
Neves et al. Journal of the Brazilian Computer
Society (2015) 21:8
DOI 10.1186/s13173-015-0032-1

RESEARCH Open Access

A novel caching algorithm for VoD proxy
implementation and its evaluation including a
new set of metrics for efficiency analysis
Bruno S Neves1,2*, Anderson S Venturini2 and Altamiro A Susin1

Abstract

Background: Video on demand (VoD) is a fast-growing digital service that requires a substantial amount of hardware
resources for its implementation. To reduce the costs of running this service, an alternative is to use proxies that cache
the most important portions of the video collection in order to meet the demand for this content in place of the
primary server of the VoD system.

Methods: To improve the efficiency of the proxies, we proposed a novel caching algorithm that explores the
positioning of the active clients to determine the density of clients inside a time window existing in front of each
video chunk. The algorithm attributes a higher caching priority to the video chunks with greater aggregate density in
the memory. To evaluate our approach, we compared it with others of similar nature using both traditional metrics
like hit ratio, as well as physical metrics such as the use of processing resources. This complementary set of metrics is
produced by our simulator that, as far as we know, is the first one of its kind to enable the evaluation of hardware
consumption used to implement the VoD proxy.

Results: Results show that the novel algorithm can achieve a higher hit ratio while requiring a little more effort from
the hardware. Additionally, it was identified that the processor constitutes the major bottleneck to this application
when demand increases.

Conclusions: Among the recent emergence of caching strategies which consider the positioning of clients as
criterion for caching, the strategy of prioritizing the chunks with greater density of previous clients showed to be a
more efficient solution.

Keywords: Video; Proxy; Caching; Algorithm; Scalability; Hardware

Background
Recent estimates indicate that video traffic, including
but not limited to digital TV, video on demand (VoD),
and non-real-time transmissions, like media sharing, will
account for 86% of all global data traffic over the network
by 2016, and video on demand will account for 54% of this
traffic [1]. The same source estimates that the VoD traf-
fic will triple in the same period. This suggests that VoD
streaming will require amore suitable support for its oper-
ation; otherwise, the cost to expand the video traffic will
be challenging.

*Correspondence: brunoneves@unipampa.edu.br
1Federal University of Rio Grande do Sul, Osvaldo Aranha Av., 103, 90035-190
Porto Alegre, Brazil
2Federal University of Pampa, Lane 45, 1650, Malafaia, 96413-170 Bagé, Brazil

To reduce the consumption of network bandwidth while
at the same time providing an improved quality of service,
an alternative was created by utilizing proxies near the
local networks of the clients. Each one of the proxies acts
as a secondary server caching the most accessed informa-
tion in order to provide this information to its clients in
place of the main video server, as shown in Fig. 1. There-
fore, the proxy efficiency is fundamental in determining
the total cost and productivity (number of simultaneous
clients served by the system) to the VoD service.
Based on this, the most important aspects for the effi-

ciency of the VoD proxy is the caching algorithm [2, 3]
(also referred to as cache replacement algorithm) used to
determine the preferred content to be kept in the cache
(memory of the proxy). The best content to store in the

© 2015 Neves et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-015-0032-1-x&domain=pdf
mailto: brunoneves@unipampa.edu.br
http://creativecommons.org/licenses/by/4.0

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 2 of 23

Fig. 1 Strategy for using VoD proxies. Proxies serve the VoD clients by reducing the load on the main server and the network backbone

cache is that that will allow the proxy to supply the great-
est number of requests generated by the clients of the VoD
system.
A similar problem is addressed by replication algorithms

[3] that create replicas of the content available on the
main server and store them in surrogate servers. How-
ever, contrary to caching algorithms, replication algo-
rithms determine which objects should be replicated and
in which servers the replicas must be carried out taking
into account load balancing between the surrogate servers
as the most important decision factor [4, 5].
We have outlined this difference between the two

classes of algorithms to clearly define the scope of the
research which focuses on the design and analysis of video
caching algorithms employed in VoD proxies. Addition-
ally, themain target of our study is a centralized approach1
where it is assumed that the decisions made by a caching
algorithm running on a VoD proxy are not based on any
kind of collaboration with other proxies in the system.
Many caching algorithms use the history of the access

pattern of the clients as a reference to try to predict which
portions of the collection will be needed in the future
[6–11]. Thus, the most accessed video objects should be
stored in the cache in order to easily serve future requests.
However, as this prediction begins to fail, the proxy effi-
ciency is decreased and the caching algorithm needs to
update the frequency history in order to define a new
target content to be stored for the next period.
An example of this caching approach is proposed by

Li et al. [12] who presents a caching model based on
two popularity control variables: the first variable counts
the number of accesses to a video object in a short-term

interval (from current to past time) and the second vari-
able counts this number in a long-term interval. If the
number of accesses observed in any of these intervals
exceeds the threshold value for its respective interval, the
item is marked with a higher caching priority; otherwise,
the item receives a lower caching priority.
The concern of Li et al. [12] in analyzing the relevance

of video objects at different moments brings out a broader
reflection around the dynamicity relative to the changes in
the popularity of the video fragments. However, from our
point of view, themain deficiency of the Li et al.’s approach
[12] is the positioning of the analysis intervals used by
their algorithm since both temporal windows are located
from the present to the past. As a consequence, the algo-
rithm is subjected to making imprecise caching decisions
given that the same variations in the popularity analyzed
by it can also cause the actual demand to be different from
the one predicted by its estimation variables.
Chen et al. [13] based the video popularity function of

their algorithm on twomain factors: duration and recency
of the last access to each item of the collection. Moreover,
they proposed that each video occupies a portion of the
memory in proportion to its respective popularity. In our
opinion, the algorithm presents unexplored aspects that
can potentially improve the proxy efficiency. For example,
the algorithm could get an increase in hit ratio if the dura-
tion of the accesses measured by it could be correlated to
the video segments accessed during this period. Thus, the
algorithm could determine which parts of a video are usu-
ally more requested by the clients and, consequently, the
less requested parts could be discarded to reduce memory
consumption.

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 3 of 23

Ishikawa and Amorim [14] presented a caching algo-
rithm named Collapsed Cooperative Video Caching
(CCVC), inspired by the caching policies used in peer-
to-peer networks, that works on two levels. On the first
level, the algorithm selects a video with smaller popularity
(lower number of active2 clients) as a victim. On the sec-
ond level, the algorithm decides which parts of the video
selected on the first level should be discarded in order to
free up space for allocation of the content received from
the main server.
In addition, a key aspect of the approach used by

Ishikawa and Amorim is to assign a higher caching prior-
ity for video blocks allocated between two or more clients
whowatch the same video. Consequently, the video blocks
brought to the memory to serve the older clients of the
system tend to remain in the memory to be accessed by
the more recent clients who watch the same video. This
feature makes CCVC one of the first algorithms to take
into account the active clients who have not yet accessed
certain portions of a video as a factor in determining
which contents should be cached.
More recently, Hong et al. [15] proposed an algorithm

(named CC) that, compared with the CCVC, employs, in
more clear way, a new paradigm (which we refer to as
Look Ahead) to decide which content should be cached.
The algorithm takes into account the current position-
ing of the clients who are watching a particular item of
the collection as a way to determine the effective num-
ber of hits in the future for each video segment of this
item. Only clients who have not yet accessed a particular
segment count for the number of future accesses to that
segment.
Nevertheless, in our view, one flawed aspect of this

approach relates to the fact that the lack of a limit with
respect to the temporal distance between the watching
positions of the clients and the segment causes the seg-
ments at the end of the videos to have a greater number of
future requests associated to them, thus remaining in the
memory of the proxy although there may be segments at
the beginning of the video with higher demand associated
to them in the short term.
Finally, Wu et al. [16] proposed a system that estimates

the time it takes to occur the access to each video segment.
The most important aspect of this strategy is measuring
the distance between each segment and the closest client
that will access to this segment. When a client closer to
a segment performs an access to it, the system automat-
ically recalculates the distance between the segment and
the next closest client.
This strategy, however, shares the same problem present

in Hong’s approach, since by prioritizing the preservation
in memory of the segments that will be accessed soon not
necessarily the segments with higher demand will be pre-
served, because clients’ concentration can be larger near

the segment whose distance to the closest client is also
greater.

Methods
According to what was presented in the previous section,
the Look Ahead algorithm type, such as [14–16], bases
its caching decisions on actual client requests, therefore
establishing a more solid baseline in determining which
portions of each video must be kept in cache in order to
provide greater efficiency to the proxy when the number
of concurrent clients is high.
However, we discovered a way to improve the caching

logic employed by the previous algorithms of this type,
and based on it, we proposed a novel and more efficient
caching strategy. Our strategy takes into account the den-
sity of clients existing in a bounded region near each
chunk thus preventing the clients that are distant of a
given chunk to interfere in the calculation of the caching
priority for that chunk.
To evaluate our algorithm, we developed a simulator

that is not only able to analyze the efficiency using con-
ventional metrics (such as the hit ratio), but also is able to
evaluate the use of computational resources of the under-
lying hardware. Therefore, the simulator enables us to
determine how the hardware is able to restrict the sys-
tem scalability taking into consideration scenarios where
the workload is high. As far as we know, this ability
makes our simulator the first one to enable the analysis
of the proxy performance from an architectural point of
view.
Briefly summarizing, this method is based on three

main objectives:

1. The design of a novel and more scalable video
caching algorithm for use in high workload scenarios
of the VoD service.

2. The development of a simulator capable of
identifying the bottlenecks of the subjacent
architecture of the VoD proxy.

3. A deeper comparative evaluation of scalability
provided by different caching algorithms.

The remainder of this section is organized as fol-
lows: the “Proposed algorithm” subsection describes the
caching algorithm we propose in this work, while the
“Experimental environment” subsection presents the sim-
ulator built to assess the performance of our algorithm.

Proposed algorithm
The main idea of our caching strategy came from a
broader observation of all scalability aspects to maximize
not only the efficiency related to the network bandwidth
but also other physical resources of the proxy which are
often exposed to peaks in the workload to which the
system needs to respond appropriately.

