consequently, it is
presented first to the user. The support value of a path
does not indicate whether it is better or worse, but only
if it is more common or not. To determine which of
the recommendations is more appropriate, the similarity
between the suggested paths and the intended workflow
is calculated. The path that obtains the highest degree
of similarity is the best recommendation. The similarity
S(g) is the number of tasks in the recommendation that
is exactly in the same sequence in the intended workflow,
using task g as query. In the example of Fig. 11, path A has
S(vtkSphereSource) = 2 and path B has S(vtkSphereSource)
= 1. In this case, path A is the best recommendation and
would be selected by the user, automatically adding two
tasks in the intended workflow.

To illustrate how the recommendation evaluation was
performed for a complete workflow, consider again
that someone wants to build the workflow shown in
Fig. 11b. By manually adding a first task (vtkSphere-
Source), the system provides two recommendations: A
and B. As the user navigates through the recommen-
dations, it is detected that the recommendation that
more closely resembles the workflow of Fig. 11b is the
first (path A), shown in Fig. 11a, with S(vtkSphereSource)

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

Page 13 of 16

BO000000000

vtkGlyph3D

nim

000000000Mm

vtkPolyDataMapper

a

Fig. 11 Similarity among paths. a Path A. b Intended workflow. ¢ Path B

Intended Workflow

Path B

= 2. The value of the similarity function is also used
to prune the recommended path. After accepting the
recommendation, all tasks that were within the recom-
mended cutoff point (ie., vtkTransformFilter and vtk-
StreamTracer) are automatically added to the workflow.
Subsequently, a second task (vtkTubeFilter) is manually
added to the workflow and gets no recommendation.
By manually adding a third task (vtkPolyDataMapper) to
the workflow, new recommendations are generated, and
the most similar path appears in the fifth position in
the list of recommendations with S(vtkSphereSource —
vtkTransformFilter — vtkStreamTracer — vtkTubeFilter
— vtkPolyDataMapper) = 3. After automatically adding
these three recommended tasks (vikActor, vikRenderer,
and VTKCell), the workflow is complete.

In the assessment of our approach, we used both the
percentage of recommended tasks, p, and the ranking
average, a, to measure the functional capabilities of our
approach, also considering VisComplete as baseline. A
formal definition of the percentage of recommended tasks
is shown in Eq. 1

pzS(q1)+S(qz)+-..+S(qn)
m

1)

In the equation, S(g;) is the similarity of the best rec-
ommendation in the ith query, from a total of n queries

Table 8 Percentage of recommended tasks and ranking average
for VisComplete and our approach

%4 VisComplete WR
Man Aut p (%) a Man Aut p(%) a

1 1 7 39 1.00 1 7 39 1.00
2 3 5 63 1.80 3 5 63 3.60
3 6 3 33 1.00 6 3 33 1.00
4 8 3 27 1.00 8 3 27 1.00
5 5 8 62 1.25 7 6 46 1.00
6 5 7 58 1.71 5 7 58 1.28
7 6 7 54 3.85 6 7 54 342
8 5 5 50 240 5 5 50 2.60
Avg 6.1 56 48 1.75 6.3 53 46 1.86

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

that had an accepted recommendation. Moreover, m is the
total number of tasks in the intended workflow. According
to the previous example, P = (2 + 3) / 8 = 62.5%. This per-
centage can be seen as the saved effort during the work-
flow design. In other words, in this example, the recom-
mendation system automatically modeled 62.5 % (five out
of eight tasks) of the workflow. The bigger this percentage,
the better is the recommendation system under analysis.

On the other hand, a formal definition of the average
ranking a is given by Eq. 2, where r(g;) is the ranking of
the best recommendation in the ith query, from a total
of n queries that had an accepted recommendation. To
derive this formula, we considered the ranking of the first
task of the best recommendation in the ith query as r(g;)
and the ranking of the remaining (S(g;) — 1) tasks as 1,
for a total of S(g;) recommended tasks. This way, recom-
mendations with the same ranking but higher similarity
have a lower a. This reflects the fact that all matched
tasks, except the first one, are directly incorporated in the
workflow without the need of navigating through more
recommendations. According to the previous example,
a=1+2-1)+54+(3—-1)/(2+3) = 1.8. This value rep-
resents the most probable ranking of each recommended
task. The best value for the average ranking is 1, and it only
occurs if the best recommendation is always the first one.
The lower this value, the better is the recommendation
system under analysis.

