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Abstract

Background: Nowadays, systems involving multiple FPGAs are used for various scientific applications. Such systems
require a data bus dedicated to the communication between FPGAs, which could be done through a LVDS type.
Another important factor is that the routing that interconnects the LVDS pins on the platform should be precisely
developed to avoid instabilities in communication. Unfortunately, many platforms available in the market do not
observe such restrictions, limiting the throughput of the bus.

Methods: This paper presents an inter-FPGAs communication channel based on a DDR interface directed to this kind
of platform. This approach promotes a stable communication between these devices without the use of LVDS pins.
An error detection module was also designed to ensure the sending integrity and correct any errors on the bus. A
mechanism for dynamic and automatic clock phase adjustment used on the bus was also implemented to ensure
that the developed modules were compatible with other platforms.

Results: The channel has been implemented in a PROCStarIII platform and rates of 4.76 Gbps were achieved.

Conclusions: The channel has been validated on a commercial platform with success and the synthesis results, as
well as the performance results obtained by using it in a real implementation of the RTM algorithm, are also presented.

Keywords: LVDS; FPGA; CRC; Communication inter-FPGAs

Background
Platforms that involve multiple field-programmable gate
arrays (FPGAs) have been the target of several study
fields such as prototyping of MPSoCs (multiprocessor
system-on-chip), acceleration, and encryption algorithms
[1, 2]. For these systems to work efficiently using exist-
ing resources in FPGAs, an efficient communication must
exist between the FPGAs available on the platform. This
type of communication in next-generation FPGAs is usu-
ally established through type interfaces low-voltage differ-
ential signaling (LVDS) [3]. This type of signaling allows
signal sending at high speed through a differential pair
of parallel wire. The use of this feature enables data
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transmission between devices to be performed more effi-
ciently, allowing a more secure communication when fac-
ing electromagnetic interference [4, 5]. This configuration
enables busses to achieve transfer rates of about 10 Gbps
by using more advanced devices such as the Xilinx Virtex
[6] family of FPGAs, Altera Stratix V [7] FPGAs.
Currently, many FPGAs support LVDS interfaces, and

by being properly allocated on the platform, they can pro-
vide data communication at a high transmission rate by
using their transceivers. However, some platforms avail-
able in the market were not designed to accommodate
the LVDS FPGA pin resources in their communication
lines, thus preventing the LVDS transceiver use and there-
fore hindering the implementation of communication
channels with high performance. Other factors such as
distance between tracks, resistance, and capacitance bal-
ance are important and need to be observed by this type
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of platform manufacturers. Data transmission performed
without these resources can lead to errors in data transfer
when the transmission rate is high, as there is no guar-
antee that data integrity is maintained. This is because
of all FPGA I/O (Input/Output) pins that are generally
subject to physical interference. Due to this possible low
performance in data transmission, systems using these
resources will have to reduce their logic module speed
to suit the channel and thereby reduce the incidence of
communication error.
This paper presents a bi-directional synchronized com-

munication channel (full-duplex) regardless of LVDS
interface use. To ensure a good transmission rate of the
transmitter, it is based on a double data rate (DDR) inter-
face, and to ensure data integrity, detectionmodules based
on the generation and error checking cyclic redundancy
check (CRC) were developed. Additionally, a module to
fit automatically and dynamically the clock phase of the
communication bus was also created. An example using
the bus for reverse time migration (RTM) processing
algorithm in a multi-FPGA platform is also presented.
After the introduction section, this paper is structured

as follows: The section “Related work” discusses the work
related to this article. In the section “GiDEL PROCStarIII
platform”, the platform used in the experiments is shown.
In the section “Methods”, the developed architecture is
presented. In the section “Results”, the results of the
experiments are shown. Finally, the section “Conclusions”
contains the conclusion of this work.

Related work
In this section, some studies focusing on inter-FPGA
communication are presented. The paper [8] presents an
architecture for this purpose, and the work [9] proposes a
solution for optimizing communication between different
FPGA devices.
The work [8] presents an architecture for inter-FPGA

full-duplex communication with 18 LVDS transmission
tracks. The architecture is based on DDR interface and
consists of a transmitter and a receiver. The authors
demonstrate that it is possible to reach transfer rates of
about 10 Gbps by using this approach. The architecture
is designed to be implemented in a high-performance
cluster (PARAMNet-3) [10]. The architecture comprises a
network switch allowing package routing to be performed
at high speed. Each board being part of the switch con-
sists of four FPGAs from Xilinx Virtex-4 and transceivers
(multi-gigabit transceivers) available inside each FPGA.
These transceivers are used for communication with the
other system boards.
The transmitter consists of a control unit, LVDS I/O

buffers, and a serializer/deserializer (SERDES) module.
These last two features are I/O already available in
the Xilinx Virtex-4 FPGA. The SERDES module is a

serializer/deserializer that receives the application data in
parallel and serializes it. The LVDS output buffers receive
this serialized data and implement the output to 18 tracks
of differential pairs. Each track has a transfer rate of
625 Mbps, summing up a total rate of about 10 Gbps.
The receiver has its clock generated by the transmitter.