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 4 of 23

The differentials of our approach arise from the under-
standing that, in high-demand scenarios, the proxy should
make the best choice with respect to the use of its
resources by considering only the actual demand (created
exclusively by the clients who have already started their
video section in that system) existing inside a short-term
time window of a few seconds3 in the direction of the
future. Otherwise, the use of these resources aiming at the
service qualification for the longer-term demands (possi-
ble clients) could reduce the proxy scalability to support
the current demand.
According to this view, when the proxy works to serve

potential long-term requests (as occurs when caching pre-
fixes), the cache content exchange rate tends to be smaller
since under these conditions the caching philosophy does
not prioritize current load conditions. As a consequence,
the bandwidth associated to all the proxy devices tends to
be underutilized since the system performs no data flow
or any other kind of computation to update the cache con-
tent aiming to sustain the best scalability possible for the
proxy and, thus, meet the current load.
Conversely, according to our proposal, under high work-

load conditions, the caching algorithm should constantly
be organizing the data allocation flow in order to maxi-
mize the proxy productivity. For this purpose, it should
evaluate and select what video chunks have the best
demands, i.e., higher number of clients who will access
them in short term, prioritizing the data allocation for this
content.
By implementing a time window to determine the den-

sity of clients (number of clients per time interval) in
front of each video chunk, our algorithm is able to work
more actively to monitor and update the system variables
according to each load state, making most appropriate use
of the available hardware.
The sub-subsections below describe the Current

demAnd Rather Than futurE (CARTE) algorithm we
developed to evaluate the impacts on the VoD proxy per-
formance generated by the use of the design features
previously mentioned. To review, they are as follows:

• Monitoring the density of clients in future short term.
• Reacting to the current load state conditions by

performing memory content updates.

• Employing all available hardware bandwidths to
increase the scalability of the proxy.

The “Video organization” sub-subsection shows how
the algorithm logically divides the videos into smaller
chunks and discusses the basics of the caching pri-
ority binding for each kind of chunk. The “Caching
logic” sub-subsection explains in more detail the caching
decision logic employed by CARTE, presenting mathe-
matical descriptions on how our algorithm works.

Video organization
The strategy employed by CARTE to divide the videos in
smaller chunks, called Sequences, is inspired by the Link-
ing Slots Management Police used by the CCVC algorithm
[14]. As we demonstrate below, the organization of video
into sequences allows a more efficient use of the available
memory resources in comparison to the widely used clas-
sical division of the videos into segments of equal size. A
similar reasoning could be utilized to compare the use of
sequences to the use of variable length segments, such as
those proposed in [17].
Figure 2 illustrates the video organization process used

by CARTE where each square represents a video block
and the horizontal lines of successive squares (there are
three in the figure) correspond to the same video clip.
Each row from top to bottom describes the state of the
blocks belonging to the video clip 1 s further along in time.
Squares containing a white circle represent the video

blocks that are not present in the memory of the proxy
at that current time. Each white square indicates that
one or more clients are receiving the correspondent video
block. Blocks that are being read cannot be discarded by
the replacement algorithm when free memory becomes
scarce. Hatched squares indicate a trail of blocks left in the
memory by a client as it progresses every second (assum-
ing constant bit rate (CBR) transmission) to the next video
block. Hatched blocks represent the preferred content for
discarding when the free memory is scarce.
When the reading position of a client limits a trail to

the left, the algorithm increases the caching priority of
the blocks belonging to the trail to an intermediate value
(indicated by triangles within the square). Since these
blocks tend to be utilized by the clients who are positioned

Fig. 2 Video organization. Trails (hatched squares) and video sequences (squares with a triangle) are created from the inflow and displacement of
clients on the requested videos. Trails have less caching priority than sequences

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 5 of 23

on the left of the trail, the algorithm prevents the network
access to obtain this content again with the main server.
Henceforth, we will refer to each group of blocks laterally
limited by two or more clients, as a sequence.
As shown in the scenario depicted in Fig. 2, several

sequences can be formed along the service delivery time.
As the demand increases, i.e., the number of clients to be
served by the proxy becomes higher, the memory spaces
used to allocate the video blocks for the clients (espe-
cially the new ones) need to be obtained from a recycling
process of the available sequences.
In terms of efficiency, the main advantage linked to

the design philosophy using sequences is illustrated in
Fig. 3. It compares the logical video organization through
sequences with the video organization through segments
of equal size. In the figure, the two streams of video blocks,
on the top and on the bottom, correspond to the same
video clip. The top of the figure shows how the video clip
is organized using segments of the same size where each
segment contains four video blocks. The bottom part of
the figure shows how the same video clip is organized uti-
lizing sequences created from the watching position of the
clients.
In the video organization through fixed size segments,

any segment that is being accessed by a client cannot be
removed from the memory. Consequently, for the video
clip shown in Fig. 3, there are only two segments, totaling
eight video blocks, that could be removed from the mem-
ory by a replacement algorithm. In contrast, in the video
organization through sequences, only the video blocks
that are currently being accessed by the clients cannot be
removed from the memory by the replacement algorithm.
As a result, all existing sequences in the video clip are eligi-
ble to be discarded, totaling 17 video blocks (among those
present in Fig. 3).

Another example is assuming that the replacement algo-
rithm has assigned a higher discard priority to the interval
between the last two clients (on the left side of Fig. 3,
for both strategies). The entire interval can be removed
from the memory only if the video organization mech-
anism employs the sequences. If the video organization
uses segments of the same size, the final part of the inter-
val, which corresponds to the first two hatched blocks
belonging to the segment n + 2, cannot be discarded
despite its low probability in receiving an access in the
future.
Thus, the sequence mechanism more precisely defines

the areas of interest for the action of the replacement
algorithm, enabling a better scalability of the proxy. For
this reason, we chose to employ this scheme as a base
for the implementation of our algorithm, described in a
complementary manner in the next sub-subsection.

Caching logic
According to the video organization strategy described in
the previous sub-subsection, the binding of priorities to
memory spaces in our system considers that:

• Blocks that are currently being read by one or more
clients cannot be discarded from memory.

• When free space is available, the memory employed
to allocate the content coming from the main server
should be obtained primarily from that portion of
unused memory blocks.

• When free memory becomes scarce to allocate the
content being streamed from the main server, the
proxy tries to discard a trail of blocks left in the
memory as a result of the service delivery made
previously to a client. If there are no blocks in this
condition, the algorithm selects a sequence for

Fig. 3 Comparative: segments (fixed size) vs. sequences (variable size). Segments that are being accessed by clients cannot be discarded, while any
sequence can be discarded to free space in the memory

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 6 of 23

discarding in order to free sufficient space to allocate
the new content.

The victim sequence is chosen based on the caching pri-
ority of the available sequences, which is calculated incre-
mentally along the sequences formation by combining the
following factors:

• Start position (SPs,v): corresponds to the current
position of the first block (leftmost) belonging to the
sth sequence of the video v, named S v.

• Sequence size (SZs,v): number of blocks belonging to
the S v.

• Density of clients (DCs,v): total number of clients
present in a window of K blocks preceding S v who
potentially will perform access to this sequence.

This way, the caching priority for each sequence (CPs,v)
is defined by Eq. 1, where the higher the value for CPs,v,
the greater the probability of the sequence Sv is cached in
the memory of the proxy.

CPs,v = (DCs,v/SZs,v)∗[SPs,v] (1)

where DCs,v =
TCv∑
i=1

Ci,v (2)

suchthat Ci,v =
{
1, WBs,v ≤ Pi,v < SPs,v
0, otherwise (3)

and WBs,v = SPs,v − K (4)

In Eq. 2, Ci,v is a binary variable that states if the access
position of the ith client of video v (Pi,v) is (1) or not
(0) confined within the time window of the sequence Sv.
TCv informs the total number of clients that are watch-
ing the video v andWBs,v, present in Eqs. 3 and 4, informs
the current position of the left edge of the time window
preceding Sv.
As shown in Eq. 1, our algorithm prioritizes the caching

of the sequences with the highest density in the short
term (indicated by the number of existing clients within
the window of K blocks that precedes each sequence)
since this choice benefits a larger number of clients. To
uniformly apply this design decision, the sequences in for-
mation at the video prefix that does not have previous K
blocks yet can not be discarded as the clients density for
these sequences can not be defined if the time window is
not completely constituted.
In addition, Eq. 1 shows that the algorithm also favors

the preservation of smaller sequences in the memory,
since this choice allows for better scalability due to lower
consumption of memory resources.
What is more, the variable SPs,v, that appears in brackets

in Eq. 1, is used as the tiebreaker and it is only multiplied

by the result of the division when two or more sequences
have the same value for CPs,v. Accordingly, when a tie
occurs, the sequences closer to the end of each video
receive higher caching priorities, aiming to enable not
only the existing clients within each window to perform
access to these sequences but also all existing clients in the
longer term.
Lastly, CARTE is able to support VCR operations such

as “jump forward,” “jump back,” or “abort.” When these
events occur, the algorithm updates the density of clients
of the time windows affected by the operations performed
by clients. So for instance, when a client aborts the exe-
cution of a movie, the algorithm subtracts by one unit the
density related to the window where the client was posi-
tioned at the time he or she decided to abort the video
transmission.
However, we emphasize that, aiming to adopt the same

strategy employed by the authors of the algorithms we
selected (using the criteria described in the “Results and
discussion” section) to carry out a comparative analysis
with the CARTE, we chose to execute the greatest part of
our simulations without the occurrence of VCR events. In
this way, we configured an impartial comparative environ-
ment to assess the performance of our algorithm.

Experimental environment
As far as we know, in most publications in the field of
developing proxies for VoD, the researchers have devel-
oped their own simulators (as was done in [18]), or they
have adapted existing network simulators (as in [19]) to
perform their experiments in order to avoid the cost and
complexity inherent to the development of real environ-
ments for prototyping their systems.
In addition, these two alternatives have been most com-

monly used to assess the impact of new caching policies
on the viewpoint of conventional metrics such as hit ratio,
clients blocking ratio, network resources occupation, and
startup delays for service providing, among others. How-
ever, in our view, both approaches are incomplete since
they do not consider the analysis of architectural aspects
of the proxy which are also potentially decisive for the
performance and scalability of the system, such as the
consumption of physical resources to run the application.
This way, we found inspiration to tackle the develop-

ment of a new tool named PROxy SIMulator (SIMPRO)
that is the core of the simulation flow used in this work.
The following sub-subsection (“Synthesis and simulation
flows”) presents the flows for synthesis and simulation
using our tool. The “Basics of the measurement process”
sub-subsection details the general measurement process,
exposing the main concepts and simulation alternatives
used for data acquisition. Finally, the “Validation of the
performance data” sub-subsection describes the process
used to validate the data produced by the simulator.