_ r(g) +(Sq) =D +...+7r(qn) +(S(gy) — 1)
S(q1) +S(q2) +...+S(qn)

2)

We randomly chose eight workflows from the database
provided by the VisComplete team for this experiment.
These workflows played the role of intended workflows,
and both VisComplete and WR were queried as each task
was added to the workflow, according to the previously
mentioned procedure. The results of this experiment are
shown in Table 8, where Wf represents each of the eight
workflows, Man represents the manually added tasks, Aut
represents the automatically added tasks, and p and a are
the aforementioned metrics.

The results of Table 8 show that both approaches had
similar percentage of recommended tasks, reducing in
almost 50 % the necessity of manually adding tasks when
modeling workflows, with a peak of 63%. Even in the
worst case, both automatically added 27 % of the workflow
tasks. Actually, both approaches had the same functional
behavior except in workflow 5, with a better percentage
to VisComplete. Likewise, the average ranking shows that
the best recommendation is usually the first or second in
the ranking for both approaches. The worst case, 3.85, was
obtained by VisComplete in workflow 7, and the best case
was obtained three times by VisComplete (workflows 1, 3,

Page 14 of 16

and 4) and four times by WR (workflows 1, 3, 4, and 5).
It is important to notice that these results were obtained
over the workflow database provided by VisComplete. In
this database, we were not able to explore the capability of
handling noise tasks.

Recommendations in the presence of noise

We also wanted to evaluate how both approaches deal
with noise tasks in the workflow. To do so, we selected
a workflow with optional tasks. It has a task called
vtkStripper, which does not occur in any other workflow
in our database and thus does not appear in the path
pattern database.

Our experiment consisted of using part of this work-
flow and asking for a recommendation. We used the
sub-path of the workflow starting from the first task until
the vtkStripper task (that is, vtkStripper was the last task
added to the workflow before we ask for a recommenda-
tion). Since VisComplete uses the complete query to make
a recommendation, and vtkStripper is not on any other
workflow, the correct suggestion (vtkProbeFilter) appears
only in the eighth position in the list of suggestions pro-
vided by VisComplete.

This kind of problem does not occur in WR, since the
Clean Query phase removes the noise and searches for
only possible paths. In fact, when we manually eliminate
the noise and give the workflow to VisComplete, it sug-
gests vtkProbeFilter as the first option, just like in our
approach. The automatic noise removal provided by our
approach is an important advantage if compared to its
competitors.

Threats to validity

As every experimental evaluation, our evaluation suf-
fers from some threats to validity. Regarding the non-
functional evaluation, it was necessary to replicate the
workflow database. However, this replication may have
benefited the results of our approach due to the nature of
sequence mining algorithms, especially regarding the time
and memory analysis in the query and recommendation
phases, as discussed in the “Query and recommendation
phase evaluation” section.

Moreover, we did not evaluate the usability of our
approach compared to VisComplete. VisComplete has
a graphical user interface that facilitates the navigation
among the provided recommendations and the selection
of a specific recommendation. The current version of our
prototype has no graphical user interface because usabil-
ity was not in the scope of our work. However, we believe
that our approach could be easily adapted to work under
the hood, using the VisComplete graphical user interface
as frontend.

Finally, the small number of workflows analyzed in the
functional evaluation (eight) and the domain specificity of

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

the workflow database (visualization) do not allow us to
generalize the evidences presented in this section. In addi-
tion, some important features of our approach, such as
domain segregation and workflow weighing were disabled
in this evaluation due to the characteristics of the available
workflow database.

Conclusions

Designing workflows is becoming more and more com-
plex, due to the large amounts of services, third-party
code, and versions of programs widely available. Connect-
ing such heterogeneous tasks in a single workflow may
be error prone and time-consuming. Currently, there is a
strong dependency in the individual skills of scientists to
connect tasks and design a workflow.

Our work proposes a recommendation service that sug-
gests frequent combinations of tasks, thus accelerating the
workflow design. Our approach is the first one to use
sequence mining techniques in workflows. Sequence min-
ing is order preserving and overcomes the limitation of
related work while examining neighbors rather than the
whole dependency task definition. This kind of mining
algorithm has been largely applied in e-commerce appli-
cations, presenting good results. Our approach is divided
into two phases: (1) preparation and (2) query and recom-
mendation. In the preparation phase, we extract the work-
flow paths separated by application domains, set weights
to the mostly used workflows, and apply sequence mining.
In the query and recommendation phase, we receive user
queries, process them, and return recommendations.