This allows synchronization of both sides. It consists of
a control module, delays, SERDES I/O buffers, and LVDS
module. The delay modules are responsible for introduc-
ing a 5–10 ps jitter on the clock input from the transmitter.
This strategy respects the valid data window and is nec-
essary to ensure that signals are received in the receiver
correctly. The clock used in the receiver is of 312.5 MHz
and is synchronized with the transmitter.
Communication error detection is performed on the

network layer of the switch, and the authors have devel-
oped a test engine to generate errors in the communica-
tion channel. This engine is responsible for testing each
LVDS track, and two instances were implemented in each
FPGA. The testing environment consists of a PowerPC
processor executing an application that communicates
with the architecture via a UART interface. It can be con-
figured with test parameters and statistics view on the
application.
In [9], a solution for optimizing inter-FPGA commu-

nication using channel adaptation is shown. The work
demonstrates that each platform has its own characteris-
tics, and to migrate up the project to another platform,
you often need to change the architecture to adapt to
necessary changes. The communication bus width, point-
to-point broadcast, or LVDS are some of the options that
could be parameterized by abstracting from the users that
need to change theirs. In that sense, the authors of the
work propose a definable channel and one that is able to
self-adapt the target architecture.
Initially, it seems to be an architecture that consists of a

base control module, FIFOs (First In, First Out), and PHY
modules transmit (TX) and receive (RX). The architecture
supports SDR/DDR interfaces and point-to-point trans-
mission or LVDS. It can therefore be used for SERDES
modules, serialization/deserialization of data, and it can
be defined whether the communication is unidirectional
or bidirectional. Finally, the architecture allows the bus
width to be configurable.
The channel adaptation, called chAdapt, consists of a

hardware module that self-configures the transmission
according to the platform characteristics. For this, a trans-
mission of a bit sequence occurs repeatedly between
the transmitter and receiver, initially to identify possible
delays in the communication form. At that time, all the
controls are optimized and clock alignment is performed
by dynamically adjusting its phase.
The architecture has been tested in different FPGAs by

using the RAPTOR [11] module platform as base. This
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platform allows the adaptation of different reconfigurable
modules that consist of Xilinx FPGAs. The tests were per-
formed with the following FPGAs: Spartan-3A, Spartan-6,
Virtex-4, and Virtex-5. Several combinations were ana-
lyzed in order to find possible optimizations in the
communication. As a result, the authors demonstrate a
comparative table between combinations used, highlight-
ing the relative optimization after the addition of chAdapt
module architecture. The tests performed with the com-
munication between Virtex-4 and Spartan-6 are notewor-
thy. A significant improvement in communication was
observed after the introduction of chAdapt in these sce-
narios. The results indicate that although it was not pos-
sible to align the bus width for these tests, the channel
offers a great way when implemented for the communi-
cation link validation and identifying best parameters for
data transfer.

GiDEL PROCStarIII platform
The communication channel presented in this work was
implemented in a GiDEL PROCStarIII platform (Fig. 1)
[12]. This platform consists of four Altera Stratix III 260E
and has three memory banks: one of 512MB DDR2mem-
ory and two banks composed of 8 DDR2 SODIMMs with
up to 4 GB each.
Although the platform has four FPGAs, it is not possi-

ble for the inter-FPGA communication to use differential
pairs available in these devices. This occurs because the
FPGA pins used in the platform, directly connected to
the bus, are I/O common pins. Another aspect is that
there are no guarantees related to the printed circuit board
(PCB) layout of the platform. Characteristics like resis-
tance, capacitance, and bus route length that connect the
FPGAs are not guaranteed to obtain a stable communi-
cation. For those reasons, the high-speed communication
cannot be achieved. The local bus is responsible for con-
necting all FPGAs to the host controller through PCIex8.
The communication protocol for this bus is automati-
cally generated in the ProcWizard [13] tool. The main bus

connects all the FPGAs and has a width of 40 bits. Figure 2
shows the internal architecture of the PROCStarIII plat-
form.
For data communication, two busses are available: VL-