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 7 of 23

Synthesis and simulation flows
Figure 4 illustrates the steps of the simulation flow man-
aged by SIMPRO. The flow starts by the generation of
the simulation input vector (SIV) which describes the
workload for the proxy simulation. The basic element for
constructing the SIV is a request to create a video session.
Each request specifies the arrival time, the video identifier,
and the session duration (used to simulate scenarios with
early departure of the clients).
The SIV file is automatically generated from a set of

parameters configured by the designer via SIMPRO Conf
panel. In addition to the total simulation time, the param-
eters used for configuring the workload are as follows: the
maximum number of requests (client arrivals), the quan-
tity, the size and the bit rate of the videos available for
access, and the distribution model for the dispersing of
requests over the collection.
The requests distribution model is based on the use of

Poisson [20] to define the interval between the arrivals of
clients. The greater the value of the Poison coefficient (λ)
is, the greater the average time between the arrivals of the
requests to the proxy will be. In addition, the Zipf distri-
bution [21] was used to specify the way each client will be
associated to one video in the collection. The greater the
Zipf coefficient (θ), known as “skew,” the greater the con-
centration of the requests over the most popular videos of
the archive, with an exponential decay. In other words, if
the value of θ is closer to zero, the probability of access to
the videos is more homogenous.

The next step in the simulation flow is to configure the
proxy architecture that comprises of the following:

• Caching Algorithm: described and/or selected by the
designer of the proxy.

• Timing Manager: designed to provide support for the
synchronization of the proxy operations.

• Network Interface Abstractor (NIA) : used to store
the SIV file and the video blocks that enter and exit
the proxy.

During the simulation, at every second reported by the
Timing Manager, the caching algorithm checks the NIA
buffers for the presence of requests whose arrival time
is equivalent to the current simulation time. For each
like request, the algorithm creates a session handler and
stores it in the buffer of active clients. Then, the algo-
rithm reads each handler present in the clients buffer to
discover the current reading position of the respective
client. After that, it checks whether the requested con-
tent is available in the video memory. If so, the algorithm
transfers the correspondent video blocks from this mem-
ory to the NIA buffers. Otherwise, it decides (based on its
prioritization logic) if it should or should not transmit a
video requisition to the main server (via Server Channel)
to obtain this content.
Lastly, during the SIMPRO design, we took into consid-

eration that, for the most popular videos, memory speed
is a requirement as important as memory capacity, espe-
cially when the proxy is serving hundreds (or thousands)

Fig. 4 SIMPRO. Flow for synthesis and simulation of a VoD proxy

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 8 of 23

of concurrent clients whose requests are concentrated on
a few, more popular videos on the collection. In these
conditions, even if there is plenty of space in the disk to
fully allocate these videos, the disk bandwidth would not
be able to sustain the required throughput to serve the
active clients who are watching these videos [22, 23]. On
the other hand, as demonstrated by [24], the high band-
width currently supported by both the I/O buses and the
network interfaces causes none of these components to
conform a bottleneck to the target application, even in
scenarios of high workloads.
Thus, we were concerned with designing a simulator

to evaluate the proxy efficiency with focus on the per-
formance of the processor and the RAM, since these
devices are inexorably the main elements capable of pro-
viding, as well as limiting, the system scalability in face of
the growing demand for the most popular videos on the
system.

Basics of themeasurement process
To clarify the performance evaluation of the proxy before
the demand produced by a workload, we introduced the
concept of round of service which consists in all the
tasks undertaken by the proxy in order to serve each
of its active clients with a predetermined amount of
video4.
Accordingly, the main operations that the system needs

to perform during execution of a round of service are as
follows:

1. Check for the presence of the requested content in
memory and, when necessary, send a content request
to the main server.

2. Receive the data requested to the main server and
execute the replacement algorithm to release space
in the memory to store the new content.

3. Admit new clients and close the sessions of the
clients that ended watching the required content.

4. Update the caching priorities of the video objects.
5. Deliver the respective content to each client.

Besides, assuming that the proxy sends the content to
its clients using a constant transmission rate equal to the
(also constant) coding rate of the video, a new video block,
containing 1 s of video, should be delivered to each active
client at every second. Thus, in a scenario where the deliv-
ery of video blocks to the clients is always the last task per-
formed in a round of service, we concluded that the proxy
will have missed its deadline to serve part of its clients if a
round of service takes a time longer than 1 s to finish. By
using this condition as a reference, we defined the round
of service as the unit of effort to evaluate the proxy perfor-
mance and, consequently, all results produced by SIMPRO
were primarily related to the performance of the system to
execute one or more rounds of service.

Given this, as shown in Fig. 4, the last step of the simula-
tion flow consists in generating the performance report of
the proxy, which is done in accordance with the simulation
mode selected by the user. Three simulation modes are
currently supported by SIMPRO: (1) real time, (2) discrete
time, and (3) functional.
In real-time mode, the simulator collects and temporar-

ily stores in the RAM the execution time for each round of
service. To enhance the data set produced by the real-time
simulation with metrics like number of processor cycles
and memory bandwidth consumed per round of service,
the SIMPRO communicates with the physical level, using
the Intel Performance Counter Monitor (IPCM) library
[25]. IPCM utilizes dedicated hardware existing inside
the processor to measure software performance without
interfering on the execution time of the applications.
In discrete mode (slower simulation), SIMPRO inter-

acts with Simplescalar [26] to produce additional infor-
mation about the software–hardware interface, such as
an instruction profile. This profile describes the instruc-
tions most frequently used by the software, allowing the
designer to create architecture customizations to increase
the VoD proxy performance.
Another advantage provided by integration with Sim-

plescalar is the capability to evaluate the application per-
formance using different architectures. This is especially
important considering that the IPCM is restricted for use
with Intel processors. Thus, we can alternatively use dis-
crete mode to evaluate the same metrics measured by
IPCM when Intel processors are not the target for the
evaluation or when the physical target processor is not
available to execute the simulation in real-time mode.
Lastly, in the functional mode (fast simulation), our sim-

ulator produces values for hit ratio5, number of block
substitutions, and network bandwidth demanded in each
round of service, as well as other more detailed infor-
mation (if requested by user), such as system debugging
data. In this mode, the proxy performs all its operations
to preserve the coherent state of the system along the exe-
cution of the rounds of service, except the data I/O to
move video block to and from the RAM. As a result, the
simulation time becomes significantly faster than the one
obtained through real-time and discrete modes, allow-
ing the designer to get a quick feedback in terms of the
metrics most widely used to perform both behavioral and
efficiency analysis of a VoD proxy.

Validation of the performance data
A complete description of the CCVC algorithm (briefly
introduced in the “Background” section) followed by per-
formance data presented in [27] was used with the pur-
pose of reproducing and integrating this algorithm to
SIMPRO to generate comparative data aiming to validate
the simulator. The simulation parameters used by the

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 9 of 23

Table 1 Workload parameters for functional validation. Data
originally used in [27] for validation of the CCVC algorithm

Workload parameter Value

Zipf coefficient - θ (skew) 0.271

Poisson rate - λ (sec) 3

Number of videos 100

Cache size (percentage of the collection size) 10

Simulation duration (min) 60

Video transmission rate (Mbps) 1

Video length (min) 60 (= 450 MB)

CCVC authors are described in Table 1 and the origi-
nal performance results (about the network consumption
in the main server-to-proxy channel) used for compar-
isons are presented in Fig. 5a (see the curve labeled as
“Reference”). In the same figure, for the same loading
conditions, we plotted the results produced by functional
simulation performed by our simulator.
As shown in Fig. 5a, the results obtained through SIM-

PRO simulations6 are almost identical to the original
results with a maximum difference of 2% (for time = 58
min7). This permits us to expect that the results produced
by SIMPRO in functional mode are valid, although we are
not able to validate the entire set of metrics measured by
our simulator due to the unavailability of measurements
performed with the same metrics by the CCVC authors.
In our analysis, we have used the functional mode to

measure the hit ratio produced for all algorithms. The
main reason for this choice is that this metric is less
restrictive than channel consumption since the bandwidth
associated to the proxy-main server link may be very
limited in some operating scenarios.
Regarding the validation of the real-time and discrete-

time modes of our simulator, it was necessary to create a
set of benchmark results by collecting data performance
of the VoD proxy during its execution in a more realistic
context which we refer to as “networked implementation”.

For this implementation, we used two Dell PowerEdge
M620 computers, both equipped with two Intel Xeon E5-
2600 processors, 16 GB of DDR3 1066 MHz RAM and
Broadcom 57810S-k dual-port 10 gigabit NIC, capable of
performing TCP/IP operations directly in hardware (TOE
technology). Both computers run SUSE Linux Enterprise
Server (3.0 kernel), and they were connected to each other
using a 10 gigabit optic fiber channel. All network traffic
between these computers was implemented directly in the
C source code using the sockets programming library.
To reproduce a typical VoD operation scenario, we con-

figured one of the computers to run the VoD proxy using
the CCVC algorithm and the workload presented in
Table 1. The other computer was configured to perform
simultaneously the behavior of the clients and the main
server of VoD system. In this experiment, the video blocks
received from the proxy were not decoded after the receipt.
The validation was performed by measuring and com-

paring the service time (time to perform one round of
service) resulting from the execution of the networked
implementation and the service time resulting from the
execution using SIMPRO in both real-time and discrete-
time modes. We used the IPCM software to measure the
processing time produced by the networked implementa-
tion, taking into account all delays caused by the RAM.
To obtain the service time by means of the discrete mode
of the SIMPRO, we measured the number of cycles by
running the proxy on a PISA architecture, available on
the Simplescalar toolset, which according to [28] has sev-
eral similarities with the physical processor we used in
these experiments. After that, the number of cycles was
multiplied by the clock period of the target processor.
As shown in Fig. 5b, both the discrete- and real-time

modes produce results very close to those produced by the
networked implementation. The error produced by the
real-time simulation was not larger than 5.8% (for time =
26 min), while the error produced by discrete mode was
not higher than 6.2% (for time = 59 min). These errors
are acceptable according to similar results presented in
[29–31] for experiments of an equivalent nature.

(a) (b)

Fig. 5 Validation of the SIMPRO. Comparative analysis of the results to verify the accuracy of the data generated by (a) functional mode and by
(b) the discrete- and real-time modes

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 10 of 23

Considering that we configured our simulator to not
consider the TCP/IP processing cost, based on the capa-
bilities of the TCP Offload Engine (TOE [32]) network
interfaces, we attributed these differences to the execution
of some TPC/IP operations on the processor, since, unfor-
tunately, the TOE technology available on the computers
used in this experiment does not support the full layer set
of the TPC/IP protocol.

Results and discussion
This section presents and discusses results of the perfor-
mance comparison of the three video caching algorithms
previously presented:

• CCVC and CC (both introduced in the “Background”
section), since they are pioneers in the proposition of
the Look Ahead caching paradigm.

• Our algorithm, named CARTE, described in the
“Proposed algorithm” subsection of the “Methods”
section.