We have implemented a prototype to evaluate our
approach. Through experiments, we have compared our
approach with VisComplete [14], the state-of-the-art sys-
tem up until now. Our evaluation has focused on the
performance (processing time and memory consump-
tion) of both phases and in the precision of the query
and recommendation phase. The results are promis-
ing. The performance of our approach was superior to
VisComplete, especially when large numbers of workflows
were involved. Regarding precision, both approaches pre-
sented very close results: the effort of constructing a new
workflow was reduced in almost 50 %.

In future work, we intend to build a graphical user inter-
face to our prototype and use this interface to evaluate
the usability of our approach. We also plan to evaluate
WR with workflows from different domains, so we can
measure how workflow segregation by domain, done in
the preparation phase, can affect the results. Moreover,
we plan to conduct a study with scientists to measure
the quality of the recommendations, as well as the time
needed to complete the workflow, with and without WR.
Finally, since designing a workflow is a trial and error
procedure, WR can also be coupled to redesign tools
like [44].

Page 15 0f 16

Endnote

IRetrospective provenance describes the steps taken
during execution, while prospective provenance
describes the workflow structure [1, 31].

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MM, LM, and FT participated in the conception of the approach. FT
implemented the approach and run the experiments. VB helped in analyzing
the final results and writing and polishing the paper. All authors read and
approved the final manuscript.

Acknowledgements

We would like to thank the authors of VisComplete and the VisTrails team for
kindly providing us both their database and source code for our experiments.
This work was partially funded by CNPq and FAPERJ.

Author details

1Brazilian Army, Rio de Janeiro, RJ, Brazil. 2|C, Fluminense Federal University,
Niterdi, RJ, Brazil. 3COPPE, Federal University of Rio de Janeiro, Rio de Janeiro,
RJ, Brazil.

Received: 22 October 2014 Accepted: 29 December 2014
Published online: 05 October 2015

References

1. Davidson SB, Freire J. Provenance and scientific workflows: challenges
and opportunities. In: Proceedings of the International Conference on
Management of Data (SIGMOD). New York, NY, USA: ACM; 2008.

p. 1345-1350. June 2008.

2. Callahan SP, Freire J, Santos E, Scheidegger CE, Silva CT, Vo HT. VisTrails:
visualization meets data management. In: Proceedings of the
International Conference on Management of Data (SIGMOD). Chicago, IL,
USA: ACM; 2006. p. 745-747. June 2006.

3. Scheidegger C, Koop D, Santos E, Vo H, Callahan S, Freire J, et al.
Tackling the provenance challenge one layer at a time. Concurr Comput
Prac Exp. 2008;20(5):473-483.

4. Goderis A, Li P, Goble C. Workflow discovery: the problem, a case study
from e-Science and a graph-based solution. In: Proceedings of the
International Conference on Web Services (ICWS). Chicago, USA; 2006. p.
312-319. Sept 2006.

5. SantosE, LinsL, Ahrens JP, Freire J, Silva CT. A first study on clustering
collections of workflow graphs. In: Proceedings of the International
Provenance and Annotation Workshop (IPAW). Berlin, Heidelberg; 2008.
p. 160-173.

6. Friesen N, Ruping S. Workflow analysis using graph kernels.

In: Proceedings of the ECML/PKDD Workshop on Third-Generation Data
Mining: Towards Service-Oriented Knowledge Discovery (SoKD).
Barcelona, Spain; 2010. p. 1-12. Sept 2010.

7. Stoyanovich J, Taskar B, Davidson S. Exploring repositories of scientific
workflows. In: Proceedings of the International Workshop on Workflow
Approaches to New Data-centric Science (WANDS). New York, NY, USA:
ACM; 2010. p. 7-1710. June 2010.

8. SilvaV, Chirigati F, Maia K, Ogasawara E, Oliveira D, BraganholoV, et al.
Similarity-based workflow clustering. J Comput Interdiscip Sci. 2011;2(1):
23-35.doi:10.6062/jcis.2011.02.01.0029.

9. CostaF, Oliveira D, Ogasawara E, Lima A, Mattoso M. Athena: text
mining based discovery of scientific workflows in disperse repositories.
In: Proceedings of the International Workshop on Resource Discovery.
Berlin, Heidelberg: Springer; 2012. p. 104-121. Nov 2010.

10. Bergmann R, Gil Y. Similarity assessment and efficient retrieval of
semantic workflows. Inform Syst. 2014;40:115-127.