RL bus and LR bus. Each bus connects the adjacent
FPGAs available on the platform. The VL-RL bus has a
width of 10 bits and is type I/O common pins. The sig-
nals used in this bus have a voltage of 1.8 V. The LR
bus has a width of 100 bits and is also type I/O com-
mon pins. The LR bus, besides being the largest available,
concentrates a single bank of pins that can be used in
the communication channel. This minimizes the impact
related to data skew since their paths are aligned. Thus,
potential signal delay problems are decreased. Due to
these characteristics, the proposed architecture in this
paper uses the LR bus to implement the communication
channel.
The platform also offers JTAG connectors that can be

used for debugging and has PSDB connectors (PROC-
StarIII daughterboards), which are high-speed interfaces
used to connect other cards provided by the manufacturer
(camera links, ethernet interfaces, etc.).

Methods
The communication system proposed by this work is
defined as a parallel communication channel, synchro-
nized and 32 bits wide. Each controller is comprised of
two main modules: a transmitter and a receiver. A com-
mon clock synchronizes the communication in the chan-
nel. This system can then be coupled in each FPGA to
allow data communication between these devices on the
platform.
The entire system was designed to facilitate its adapta-

tion to different projects. To make this possible, a FIFO
input on the transmitter and a FIFO output on the receiver
were used, making the design transparent to the user. The
adjustments for each application should be made through
few adjustments in the input and output parameters of
each FIFO.

Fig. 1 GiDEL PROCStarIII platform. Photo of the platform used on the implementation
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Fig. 2 GiDEL PROCStarIII platform diagrams. Overview of the platform architecture

Figure 3 shows the communication channel between
two FPGAs involving the main signals from the transmit-
ter and receiver.
One signal of 33 bits (data_bus) was defined for trans-

ferring data between devices. One bit of data_bus signal is
intended for a valid signal, which indicates to the receiver
that the data sent is valid and that it can be received and
forwarded to the CRC check module and later to the FIFO
output. Thus, the communication channel enables a data
transfer with a width of 32 bits between the FPGAs.
The critical clk_bus signal is used to feed the clock

signal to the receiver. The clock signal is generated in
the transmitter through a PLL (Phase-Locked Loop) and
sent to the receiver through a path reserved for this pur-
pose. This ensures that both the transmitter and receiver
are synchronized allowing the communication channel to
operate stably. The synchronization and transmission fail-
ure signals that also incorporate the bus will be discussed
in the next sections.

Transmitter
The transmission module, called Transmitter, is respon-
sible for sending the data correctly through the bus. It is
also its responsibility to align the clock with the availabil-
ity of data on the bus, thus increasing utilization of the

Fig. 3Main signals from the communication bus. Detailed
signalization of the communication bus

data valid window, and to re-transmit the data if an error
occurs in transmission. The transmitter also has a module
for generating CRC for the data sent. After transmitting
a data package, a checksum that validates the package
is sent through the bus to be checked at the receiver.
If errors are found during the verification, a request for
retransmission is performed.
To perform these tasks, the Transmitter module is

divided into five modules: a FIFO input (FIFO_INPUT),
the retransmission circuit, the CRC generator (CRC_
GEN), the physical layer (TRANS_PHY ), and the control
transmitter (TRANS_CTRL), as shown in Fig. 4.
The module FIFO_INPUT is available in MegaWizard

that goes along with the tool development Altera Quartus
II. This input module aims to standardize the interface of
the transmission module with the architecture in which
it is inserted and receive the data to be transferred. Its
architecture allows it to work internally with a differ-
ent frequency from the transmitter module to which it is
coupled. Commonly, its internal frequency is higher than
the one used in the system, and thus, the speed of data
removal from the FIFO may be greater than the speed at
which it is inserted.
For greater flexibility in the transmission process, the

data width that will be inserted and FIFO depth are
adjustable as needed through the use of configuration
parameters of the transmitter. By default, the data width is
of 128 bits and the FIFO depth is of 256 words.
Some signals are provided by FIFO input and should be

used by the system to manipulate the data written in the
transmitter input. The wr_clk signal corresponds to the
clock system that is used to control the data writing clock
that will be forwarded to the communication channel. As
previously mentioned, this clock is independent from the
internal clock. The wr_req signal is used to indicate that
the data entry wr_data is valid and should be written
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Fig. 4 Transmitter internal architecture. Block diagrams of the transmitter internal architecture

into FIFO. The wr_usedw signal indicates to the internal
architecture how many words there are in FIFO. Finally,
the wr_empty signal indicates when FIFO is empty and
wr_full signal indicates when FIFO is full. All these signals
have been made available so that the user can monitor the
status of FIFO input and have full control of writing data
for transmission.
The communication occurs on the bus through pack-