As a strategy to obtain each result, 30 simulations were
executed obtaining confidence of at least 95% to an inter-
val of confidence less than 1% of measurement value.
The following subsections are organized as follows: the

“Workload and operating parameters for the evaluation of
the proxy” subsection describes the workload and oper-
ating parameters to run the simulations. The subsection
entitled “Evaluation of the hit ratio and service time for
the execution of the caching algorithms” analyzes the hit
ratio and service time produced by the algorithms and
the “Evaluation of the amount of computational resources
used by each algorithm” subsection shows the evalua-
tion of the computational resources consumed by each of
them. The subsection named “Impacts produced by the
early departure of clients” analyzes the performance of the
algorithms when executed in scenarios with early depar-
ture of clients with the aim of demonstrating that our
algorithm also shows better performance under these load
conditions. The “Analysis of the relation between the size
of the timewindow and the workload” subsection presents
a study of the impacts on the hit ratio caused by the vari-
ation of the main design parameter of CARTE: the size of
the time window used to define the space for the count
of the clients who are in front of each video sequence.
Finally, the “Procedures to configure CARTE” subsection
shows the strategy currently being used to configure our
algorithm adequately for each scenario.

Workload and operating parameters for the evaluation of
the proxy
The results presented in this subsection were all obtained
from simulations performed on a general purpose server
organized with two Intel Xeon E5530 (2.4 GHz), 16 GB of

DDR3 1066MHz RAM and SUSE Linux Enterprise Server
(3.0 kernel).
The topology assumed for the experiments considers

scenarios where all access requests for the content pro-
vided by the VoD system are routed through the proxy.
This way, using the current position of the active clients,
each caching algorithm determines (based on its prioriti-
zation logic) which video chunks must be preserved in the
memory (if the chunks are already allocated in memory)
or requested to the main server. Moreover, the requests
for video chunks to the main server are done assuming an
existence of a limited bandwidth in the link that connects
the proxy to this server, as occurs in real scenarios.
Table 2 shows the configurations used for building the

workloads and other operating conditions employed in
our simulations. The set of acronyms presented in the
table were used to substitute the full names of the working
parameters along this section.
The experimental methodology consisted of selecting

one-by-one, each of the working parameters for variation
and evaluation, and fixing all other parameters using a
default value. This way, we expected to clearly observe the
influences caused by each parameter on the efficiency of
the system. For this purpose, the third column on Table 2
shows the standard value to be used when the concerned
parameter is not under variation. Otherwise, the fourth
and fifth columns, respectively, present the range and the
increment step to perform the parameter variation.
The interval for variation is obtained by proximity in re-

lation to standard value. Themotivations for the use of the
standard values presented in Table 2 are described below:

• TR: the configuration adopted corresponds to the
minimum bandwidth necessary to stream movies
with HD quality [33].

• NB: in [8], it was demonstrated that the average
requisite for NB, for similar workload conditions, is
not superior to 700 streams. This value was used as
standard configuration, except during the variation of
the parameter IA, where the standard value of NB
was reduced to 200 streams to prevent all algorithms
from obtaining a high hit ratio (in response to the
increase in IA) hindering in this way the observation
of impacts caused by modification of this parameter.

• MS: according to the explanations made in the
sub-subsection entitled “Synthesis and simulation
flows” (“Methods” section), we set the standard value
for MS parameter to the maximum quantity of RAM
available on the computer utilized to perform the
experiments, allowing the execution of simulations
with the highest possible workloads.

• VL: the used settings followed the estimates
presented in [34–39], for the average length of
movies made available by the VoD providers.

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 11 of 23

Table 2 Working parameters

Acronym Parameter name Standard value Range Step

TR Video transmission rate (Mbps) 5 – –

NB Max. proxy-server net. bandwidth (streams) 200; 700 200–700 50

MS Memory size (GB) 14 4–14 1

VL Video length (min) 90 (=3.4 GB) 90–240 (=3.4–9.15 GB) 30

NV Number of videos 100 50–150 10

ZC Zipf coefficient - θ (skew) 0.271 0–1 0.25

IA Average interval between arrivals - λ (sec) 3 1–10 1

SD Simulation duration (min) VL + 1500 rounds of service – –

TW Time window size (sec) – 1–300 1

SS Segment size (seconds of video) 1 (≈0.63 MB) – –

The third column shows the standard value to be used when the parameter considered is not under variation. Otherwise, the fourth and fifth columns present the range and
the increment step, respectively, to perform the parameter variation

• NV: taking into account the information provided in
the sub-subsection entitled “Synthesis and simulation
flows” (“Methods” section), the standard
configuration was inspired by the quantity of new
(and highly popular) videos introduced daily/weekly
by the VoD providers7 [34, 40, 41].

• ZC: the standard value for the this parameter has also
been used for modeling the video popularity skew of
video rental scenarios in [34, 42–46].

• IA : according to [47] and [16], the configuration used
corresponds to a typical scenario of high workload for
VoD proxies for similar video lengths.

• SD: we expected during the extra interval of 1500
rounds of services both the entry and exit of clients in
the system. So, to produce each basic result, we
measured the average performance during this time
interval since, in this way, each presented result
represents the performance obtained for a full
operation of the VoD proxy.

• TW: for each scenario, we evaluated the best
configuration for our algorithm by varying the size of
the time window in a range of 1 to 300 s. This way,
along comparisons with the other algorithms, we
informed above each result presented for CARTE the
configuration of TW that produced the best
performance for such scenario.

• SS : in all of the experiments, the size of the video
segments used for CC algorithm was equivalent to
one video block of 1 s of video. This choice was made
in order to prevent the CC algorithm from
experiencing a potential drop in its hit ratio due to
the waste of memory that may be caused by the use
of larger segment sizes, as explained in the “Video
organization” sub-subsection of the “Methods”
section.

Following the same strategy employed by the authors
of the algorithms we selected to carry out a comparative

analysis with the CARTE, we chose to use experimen-
tal scenarios (except those mentioned in the “Impacts
produced by the early departure of clients” subsection)
where the clients require the video from the beginning to
the end. Therefore, we intended to configure a fair com-
parative environment to assess the performance of our
algorithm.

Evaluation of the hit ratio and service time for the
execution of the caching algorithms
According to the workload and operating conditions
described in the previous subsection entitled “Workload
and operating parameters for the evaluation of the proxy”,
the graphics in Fig. 6a–j describe the impacts produced by
the variation of the working parameters on the average hit
ratio (graphics a, c, e, g, and i) and service time (graphics
b, d, f, h, and j) produced by the analyzed algorithms.
A first and general conclusion about the data presented

is that, at the cost of a slightly higher service time (due
to the more complex replacement mechanism), the hit
ratio produced by CARTE is higher than that provided by
CCVC and CC.
As demonstrated by Fig. 6a, c, i, and k, the increase in

NB, MS, ZC, and IA also produced the increase on the hit
ratio for all algorithms. Respectively, this occurs because
of the following:

• When taking into consideration the limitations
imposed by the storage capacity of the memory, the
increase on NB enables the proxy to carry out a
greater volume of substitutions on the cache, thereby
also allowing a greater number of clients to have their
demands met.

• The higher the value for MS, the greater chances of
the stored content to remain in the memory to be
accessed by other clients.

• Increasing ZC causes the demand of the proxy to be
concentrated in a few videos of the collection. As a

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 12 of 23

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 6 a–l Performance of caching algorithms. Results for hit ratio and service time

consequence, the memory requirements to support
the active clients are reduced and a higher number of
blocks belonging to the requested videos will remain
in the memory to be accessed again by newer clients.

• A larger value for IA, for a fixed video length, makes
the number of active clients of the proxy to decrease.
Accordingly, both memory and network
requirements to meet the demand are lowered
causing the system performance to increase.

Still with regard to Fig. 6a, c, and i, it is important to
highlight two aspects taking into account the performance
of our algorithm. Firstly, the greater the availability of
resources (memory capacity and network bandwidth) is
in relation to the demand, the higher the hit ratio pro-
vided by CARTE in comparison to that one provided by

the other two algorithms is. Secondly, CARTE achieves a
comparatively higher hit ratio even in scenarios where the
popularity of the videos leans towards equality (i.e., when
ZC assumes its lowest values). From this, we concluded
that our approach is not only in fact more scalable but also
is capable of leveraging the performance of the proxy even
in the worst-case scenarios when the video access prob-
ability cannot be easily predicted, such as it occurs, for
example, at certain periods for the most popular items of
a collection [48].
In addition, CARTE presents a higher performance

when ZC assumes a value even greater than the ones
shown in Fig. 6i. Considering, for example, a scenario
where the standard configurations are used except for the
ZC value which is configured to be equal to 5 (higher
skew), making MS equal to 2 GB produces a difference

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 13 of 23

between the hit ratio of CARTE and of CCVS at 8.1%
while the difference for CC is 11.8%. The higher per-
formance provided by our algorithm results both from
allocating the smaller sequences in the memory, which
results in a better use of the storage resources, as well
as considering at a local level the differences that exist
between the densities of clients formed along the arrivals
of the clients. The latter factor contrasts with the behav-
ior of the CCVC and the CC, which only look at clients
as a whole who watch a particular video to decide which
portions of the contents should be kept in the memory.
Contrary to what occurs in graphics a, c, i, and k of

Fig. 6, graphics e and g of this figure demonstrate that the
increase applied to the working parameters produce the
decrease of the hit ratio for all algorithms. This opposite
effect occurs because of the following:

• For each increase on VL, while the new clients
request the access to the prefix of each video, the
older clients continue moving towards the more
distant end of the video, taking longer to conclude
their session. This causes the number of active clients
to increase and to become dispersed over a larger
video space, resulting in higher memory and network
requirements, dropping the hit ratio.

• Increasing the number of videos causes the clients to
be spread over a larger collection. Consequently,
since ZC remains constant along the experiment,
these clients are directed to portions of the collection
that have not been accessed yet by other clients or
that have been accessed for a long enough period of
time to cause it to be removed from the memory.

By analyzing the information available on the right side
of Fig. 6, it is possible to see that in graphics b, h, and
j the service time for each algorithm, in general, follows
the growth produced on hit ratio. This occurs because
each algorithm needs to employ an effort to transfer video
blocks from the local memory to the network interface
in proportion with the number of clients to be served.
However, in the scenarios represented by the graphics d, f,
and l of Fig. 6, the service time does not follow the growth
of the hit ratio. This occurs because of the following:

• The larger service time obtained for the smaller
memory sizes is resulting of a greater processing to
continuously change the content available in the
cache, aiming to minimally store the video blocks that
are a step forward in the execution line of the clients.