11. Telea A, van Wijk J. SmartLink: an agent for supporting dataflow
application construction. In: Proceedings of the Eurographics and IEEE
TCVG Symposium on Visualization. Amsterdam, The Netherlands; 2000.
p. 189-198. May 2000.

http://dx.doi.org/10.6062/jcis.2011.02.01.0029

Tosta et al. Journal of the Brazilian Computer Society (2015) 21:16

12. Xiang X, Madey G. Improving the reuse of scientific workflows and their
by-products. In: Proceedings of the IEEE International Conference on Web
Services (ICWS). Salt Lake City, USA; 2007. p. 792-799. July 2007.

13. Leake D, Kendall-Morwick J. Towards case-based support for e-Science
workflow generation by mining provenance. In: Proceedings of the
European Conference on Advances in Case-Based Reasoning (ECCBR).
Berlin, Heidelberg: Springer; 2008. p. 269-283. Sept 2008.

14. Koop D, Scheidegger C, Callahan'S, Freire J, Silva C. VisComplete:
automating suggestions for visualization pipelines. IEEE Trans Vis Comput
Graph. 2008;14(6):1691-1698.

15. OliveiraF, Murta L, Werner C, Mattoso M. Using provenance to improve
workflow design. In: Proceedings of the International Provenance and
Annotation Workshop (IPAW). Salt Lake City, USA; 2008. p. 136-143.
June 2008.

16. ZhangJ, Liu Q, Kai X. FlowRecommender: a workflow recommendation
technique for process provenance. In: Proceedings of the Australasian
Data Mining Conference (AusDM). Melbourne, Australia; 2009. p. 1-7.
Dec 2009.

17. Chinthaka E, Ekanayake J, Leake D, Plale B. CBR based workflow
composition assistant. In: Proceedings of the Congress on Services
(SERVICES). Washington, DC, USA: [EEE Computer Society; 2009.

p. 352-355. July 2009.

18. Mattoso M, Wermer C, Travassos GH, Braganholo V, Murta L, Ogasawara E,
et al. Towards supporting the life cycle of large-scale scientific
experiments. Int J Bus Process Integr Manag. 2010;5(1):79-92.

19. Tan W, Zhang J, Foster |. Network analysis of scientific workflows: a
gateway to reuse. [EEE Comput. 2010;43(9):54-61.

20. Oliveira D, Ogasawara E, Seabra F, SilvaV, Murta L, Mattoso M.
GExpLine: a tool for supporting experiment composition. In: Proceedings
of the Provenance and Annotation of Data and Processes. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer; 2010. p. 251-259.
June 2010.

21. ZhangJ, Tan W, Alexander J, Foster |, Madduri R. Recommend-as-you-
go: a novel approach supporting services-oriented scientific workflow
reuse. In: IEEE International Conference on Services Computing (SCC).
Washington, DC, USA: [EEE Computer Society; 2011. p. 48-55. June 2011.

22. Cerezo N, Montagnat J. Scientific workflows reuse through conceptual
workflows. In: Proceedings of the Workshop on Workflows in Support of
Large-Scale Science (WORKS). Seattle, USA: ACM; 2011. p. 1-10.Nov 2011.

23. Minor M, Bergmann R, Gorg S. Case-based adaptation of workflows.
Inform Syst. 2014;40:142-152.

24. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, LiP, et al.
Taverna: a tool for building and running workflows of services. Nucleic
Acids Res. 2006;34(2):729-732.

25. Altintas |, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: an
extensible system for design and execution of scientific workflows. In:
Proceedings of the Scientific and Statistical Database Management
(SSDBM). Greece; 2004. p. 423-424. June 2004.

26. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D,
Newman D, et al. myExperiment: a repository and social network for the
sharing of bioinformatics workflows. Nucleic Acids Res. 2010;38(Web
Server Issue):677-682.

27. Goble CA, Roure DCD. myExperiment: social networking for
workflow-using e-scientists. In: Proceedings of the Workshop on
Workflows in Support of Large-Scale Science (WORKS). Monterey, CA,
USA: ACM; 2007. p. 1-2. June 2007.

28. Mates P, Santos E, Freire J, Silva CT. CrowdLabs: social analysis and
visualization for the sciences. In: Proceedings of the International
Conference on Scientific and Statistical Database Management (SSDBM).
Berlin, Heidelberg: Springer; 2011. p. 555-564. July 2011.