ages. By default, the size of the package to be transferred is
of eight words of 32 bits, as the bus only supports this data
transmission width. In this case, two words of the input
FIFO (256 bits) are required to form a package. Based on
this example, the transmitter removes the data from FIFO
input and divides it. The first division occurs at the out-
put of FIFO input. By default, the output is of 64 bits. The
second one is made within the TRANS_PHY module that
divides each data of 64 bits into two of 32 bits.
Each data package is sent to the bus, and then a check-

sum is immediately sent to verify the integrity of the
package at the receiver. If a match is found in the check-
sum verification at the receiver, it sends an ACK signal
to the transmitter indicating that the package has been
received successfully; otherwise, a NACK signal is sent
and a retransmission occurs.
The retransmission circuit is highlighted in Fig. 4. This

circuit is responsible for keeping the data package to be
transmitted in its structure and, in case of failure, retrans-
mit it in the fastest possible time. Because of that, this
circuit has a FIFO (PKG_FIFO), which stores the pack-
age to be transmitted, and two multiplexers (MUX_RT
and MUX_TX) that select the correct path for the data
to be sent. The data package to be transmitted, after
being required in the FIFO_INPUT, goes to the physical
layer (TRANS_PHY ) through the MUX_TX component.
Simultaneously, a copy of the package is temporarily

stored in the retransmission FIFO (PKG_FIFO) by the
MUX_RT component. If there is a problem in the trans-
mission, and the NACK signal takes a high logic level,
the data previously stored in PKG_FIFO will be read
and transmitted to the receiver via the MUX_TX and
TRANS_PHY modules, respectively. A feedback loop
ensures that this package can be retransmitted at other
times, up to the value of MAX_RETX previously stipu-
lated in the project. By default, this value is 10.
The CRC generation is implemented by using a web

tool called CRC tool available in [12]. This tool provides
code generation CRC in both Verilog and VHDL. It allows
one to choose the polynomial, the type of CRC, the data
width, and the target language. The authors have cho-
sen the polynomial p = x16 + x15 + x2 + 1, default
“CRC-16/USB Date” data width of 64 bits, and Verilog
language.
The function generated by the tool has been adapted

into the CRC_GEN module that has a state machine capa-
ble of generating the checksum of a data package. While
the data package is transmitted, they will also be ana-
lyzed byCRC_GEN that calculates the CRC of the package
and then immediately provides a 16-bit checksum to be
transmitted over the bus. Each package corresponds to
two pieces of data input into the FIFO (256 bits) that will
be internally divided into eight pieces of data to transfer
(32 bits each). By default, for each package, one CRC veri-
fication code is generated. It is also possible to modify the
data package size to 4, 8, 16, or 32 words.
Through MegaWizard, it is possible to create a CRC

generator module. However, this module is proprietary,
a fact which prevents its use. Thus, the CRC_GEN mod-
ule has been developed with the same inputs and outputs
available from Altera module, so as to maintain compat-
ibility between versions. Figures 5 and 6 below illustrate
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Fig. 5 Transmission failure (NACK). Waveform of an unsuccessful transmission

the communication protocol developed for the proposed
architecture.
The out_of_sync signal comes from the receiver, and it is

intended to inform the transmitter when its internal clock
is synchronized with the clk_bus signal. Therefore, the
transmission only occurs when the signal is at low logic
level.
The TRANS_PHY module is responsible for manag-

ing and encapsulating solutions for the use of FPGA I/O
pins. The use of a physical layer allows future changes
in transmission patterns without major impacts on the
project.
The data leaving the MUX_TX with 64 bits is broken

into two blocks, thus forming the most significant part
(data_high) and the least significant part (data_low). Soon
after, the data are transmitted to the bus along with a valid
signal.
The standard DDR interface was used for transmis-

sion [14]. Thus, the data is sent in both high and low
clock edge, allowing greater throughput on the commu-
nication channel. Figure 7 shows TRANS_PHY internal
architecture.
The ALTDDIO modules are also generated by the