• If VL is small, the number of active clients is also
small. However, when VL is small, the availability of
resources compared to the number of active clients is
greater and the hit ratio is higher. Following an
inverse reasoning, as VL increases, the hit ratio

decreases, but the number of active clients increases.
Thus, the number of clients actually served by the
proxy tends to remain roughly constant along the
variation of VL and, as a result, the service time also
remains nearly stable during this period.

• As IA increases and VL remains constant in the
experiment, the number of active clients is reduced,
causing the drop of the service time.

The average differences in the number of hits and sim-
ulation time between CARTE and CCVC for all simula-
tion scenarios were 12.9 and 11.3%, respectively. For the
same metrics, the differences obtained when the working
parameters assumed their standard values were of 14.6
and 11.6%, respectively. Lastly, the maximum difference
in the number of hits between these algorithms, obtained
during the variation of the parameter NV (Fig. 6g) when
NV was set to the value of 70, was 17.3%, for a corre-
sponding difference in the service time of 12.8%.
There are two reasons for the better hit ratio obtained

by the CARTE. First, as mentioned before, CCVC employs
a Least Frequently Used (LFU) algorithm in the begin-
ning stage of the replacement process to define from
which video the sequences will be discarded. Therefore,
unlike the policy executed by the CARTE, which assumes
that the sequence to be replaced can come from any
cached video, the strategy used by CCVC reduces the
space of alternatives for the action of the replacement
algorithm, since the selection of a victim sequence must
respect the scale of popularity (access frequencies) of
the videos.
Secondly, once the video of smaller popularity has been

chosen, CCVC selects the sequence closer to the end of
the video for disposal since in this way (according to the
view of the CCVC authors) the proxy needs to employ its
resources for a shorter time to recover back the removed
content with the main server to serve the clients who are
moving toward the video sequence removed from mem-
ory. However, since the sequences move jointly with the
movement of the clients, even the sequences that have
a greater quantity of previous clients in the short-term
tend to be disposed when they begin to get close to the
end of the video. As a result, the efficiency of the CCVC
algorithm tends to decrease due to this priority inver-
sion during the final stage of video transmission to the
clients.
On the other hand, the performance comparison with

the CC proxy has shown higher gains. The average differ-
ence in the number of hits was 13.8% for all simulation
scenarios and 9% for the service time. The differences
obtained for the same metrics when the working param-
eters assumed their standard values were 16.1 and 11.4%,
respectively. The maximum difference in the number of
hits, also obtained during the variation of the parameter

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 14 of 23

NV when this parameter was set to the value of 70, was
18.9%, for a corresponding difference in the service time
of 10.4%.
As mentioned in the “Background” section, the origin

of the lower hit ratio related to the CC system relies on
the tendency of excessive prioritization of segments posi-
tioned at the end of the video. This occurs because this
algorithm calculates the total number of active clients who
have not yet requested access to a given video segment
as a way of estimating the number of hits which will be
performed in the future for this segment. Consequently,
the algorithm gives preference to storage of the long-term
demands, instead of favoring the short-term ones, causing
a drop in its performance when the momentary load con-
ditions points to the storage of the initial or intermediate
portions of the videos.

Evaluation of the amount of computational resources used
by each algorithm
Figure 7 depicts, for the same system and load con-
figurations used in the construction of Fig. 6, how
the physical resources of the target architecture are
used. This set of data was obtained through sim-
ulations performed in real-time mode supported by
SIMPRO.
Using the same operating specifications, we collected an

instruction profile which is also presented in this subsec-
tion. To obtain this supplementary data, we ran simula-
tions using the discrete mode of our simulator. For this
purpose, we instantiate a PISA architecture following the
same strategy we used to perform the SIMPRO validation
(described in the “Validation of the performance data”
sub-subsection).

(a) (b) (c)

(d) (e) (f)

(j) (k) (l)

(g) (h) (i)

Fig. 7 a–l Resource usage. Results for CPU and memory time

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 15 of 23

In Fig. 7, the graphics on the left (a, c, e, g, and i) describe
the time consumed exclusively by the execution of instruc-
tions on the processor without delays produced by the
memory system. The graphics on the right (b, d, f, h, and j)
describe the time required to perform data transfers to
and from the memory. This memory time considers the
full delay necessary to perform all memory transfers that
includes, besides the I/O flow of video blocks, the traffic
resulting from the access to the program variables and the
data structures used to support the proxy operations.
In most graphics available in Fig. 7, the CPU and the

memory follow, although not in the same proportion,
similar behavioral trends. This occurs because the effort
performed by the proxy is dominantly determined by the
number of clients served by the system. However, under
certain circumstances such as that represented by Fig. 7c,
d, the behaviors of the times of the CPU and the memory
may differ.
This difference occurs because as the memory size

decreases, the algorithms execute a greater processing
(resulting in a larger CPU time) to continuously promote
the exchange of the video blocks available in the memory
aiming to allocate the next content that will be accessed
by the clients. However, as the memory is reduced, the hit
ratio also decreases, resulting in a lower volume of clients
served by the proxy and, consequently, a shorter memory
time to transfer the required amount of video blocks from
the memory to the network.
Furthermore, as shown on the full set of results avail-

able on Fig. 7, the processor consumes on average about
two to three times the time required by the memory to
execute the application. The difference between the time
consumed by these components demonstrates that the
processing core tends to be the main bottleneck for the
service provision when the demand increases relative to
the amount of resources available.
The analysis of the data produced by the simulation in

the discrete mode has revealed that, on average, the arith-
metic instructions account for the majority of the exe-
cuted instructions by 63.2%, whereas memory access and
control flow account for 28.32 and 8.38%, respectively.
These results, in conjunction with those produced by the
simulation in real-time mode, suggest that the develop-
ment of a dedicated hardware to support the basic proxy
operations tends to contribute to a significant increase in
the efficiency of this application while reducing the costs
for implementing a video on demand system.
Taking into account the comparative analysis of the

resources consumed by each algorithm, the results
demonstrated that our strategy demanded on average
11.4% more processor time than CCVC and 8.7% more
than CC, for a difference in memory time of 12 and
9.7%, respectively. When the working parameters were
set to their standard values, the processor time spent by

our algorithm was 11.8% higher than the one consumed
by CCVC and 8.9% higher than the one spent by CC,
also consuming 12.8 and 11.1% respectively more time to
perform the necessary memory accesses.
Moreover, the differences found in terms of processor

time in relation to CCVC and CC, considering the sce-
narios where CARTE obtained the largest differences in
hit ratio to these algorithms, were 12.6 and 10.1%, respec-
tively. Considering these scenarios, the difference found
in memory time for comparisons between CARTE and
CC was 12.4%. Comparing CARTE and CCVC, the differ-
ence found for this metric was 14.7%. The origin of these
differences is based on three main aspects:
Firstly, the processing time tends to maintain an approx-

imate proportion with the number of clients served by
the system. Consequently, the gaps between the hit ratios
produced by the algorithms contribute predominantly to
the achievement of the differences observed between the
consumption of resources.
Secondly, the processor time produced by the CC algo-

rithm is also a consequence of the higher management
cost attached to the video organization into segments
of equal size. While this strategy enables the CC algo-
rithm to obtain its highest hit ratio (according to the
descriptionmade in the subsection named “Workload and
operating parameters for the evaluation of the proxy”), it
also contributes to an increase in the processing time of
this algorithm. This occurs because, unlike the CARTE
that binds a unique caching priority to multiple video
blocks video encompassed into each sequence, the CC
system assigns one priority to each video block allocated
in the memory, thus requiring more processor time for
this work. The mechanism for binding priorities used by
CC has not produced a sufficient increase in the use of
resources on the point of exceeding the consumption pro-
duced by CARTE (which mainly results from its higher hit
ratio), but it does cause the CC to utilize more resources
than CCVC, although the hit ratio produced by the CC
is lower than that produced by CCVC in most scenarios
analyzed.
Thirdly, the criteria used by both the CCVC and the

CC to determine the caching priority for each chunk of
video results in a smaller number of content substitu-
tions on the cache, thus producing a lower consumption of
resources to execute this task. In regard to the CCVC, this
occurs because the algorithm concentrates the content
replacements over the videos with fewest active clients
and prioritizes the removal of the final portions of these
videos. In this manner, only one significant change in the
popularity of the videos can modify the caching priorities
of the sequences and produce a higher number of content
substitutions. However, such a change in the popularity of
the videos rarely occurs in intervals shorter than a service
day [15].

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 16 of 23

Regarding the behavior of the CC algorithm, although
there is a tendency for the segments closer to the end of
each video to receive a higher caching priority in relation
to the segments closer to the beginning, the algorithm
tends to enable a greater competition for the spaces avail-
able in cache when compared to CCVC. This is because
at certain moments the load conditions may suggest that
some segments near the beginning of a video of greater
popularity have higher precedence over the segments
closer to the end of a less popular video. In this context,
the CC algorithm creates conditions for the execution of a
larger volume of content replacements, consuming to this
end a corresponding amount of resources.
In contrast, our algorithm was designed to allow any

video chunk belonging to the collection (regardless of the
position occupied within each respective video) to receive
a higher caching priority, basing its caching decisions
exclusively on the current load conditions inside each time
window. As a result, the algorithm tends to react more
frequently to the variations that occur in the distribu-
tion of the clients along the execution, thereby performing
a higher volume of content updates on the cache with
proportional impacts on the resources consumption.

Impacts produced by the early departure of clients
To model the behavior produced by the proactive session
closing by VoD clients, we used the abandonment curve
shown in Fig. 8, which was created from the data produced
during the accesses to a commercial VoD proxy [34].
To analyze the impacts of the early exit of clients, we

have reassessed the performance of the caching algo-
rithms in the scenarios of Fig. 6c, f, as thememory size and
the length of the videos are the parameters most closely
related with the abandonment phenomenon [34].
Under the effect of session abandonment, the average

andmaximum differences between the hit ratio of CARTE
and of CCVC were 8.6 and 11.8%, respectively. These
results represent a decrease of 2.2 and 3.4%, respectively,
in comparison with the scenarios without abandonment.