29. Upson C, Faulhaber Jr T, Kamins D, Laidlaw DH, Schlegel D, Vroom J,
et al. The application visualization system: a computational environment
for scientific visualization. IEEE Comput Graph Appl. 1989,;9(4):30-42.

30. Minor M, Bergmann R, Gorg S, Walter K. Towards case-based adaptation
of workflows In: Bichindaritz |, Montani S, editors. Case-based reasoning
research and development. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer; 2010. p. 421-435. July 2010.

31. Freire J, Koop D, Santos E, Silva CT. Provenance for computational tasks:
a survey. Comput Sci Eng. 2008;10(3):11-21.

32. Murta L, BraganholoV, Chirigati F, Koop D, Freire J. noWorkflow:
capturing and analyzing provenance of scripts. In: Proceedings of the

33

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Page 16 of 16

International Provenance and Annotation Workshop (IPAW). Cologne,
Germany; 2014. p. 1-12. June 2014.

Yaman F, Oates T, Burstein MH. A context driven approach for workflow
mining In: Boutilier C, editor. Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI). Pasadena, USA; 2009.

p. 1798-1803. July 2009.

van der Aalst W, Weijters T, Maruster L. Workflow mining: discovering
process models from event logs. IEEE Trans Knowl Data Eng. 2004;16(9):
1128-1142.

Zeng R, He X, van der Aalst WMP. A method to mine workflows from
provenance for assisting scientific workflow composition. In: Proceedings
of the IEEE World Congress on Services (SERVICES). Washington, DC, USA:
IEEE Computer Society; 2011. p. 169-175. July 2011.

Agrawal R, Ramakrishnan S. Mining sequential patterns. In: Proceedings
of the International Conference on Data Engineering (ICDE). Taiwan;
1995. p.3-14. March 1995.

Srikant R, Agrawal R. Mining sequential patterns: generalizations and
performance improvements. In: Proceedings of the International
Conference on Extending Database Technology (EDBT). Berlin,
Heidelberg: Springer; 1996. p. 3-17. March 1996.

Wilde M, Hategan M, Wozniak J, Clifford B, Katz D, Foster I. Swift:

a language for distributed parallel scripting. Parallel Comput. 2011;37(9):
633-652.

Deelman E, Singh G, Su M-H, Blythe J, Gil Y, Kesselman C, et al. Pegasus:
a framework for mapping complex scientific workflows onto distributed
systems. J Sci Program. 2005;13(3):219-237.

de Oliveira D, Ogasawara ES, Baido FA, Mattoso M. SciCumulus: a
lightweight cloud middleware to explore many task computing
paradigm in scientific workflows. In: IEEE International Conference on
Cloud Computing, CLOUD 2010. Miami, FL, USA: IEEE; 2010. p. 378-385.
doi:10.1109/CLOUD.2010.64. http://dx.doi.org/10.1109/CLOUD.2010.64.
July 2010.

PeiJ, Han J, Mortazavi-Asl B, Zhu H. Mining access patterns efficiently
from web logs. In: Proceedings of the Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD). London, UK: Springer;
2000. p.396-407. June 2010.

Ezeife Cl, Lu Y. Mining web log sequential patterns with position coded
pre-order linked WAP-Tree. Data Min Know! Disc. 2005;10(1):5-38.

Silva WPd, Silva CM, Silva DD, Soares IB, Oliveira JA, Silva CD. LAB fit
curve fitting: a software in portuguese for treatment of experimental data.
Revista Brasileira de Ensino de Fisica. 2004;26(4):419-427.

Santos ID, Dias J, Oliveira DD, Ogasawara E, Ocana K, Mattoso M.
Runtime dynamic structural changes of scientific workflows in clouds.

In: Proceedings of the International Conference on Utility and Cloud
Computing (CloudAM). Washington, DC, USA: [EEE Computer Society;
2013. p.417-422. Dec 2013.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://dx.doi.org/10.1109/CLOUD.2010.64
http://dx.doi.org/10.1109/CLOUD.2010.64

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Introduction
	Related work
	SmartLink
	FlowRecommender
	VisComplete
	Approaches based on case-based reasoning
	Our previous approach

	Methods
	Workflow recommender
	Sequence mining in the context of scientific workflows
	Problem definition
	Overview of WR approach
	Preparation phase
	Query and recommendation phase

	Results and discussion
	Preparation phase evaluation
	Query and recommendation phase evaluation
	Recommendations in the presence of noise
	Threats to validity

	Conclusions
	Endnote
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