Fig. 8 Abandonment curve of VoD clients. Percentage of cumulative
closing of sessions to each moment of video exhibition

The difference obtained between these two systems when
default configurations were utilized was 11.8%. This result
represents a decrease of 3.4% in relation to the difference
obtained without abandonment.
This data shows that the CCVC can improve its perfor-

mance compared to CARTE by discarding the sequences
close to the end of the video8. However, CARTE produces
a greater hit ratio because under the occurrence of aban-
donment CCVC does not discard sequences that belong
to the videos of greater popularity where the session aban-
donment also happens. Consequently, when the clients
abort a popular video, the sequences at the end of the
video, kept in the memory by CCVC, need to wait more
time until the next clients (who did not abandon the video)
carry out access to them. As shown in Fig. 9a, this effect
caused by the early departure of clients over the CCVC
performance is even greater when the length of the video
increases in relation to the session length of the clients.
In contrast, CARTE only keeps the sequences in the
memory when there are enough clients within their win-
dows to justify their allocation. In this way, the algorithm
tends to favor the allocation of sequences closer to the
beginning of each video that has greater concentration of
previous clients due to the gradual reduction of the num-
ber of active clients as they move forward to the end of
the video.
In regard to the comparison with CC, the average

and maximum differences between the hit ratios were
15 and 20.7%, respectively. These results represent an
increase of 3.6 and 4.7%, respectively, in comparison
with the scenarios without abandonment. The difference
obtained between these two systems when default config-
urations were utilized was 19.9%. This result represents
an increase of 3.9% in relation to the difference obtained
without abandonment.
This happens because CC tends to prioritize the caching

of the final portions of each video which are less accessed
due to the early exit of clients. This occurs because
the higher concentration of clients at the beginning of
the video causes the increase of the caching priorities
of the video blocks at the end of the video. So, as the video
length increases in relation to the session length of clients,
the numbers of blocks with greater caching priority after
the exit points of the clients also increases. Consequently,
these blocks dominate the spaces in cache resulting in an
inefficiency of the CC algorithm.
In contrast, the windowing mechanism employed by

CARTE causes the greater density of clients existing at the
beginning of each video to only favor the sequences that
are also located at the beginning of these videos. Conse-
quently, the sequences situated near the suffix (end of the
video) tend to not be kept in the memory since the densi-
ties in their windows are small compared to the windows
of the sequences which are located at the prefix. In this

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 17 of 23

(a) (b)

Fig. 9 a, b Performance under session abandonment. Hit ratios for variation of the video length (a) and memory size (b)

way, the accuracy of the algorithm to distinguish the dif-
ferent densities along each video tends to increase as the
size of the time window becomes smaller. For this rea-
son, the use of smaller time windows in the scenarios with
abandoning caused CARTE to produce the best results.
The results in Fig. 9b show that, under the occurrence of

abandonment, CARTE scales its performance better than
the two reference algorithms when the size of the cache
increases. This demonstrates that the caching logic of our
algorithm is capable of exploring additional memory with
greater efficiency by caching the sequences with higher
concentrations of previous clients along the videos.
Finally, the service time produced by CARTE in the

scenarios with session abandonment showed an average
reduction of 7.8% in relation to the analogues scenar-
ios where the early departure of clients did not happen.
This reduction came from a smaller number of simultane-
ous clients served by the proxy due to the abandonment
phenomenon. Similarly, the reduction of the number of
clients showed to be a major factor in increasing the aver-
age hit ratios produced by CARTE and CCVC by 1.5 and
3.7%, respectively, when compared to the results obtained
to the same scenarios where abandonment did not hap-
pen. CC did not follow this growth showing a decrease in
its average efficiency by 2.1%.

Analysis of the relation between the size of the time
window and the workload
As suggested in the “Evaluation of the amount of com-
putational resources used by each algorithm” subsection,
the configuration adopted for the TW parameter of the
CARTE is capable to create direct impacts on the hit ratio,
as well as on the number of substitutions performed by
this algorithm. As previously demonstrated, these two fac-
tors create repercussions on the consumption of resources
of the underlying architecture. Consequently, the key
aspect to reach the maximum efficiency of our algorithm
is to identify the best fit for the TW.
For this reason, this subsection presents a study of

the correlation between the TW and the workload for

the proxy, aiming to demonstrate how the operating
conditions could influence the choice taken by the VoD
designer to permit the achievement of the best system
response. To this end, we demonstrated the effects pro-
duced by the variation of the size of TW, under different
scenarios, on the main metric of efficiency for a caching
algorithm, the hit ratio. With this, we hope to build guide-
lines to perform the adjustment of our algorithm in order
to extract its maximum performance for every case.
That said, Fig. 10a presents the existing correlation

between IA and TW. The variation on the IA causes a
change in the concentration (density) of clients per video.
When IA assumes a lower value, the concentration of
clients becomes higher and TW needs to be configured
with a small value to better define the caching priority
for each sequence. On the other hand, in scenarios where
clients are more dispersed (high IA), it is necessary to
use a larger TW to deal with the memory content more
efficiently.
This occurs because when clients are more concen-

trated, the use of a large time window tends to encompass
not only a great number of clients but also a high quan-
tity of sequences within each window, making the same
clients account for different sequences simultaneously.
Therefore, the sequences closer to the end of the video
tend to have more previous clients encompassed in TW
space and consequently receive higher caching priorities.
In contrast, the sequences close to the beginning of each
video receive lower caching priorities, although these
sequences might have a greater demand associated to
them in the short term. When this occurs, the behavior of
the CARTE algorithm tends to be closer to that of the CC
algorithm.
Furthermore, when IA is equal or near to 1 s, producing

the highest numbers of concurrent clients used in our sim-
ulations, even the best configuration for TW leads to the
observation of significantly smaller gains on the hit ratio
when compared to the gains obtained in the scenarios
where IA assumes a higher value. This happens because,
under these circumstances, both the size of the sequences

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 18 of 23

3 sec 4 sec 5 sec 6 sec 7 sec 8 sec 9 sec 10 sec 11 sec

12 sec

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time Window (seconds)

9

18

27

36

45

54

63

72

H
it

 r
at

io
 (

%
)

(a)

0.0 0.25 0.5 0.75 1.0

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time Window (seconds)

49

56

63

70

77

84

91

H
it

 r
at

io
 (

%
)

(b)

50 videos 60 videos 70 videos 80 videos 90 videos 100 videos

110 videos 120 videos 130 videos 140 videos 150 videos

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time Window (seconds)

51

54

57

60

63

66

69

72

H
it

 r
at

io
 (

%
)

(c)

200 streams 250 streams 300 streams 350 streams 400 streams

450 streams 500 streams 550 streams 600 streams 650 streams

0 25 50 75 100 125 150 175 200 225 250 275 300
Time Window (seconds)

21

28

35

42

49

56

63

70

H
it

 r
at

io
 (

%
)

(d)

4 GB 5 GB 6 GB 7 GB 8 GB 9 GB 10 GB 11 GB 12 GB

13 GB 14 GB

0 25 50 75 100 125 150 175 200 225 250 275 300
Time Window (seconds)

50

52

54

56

58

60

62

64

66

H
it

 r
at

io
 (

%
)

(e)

90 min 120 min 150 min 180 min 210 min 240 min

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Time Window (seconds)

21

28

35

42

49

56

63

70

H
it

 r
at

io
 (

%
)

(f)

Fig. 10 Hit ratio produced by the variation of the size of the time window. In each graphic, TW varies in conjunction with one of the load
parameters: IA (a), ZC (b), NV (c), NB (d), MS (e), and VL (f)

and the density of the clients within each time window of
the victimized videos become similar, causing the benefit
of maintaining one or other sequence in the memory to be
almost the same.
Figure 10b shows the influence caused by the variation

of the ZC on the choice of the configuration for TW.
Considering that the NV and IA were kept constant in
this experiment, each increase produced in ZC caused the
transfer of a significant volume of clients from less pop-
ular videos to the most popular videos. For this reason, a

few clients remained in the most popular videos, resulting
in a smaller number of sequences to discard from these
videos.
As a result, the victim sequences had to be obtained

from the most popular videos where the concentration of
clients was increased due to the increase caused on ZC.
Due to this higher concentration, the clients got closer to
each other. Consequently, it was necessary to utilize small
TW values to make a distinction between the densities of
clients observed within each time window.

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 19 of 23

Conversely, as ZC is reduced, part of the clients no
longer request access to the videos of high popularity
and instead begin to request the less popular videos. So,
the concentration of clients on the less popular videos
becomes small, but large enough to allow the formation
of sequences that will feed the replacement process. In
this context, since the clients stay separated by a larger
number of blocks, the size of the time window needs to
be expanded to accommodate a greater quantity of clients
per window, which causes an imbalance on the number of
clients present in each window.
Another way to modify the concentration of clients is

shown in Fig. 10c, which presents the correlation between
the size of the time window and the number of videos
offered for access. Considering that IA and ZC were kept
constant for these simulations (since, as demonstrated,
these parameter can directly affect the concentration of
clients), the increase of the NV caused the clients to be
scattered among the available videos in such a way that the
number of clients present in each video became smaller.
Thus, as NV is increased, it is necessary to enlarge the
value for TW in order to create a distinction regarding
the number of clients present in the windows that precede
each sequence stored in the memory.
Aside from the need to adjust the size of the tempo-

ral window to follow the change in clients density in each
video (as occurs when the parameters IA, ZC, or NV suf-
fer a variation), Fig. 10d shows that the adjustment of
the TW parameter can also be influenced by the band-
width associated with the link that connects the proxy
to the main server. As the link becomes narrower, the
algorithm needs to work with a wider time window in
order to identify sequences that once cached in the proxy
will enable the service to be provided to a larger num-
ber of clients. This occurs because, in scenarios with low
NB, the CARTE must choose the sequences with bet-
ter cost-benefit in the longer term, since there are not
enough resources on the link to meet all different levels
(amplitudes) of demand existing in the shorter term.
On the other hand, as the proxy-server link becomes

wider, our algorithm works more efficiently with smaller
window sizes since, under these conditions, it is possible
to apply additional bandwidth to prioritize simultaneously
a larger amount of demands that are high in the short
term, but not necessarily in the long term. Thus, the algo-
rithm achieves a high scalability by maximizing not only
the use of network but also the use of processing and
storage resources to increase the system productivity.
Similarly, Fig. 10e shows that due to the increase in

memory size, TWneeds to expand to provide a better per-
formance to the proxy. This happens because with the use
of a larger memory, the CARTE may invest in sequences
that, even not having a higher demand in the short term,
produce greater efficiency in the longer term. Therefore,

the larger memory not only permits the allocation, but
also the preservation of these sequences for a long enough
time to extract the benefits resulting from the caching of
this content.
Finally, Fig. 10f shows that the TW was little influ-

enced by most video lengths used in our simulations. The
most significant variation on TW occurred when VL was
increased from 90 to 120 min. In this case, it was neces-
sary to increase TW to better identify the sequences that
produce greater efficiency in the longer term, since, due
to the increase caused on VL and the preservation of the
continuous inflow of clients, a larger quantity of sequences
formed in each video began to dispute the spaces available
in memory.
However, the subsequent increases in VL did not pro-

duce the same result in TW. This occurred because
although it can be expected that subsequent additions
on VL could generate a proportional increase on TW,
the capacity of the memory available in the proxy would
not be large enough to store these sequences for such a
long time interval. Thus, the best configuration for TW
remained roughly stable along the subsequent changes on
VL since this configuration maintained a better propor-
tion with the size of memory used in these experiments.

Procedures to configure CARTE
The strategy currently in use to adjust the TW parameter
is based on the use of an explorer algorithm, called TW
Space Scanner (TSS), which executes a small number of
simulations of CARTE for each one in which TW is varied
until the better configuration for a target scenario can be
found.
TSS works in three steps. In the first step, it carries

out a coarse-grained scanning on a set of samples of TW
obtained from an initial interval (for example, from 1 to
300). In this scanning, each simulation uses a different
sample which is selected through the sum of the incre-
ment step (coarse_step) with the previous sample value,
such that the first sample corresponds to the first value of
TW present in the initial interval.
Based on our experiments, we have identified that when

coarse_step = 20 TSS can detect false maximum points on
the curve of efficiency (resulting from the hit ratios pro-
duced by the values of TW existing in the initial interval).
So, when this configuration is used, the top of the curve
of efficiency is clearly highlighted in relation to the other
points that belong to the initial interval.
After the coarse scanning, the sample of TW which

results in the greatest hit ratio is used as an initial ref-
erence to execute the second step that consists of a
fine-grained scanning carried out as Fig. 11 illustrates.
Figure 11a shows that TSS uses a fine variation step

(fine_step = 5) to calculate, from the reference point pro-
duced by course scan, the values of L and R that limit by

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 20 of 23

(b)

Fig. 11 Functioning of fine scanning. a Initial state with the definition of the first values to L, C, and R. b, c Iterations of the algorithm with
displacement of L, C, and R. c Final state with L ≤ C and C ≥ R

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 21 of 23

the left and right, respectively, a sub-interval that has C
as the center. After that, as shown in Fig. 11b, c, the algo-
rithm iterates, displacing L, C, and R to one of the sides
using the fine variation step until L ≤ C and C ≥ R. The
displacement happens in the direction to the lateral limit
that presents a greater hit ratio in comparison with the
center of the interval.
When the stop condition is achieved (Fig. 11c), the algo-

rithm begins its last step by carrying out a sequential
scanning (using an increment step equal to 1) in the sub-
interval limited by L and R. As a result of the sequential
scanning, TSS identifies the most efficient TW value for
CARTE in the target scenario.
Equations 5, 6, and 7 describe how the calculation of

the maximum number of simulations is done respec-
tively to the first, second, and third steps of TSS algo-
rithm. The variable max_TW, used in Eq. 5, informs
the maximum length of TW to the initial interval that
goes from 1 until max_TW. For the existing scenarios
in the functioning range specified in Table 2, max_TW
tends to not assume values higher than 300. Under these
conditions, the execution of TSS produces 30 simula-
tions until it finds the ideal value of TW for the target
scenario.

coarse_runs = (max_TW / coarse_step) + 1 (5)

fine_runs = coarse_step / fine_step (6)

sequential_runs = (fine_step * 2) − 2 (7)
We have been carrying out some more profound
researches on the impacts produced on TW by the vari-
ation of load parameters. From this, we hope to create a
model that allows estimating the best approximate value
to TW to a scenario of interest. Doing this, we planned
to measure the benefits provided by the substitution of
coarse scanning, currently executed by TSS, by a descrip-
tion in software of this model. Finally, we intend to
derive from this modified version of TSS a solution to
dynamically adjust TW, thus enabling CARTE to recon-
figure itself in the face of the possible fluctuations in the
workload.

Conclusions
This paper presents the video caching algorithm named
Current demAnd Rather Than futurE (CARTE), intended
to be used in proxies for video on demand. This algorithm
was designed in the scope of a new paradigm in which
the caching choices are based exclusively on the obser-
vation of the current positioning of the active clients of
the system in order to calculate the specific demand that
these clients will create for each video chunk in the future.
Contrasting our strategy to other similar approaches, the

decisions made by our algorithm takes into account only
the number of clients positioned inside a time window
located in front of each video chunk, thus preventing
those clients that are distant of a given chunk to inter-
fere on the calculation of the caching priority for that
chunk. Additionally, the size of this time window is the
key parameter for configuring the CARTE to achieve its
maximum performance in each scenario.
Since the number of active clients within each time win-

dow may vary during the operation of the proxy, due to
the constant inflow and outflow of clients, our caching
algorithm must continually (in the same I/O frequency
of the clients) assess which video chunks have higher
demand in order to define which portions of the collection
must remain stored in the proxy memory to maximize the
system productivity.
Consequently, unlike the previous approaches which

tend to under-utilize the bandwidth supported by the
memory and the processor of the proxy in order to
increase the efficiency in the longer term, the CARTE
algorithm utilizes these resources more actively in order
to provide scalability to support the high demand which
usually falls on the most popular videos of a collection.
Thus, it provides greater efficiency to the proxy, creating
subsequent positive impacts on the implementation costs
of VoD system.
To obtain the knowledge of resource consumption prac-

ticed by our algorithm and evaluate its performance in
terms of the most common metrics, we created a new
simulator named PROxy SIMulator (SIMPRO). Our sim-
ulator enables a more complete performance analysis with
respect to the execution of a video caching algorithm
on a particular target architecture, therefore allowing to
identify the main physical bottlenecks created by the
increase in demand. This ability makes the SIMPRO the
first simulator dedicated to the analysis of the VoD proxy
performance from the architectural point of view.
Comparative results obtained through this simulation

environment show that our new video caching algorithm
is capable of achieving a significantly higher hit ratio
(17.3–20.7% of difference at the peak) consuming a mod-
erate quantity of additional resources (10.1–12.6%), in
comparison to other existing algorithms also analyzed.
Complementarily, the analysis of the resources con-

sumed by this algorithm (as well as by the other algorithms
also analyzed) revealed that the processor tends to be
the major bottleneck of the application when demand
increases, consuming in average about two to three times
the time spent by the memory to perform the necessary
tasks. This allows us to conclude that a new hardware and
software partitioning specifically dedicated to our system
tends to significantly improve its efficiency.
In future research, we intend to conduct a review of

the VoD proxy architecture, as a way to plan efficient

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 22 of 23

hardware/software mappings from the cost-benefit point
of view. Thus, we expect to increase the scalability of
the infrastructure available for VoD today and, at the
same time, reduce investments for the deployment of this
service.
Additionally, since a VoD proxy is frequently designed to

operate on continuous mode and the loading conditions
can vary during the service provision, we plan to imple-
ment the functional requirements to provide our algo-
rithm the ability to perform incrementally the dynamic
adjustment of the size of its time window. In this way, the
CARTE will be able to adapt itself to every circumstance,
thus preserving its maximum efficiency even in the face of
the fluctuations on the workload.
To add this new ability on the algorithm, we will use

the guidelines presented in this paper, most of which are
based primarily on the observation of the density of clients
(number of clients per time interval) caused by the proxy
workload conditions. Once this density has direct impacts
on choosing the best size for the time window, the key
aspect for the dynamic adjustment of the algorithm is to
monitor the workload to incrementally produce changes
on the size of the time window, in order to find the optimal
settings for the system.

Endnotes
1As opposed to distributed approach also commonly

found in the literature [49].
2Clients connected to the proxy for receiving a video

stream.
3Not more than 300 seconds of video in our standard

simulation scenarios.
4One second of video per client in our experiments.
5Corresponding to the availability, in the memory of

the proxy, of the requested video blocks.
6Thirty simulations were executed obtaining a

confidence of at least 95% to a confidence interval less
than 1% of the measurement value.

7Equivalent to 3,480 rounds of service executed or
3,480 Mbits of video transmitted at 1Mbps (considering
the transmission to the first client to become active in the
system).

8As a partial criterion, along with the size of sequences.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BSN and AAS (BSN’s advisor) conceived the objectives and methodology to
conduct the research which is being developed in the context of BSN’s
doctoral in the microelectronics program at the Federal University of Rio
Grande do Sul (UFRGS) in the south of Brazil. BSN is mainly responsible for the
idealization and design of the contributions presented in the paper, also
working on the implementation of the algorithms and the simulator, as well as
on the collection and interpretation of the data and in the paper writing. ASV
worked closely with BSN coding the software and providing technical support
for the interpretation of results obtained from the simulations. AAS

contributed with important observations to technically improve the
implementations and the presentation of the work. All authors reviewed the
final version of paper and agreed with its submission to the Journal of the
Brazilian Computer Society.

Acknowledgements
This research is financially supported by the National Council for Scientific and
Technological Development - CNPq (Process number: 554064/2010-3) and the
Federal University of Pampa - UNIPAMPA (Project number: 02.070.10).

Received: 9 June 2014 Accepted: 21 June 2015

References
1. Cisco (2011) Visual networking index: forecast and methodology,

2011-2016. Cisco, Jose, California, United States of America. http://www.
itu.int/md/dologin_md.asp?id=S12-WTPF13IEG2-INF-0002!!PDF-E.
Accessed 19 Jun 2012

2. Ma KJ, Bartoš R, Bhatia S (2011) Review: a survey of schemes for
internet-based video delivery. J Netw Comput Appl 34(5):1572–1586

3. Passarella A (2012) Review: a survey on content-centric technologies for
the current internet: Cdn and p2p solutions. Comput Commun 35(1):1–32

4. Pathan M, Buyya R, Vakali A (2008) Content delivery networks: state of the
art, insights, and imperatives. In: Lecture Notes Electrical Engineering.
Springer, Berlin. pp 3–32

5. Vinay A, Prakash A, Kumar DSK, Nagabhushan K, Anitha TN (2011) A
multithreaded based load balancing framework for video-on-demand
systems. In: Proceedings of the International Conference & Workshop on
Emerging Trends in Technology. ACM, New York. pp 363–369

6. Li J, Chen Z (2009) Sliding-window caching algorithm for streaming
media server. In: Proceedings of the 2nd International Conference on
Interaction Sciences: Information Technology, Culture and Human. ACM,
New York. pp 1152–1159

7. Chiu H, Chang CH, Tseng CW, Liu CS (2011) Window-based popularity
caching for IPTV on-demand services. CN 2011:32–323232

8. Li J, Li F, Jiang X (2011) Flexible-segmentation-jumping strategy to reduce
user-perceived latency for video on demand. Appl Comp Intell Soft
Comput 2011:1–118

9. Famaey J, Iterbeke F, Wauters T, De Turck F (2013) Towards a predictive
cache replacement strategy for multimedia content. J Netw Comput
Appl 36(1):219–227

10. Yu J, Chou C, Yang Z, Du X, Wang T (2006) A dynamic caching algorithm
based on internal popularity distribution of streaming media. Multimedia
Syst 12(2):135–149

11. Yu J, Du X, Wang T, Tung Chou C (2006) Internal popularity of streaming
video and its implication on caching. In: Proceedings of the 20th
International Conference on Advanced Information Networking and
Applications - Volume 01. IEEE, Los Alamitos. pp 35–40

12. Li P, Zheng W, Zhang K (2011) The design of streaming media proxy
server based on patching first algorithm. In: Strategic Technology (IFOST),
2011 6th International Forum On. IEEE, Los Alamitos Vol. 2. pp 643–647

13. Chen H, Jin H, Sun J, Liao X, Deng D (2003) A new proxy caching scheme
for parallel video servers. In: Proceedings of the 2003 International
Conference on Computer Networks and Mobile Computing. ICCNMC ’03.
IEEE Computer Society, Washington, DC, USA. p 438

14. Ishikawa E, Amorim CL (2009) Collapsed Distributed Cooperative Memory
for Interactive and Scalable Media-on-demand Systems. U.S. Patent
7,596,664, to COOPE/UFRJ, 29 Sept 2009

15. Hong D, De Vleeschauwer D, Baccelli F (2010) A chunk-based caching
algorithm for streaming video. In: NET-COOP 2010 - 4th Workshop on
Network Control and Optimization. Gent, Belgique, INRIA, Grenoble.
pp 33–34

16. Wu T, De Schepper K, Van Leekwijck W, De Vleeschauwer D (2012) Reuse
time based caching policy for video streaming. In: Consumer
Communications and Networking Conference (CCNC), 2012. IEEE, Los
Alamitos. pp 89–93

17. Tu W, Steinbach E, Muhammad M, Li X (2009) Proxy caching for
video-on-demand using flexible starting point selection. Multimedia IEEE
Trans 11(4):716–29

http://www.itu.int/md/dologin_md.asp?id=S12-WTPF13IEG2-INF-0002!!PDF-E
http://www.itu.int/md/dologin_md.asp?id=S12-WTPF13IEG2-INF-0002!!PDF-E

Neves et al. Journal of the Brazilian Computer Society (2015) 21:8 Page 23 of 23

18. Kai-Chun L, Yu HF (2012) Adjustable two-tier cache for IPTV based on
segmented streaming. Int J Digital Multimedia Broadcast 2012(1).
http://dx.doi.org/10.1155/2012/192314

19. Carbunar B, Pearce M, Vasudevan V, Needham M (2011) Predictive
caching for video on demand cdns. In: GLOBECOM’11. IEEE, Los Alamitos.
pp 1–5

20. Almeida JM, Krueger J, Eager DL, Vernon MK (2001) Analysis of
educational media server workloads. In: Proceedings of the 11th
International Workshop on Network and Operating Systems Support for
Digital Audio and Video. ACM, New York. pp 21–30

21. Dan A, Sitaram D, Shahabuddin P (1996) Dynamic batching policies for an
on-demand video server. Multimedia Syst 4(3):112–121

22. Dhage SN, Meshram BB (2013) Design and implementation of video
servers for VOD system. Int J Cloud Comp 2(1):61–88

23. Summers J, Brecht T, Eager D, Wong B (2012) Methodologies for
generating http streaming video workloads to evaluate web server
performance. In: Proceedings of the 5th Annual International Systems
and Storage Conference. ACM, New York. pp 2–1212. http://doi.acm.org/
10.1145/2367589.2367602

24. Intel (2005) PCI Express Ethernet Networking. Intel, 2005, Santa Clara.
http://www.intel.com/content/www/us/en/pci-express/pci-express-
ethernet-networking-paper.html. Accessed 23 Aug 2011

25. Willhalm T (2012) Intel Performance Counter Monitor - A Better Way to
Measure CPU Utilization. Intel, Santa Clara. https://software.intel.com/en-
us/articles/intel-performance-counter-monitor. Accessed 5 Jan 2012

26. Austin T, Larson E, Ernst D (2002) Simplescalar: an infrastructure for
computer system modeling. Computer 35(2):59–67

27. Granado AC Experimental Evaluation of the Collapsed Cooperative Video
Cache for Video on Demand Systems. Master’s thesis, Federal University
of Rio de Janeiro, COPPE

28. Decker C, Riedel T, Beigl M, Krohn A (2006) A file system for system
programming in ubiquitous computing. Personal Ubiquitous Comput.
11(1):21–31

29. Jiang C, Yu Z, Jin H, Xu C, Eeckhout L, Heirman W, Carlson TE, Liao X (2013)
Pcantorsim: accelerating parallel architecture simulation through
fractal-based sampling. ACM Trans Archit Code Optim 10(4):49–14924

30. Smit M, Stroulia E (2013) Simulating service-oriented systems: a survey
and the services-aware simulation framework. Serv Comput IEEE Trans
6(4):443–456

31. Abad P, Prieto P, Menezo LG, Colaso A, Puente V, Gregorio JA (2012)
Topaz: an open-source interconnection network simulator for chip
multiprocessors and supercomputers. In: Networks on Chip (NoCS), 2012
Sixth IEEE/ACM International Symposium On. IEEE, Los Alamitos.
pp 99–106

32. Broadcom (2009) 1-Gigabit TCP Offload Engine. Broadcom, Irvine.
https://www.broadcom.com/collateral/wp/5709-WP101.pdf. Accessed
5 Jan 2012

33. Netflix Netflix, Los Gatos, California. https://help.netflix.com/en/node/306.
Accessed 08 Mar 2014

34. Yu H, Zheng D, Zhao BY, Zheng W (2006) Understanding user behavior in
large-scale video-on-demand systems. SIGOPS Oper Syst Rev
40(4):333–344

35. Adhikari VK, Guo Y, Hao F, Varvello M, Hilt V, Steiner M, Zhang ZL (2012)
Unreeling netflix: Understanding and improving multi-CDN movie
delivery. In: INFOCOM, 2012. IEEE, Los Alamitos. pp 1620–1628

36. Chan S-HG, Xu Z, Liu N (2013) Optimizing video-on-demand with source
coding. In: Multimedia and Expo (ICME), 2013 IEEE International
Conference On. IEEE, Los Alamitos. pp 1–6

37. Ji W (2013) The design of passive optical networking+ethernet over
coaxial cable access networking and video-on-demand services carrying.
Fiber Integrated Optics 32(4):268–279

38. Campanotti B, Hurt A (2013) Building real world media in the cloud.
Motion Imaging Journal 10:1–7

39. Dewangan A, Jalihal D (2013) Statistics based energy efficient caching
decisions for IPTV services. In: Communications (NCC), 2013 National
Conference On. pp 1–5

40. Netflix All DVDs Releasing This Week. Netflix, Los Gatos, California.
http://dvd.netflix.com/AllNewReleases?lnkctr=NavAllNewReleases.
Accessed 08 Mar 2014

41. Avramova Z, Wittevrongel S, Bruneel H, De Vleeschauwer D (2009)
Analysis and modeling of video popularity evolution in various online
video content systems: power-law versus exponential decay. In: Evolving
Internet, 2009. INTERNET ’09. First International Conference On. IEEE, Los
Alamitos. pp 95–100

42. Dan A, Sitaram D, Shahabuddin P (1994) Scheduling policies for an
on-demand video server with batching. In: Proceedings of the Second
ACM International Conference on Multimedia. ACM, New York. pp 15–23

43. Qudah B, Sarhan NJ (2010) Efficient delivery of on-demand video streams
to heterogeneous receivers. ACM Trans Multimedia Comput Commun
Appl 6(3):20–12025

44. Ryu M, Kim H, Ramachandran U (2011) Impact of flash memory on
video-on-demand storage: Analysis of tradeoffs. In: Proceedings of the
Second Annual ACM Conference on Multimedia Systems. ACM, New
York. pp 175–186. http://doi.acm.org/10.1145/1943552.1943577

45. Bataa O, Lamjav E, Batsuuri S, Purevdorj U, Naimannaran C, Kim YI,
Gonchigsumlaa K (2012) Service control algorithm of providing efficient
video-on-demand service using hybrid mechanism. In: Consumer
Electronics, Communications and Networks (CECNet), 2012 2nd
International Conference On. IEEE, New York. pp 3507–3512

46. Li J, Yang J, Xi H (2009) A scalable and cooperative caching scheme in a
distributed VOD system. In: Communication Software and Networks, 2009.
ICCSN ’09. International Conference On. IEEE, Los Alamitos. pp 247–250

47. Ishikawa E, Amorim CL (2003) Collapsed cooperative video cache for
content distribution networks. In: In Proceedings of the Brazilian
Simposium on Computer Networks (SBRC). SBC, Porto Alegre, Brazil.
pp 249–264

48. Jung J, Krishnamurthy B, Rabinovich M (2002) Flash crowds and denial of
service attacks: characterization and implications for CDNS and web sites.
In: Proceedings of the 11th International Conference on World Wide Web.
ACM, New York. pp 293–304

49. Zeng Z, Veeravalli B, Li K (2011) A novel server-side proxy caching strategy
for large-scale multimedia applications. J Parallel Distrib Comput
71(4):525–536

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://dx.doi.org/10.1155/2012/192314
http://doi.acm.org/10.1145/2367589.2367602
http://doi.acm.org/10.1145/2367589.2367602
http://www.intel.com/content/www/us/en/pci-express/pci-express-ethernet-networking-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-express-ethernet-networking-paper.html
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://www.broadcom.com/collateral/wp/5709-WP101.pdf
https://help.netflix.com/en/node/306
http://dvd.netflix.com/AllNewReleases?lnkctr=NavAllNewReleases
http://doi.acm.org/10.1145/1943552.1943577

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Proposed algorithm
	Video organization
	Caching logic

	Experimental environment
	Synthesis and simulation flows
	Basics of the measurement process
	Validation of the performance data

	Results and discussion
	Workload and operating parameters for the evaluation of the proxy
	Evaluation of the hit ratio and service time for the execution of the caching algorithms
	Evaluation of the amount of computational resources used by each algorithm
	Impacts produced by the early departure of clients
	Analysis of the relation between the size of the time window and the workload
	Procedures to configure CARTE

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