MegaWizard tool. They have the purpose to generate data
in DDR standard, and its internal registers are imple-
mented in silicon hard registers, i.e., directly on the FPGA
microarchitecture, ensuring lower rates of skew in the
data output.
The first module ALTDDIO is used with two input con-

stants, with data_high signal connected to VCC (logic

high) and data_low signal connected to GND (logic low).
This configuration generates a clock output that is in
phase with the data, i.e., an alignment to the rising edge of
the clock related to the data valid window.
The second module ALTDDIO is used for data trans-

mission, with its input signals (data_high and data_low)
receiving a distinct portion of the data: for data_high
signal, the most significant part of data (32 bits),
and for data_low signal, the least significant part
(32 bits).
The TRANS_CTRL module encapsulates all the neces-

sary logic that generates the control signaling for all other
modules. This logic controls the data package generation,
the CRC checksum, data input through FIFO_INPUT, and
retransmissions, if it is needed. It is also the responsibil-
ity of this module to indicate to the architecture, through
tx_error signal, when there are any errors in data trans-
mission. This is the case, for example, when the number
of retransmissions has been achieved. Finally, the i_flush
control signal indicates the end of data input into the
FIFO. Thus, it is possible to complete the data pack-
age with zeros if necessary, maintaining the transmission
pattern.

Receiver
The receiver is responsible for capturing the data bus. All
signal degradation factors that interfere on the transmis-
sion channel, if any, will have their effects reflected in this
module’s input signals. Thus, most of the complexity in
correcting these effects is located in it.

Fig. 6 Successful transmission (ACK). Waveform of a successful transmission
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Fig. 7 TRANS_PHY architecture. Physical interface of the transmitter

The internal architecture is composed of five modules:
the physical layer (RECV_PHY ), two FIFOs for receiving
the packages (PKG_BUFFER_1 and PKG_BUFFER_2),
the CRC checker (CRC_CHK), the FIFO output
(FIFO_OUTPUT), and the controller (RECV_CTRL)
(Fig. 8).
The RECV_PHY module is responsible for receiving

the transmitted data and the clock signal from the bus.
The entire circuit that implements the DDR standard syn-
chronization is also included in this module. A PLL is
instantiated internally, and it is responsible for receiving
the clock_bus signal and feeding the whole receiver circuit.
The PLL used is generated by the MegaWizard tool and
is called ALTPLL. This PLL is configured as a synchro-
nized source. This means that it guarantees the generated
clock to be fully synchronized with the communication
bus clock. Figure 9 shows the RECV_PHY architecture.

The PLL circuit feeds the receiver through the data_clk
signal. A locked signal is used to indicate when the PLL
reaches synchronism with the input clock. Thus, the
out_sync signal ensures that transactions can only occur
when both the transmitter and receiver are synchronized.
In order to minimize the cross-talk effects, this signal was
inverted.
The circuit that is responsible for receiving the data

packages comprises a demultiplexer (DEMUX_RX), two
FIFOs (PKG_BUFFER_1 and PKG_BUFFER_2), and a
multiplexer (MUX_OUT). Initially, all received data is
stored in PKG_BUFFER_1.When the first package is com-
plete, its checksum is verified, and if the package is valid,
the data may follow to the FIFO output (FIFO_OUTPUT)
through MUX_OUT. While this process of transferring
data from the PKG_BUFFER_1 to the FIFO_OUTPUT
occurs, DEMUX_RX switches and the next captured data
begins to be stored in PKG_BUFFER_2. The received
package is checked, and if it is valid, the data from this
buffer is also transmitted to the same FIFO_OUTPUT
and the DEMUX_RX is switched again. This approach
enables one to obtain a higher performance once there
is no need to wait for one PKG_FIFO to be transferred
to FIFO_OUTPUT to start receiving the next package.
FIFOs PKG_BUFFER_1 and PKG_BUFFER_2 are of 64-bit
width and 32-word depth each.
The CRC_CHK module is similar to the CRC_GEN

module in the transmitter. It has the same function
and is responsible for calculating the CRC value of the
received packages. At the end of each package trans-
mission, the checksum value generated by CRC_CHK is
compared with the checksum received (generated by the
CRC_GEN). In this structure, if the CRC check fails, the
data is discarded before being inserted into FIFO output,
and a NACK signal is sent to the transmitter requesting

Fig. 8 Receiver internal architecture. Block diagrams of the receiver internal architecture
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Fig. 9 RECV_PHY architecture. Physical interface of the receiver

a retransmission. If the CRC check is positive, the data is
routed to FIFO output and an ACK signal is sent to the
transmitter requesting the next package.
FIFO output is exactly the same as FIFO input, located

in the Transmitter. It works in two different clock
domains, and it has configurable depth and width. By
default, it has an input data width of 64 bits and an out-
put data width of 128 bits with a 256-word depth. The
rd_clk signal corresponds to the clock signal architecture
that synchronizes the data readings. The rd_req signal is
used to read data from FIFO. The rd_usedw signal indi-
cates the data amount inside FIFO to the architecture. The
rd_empty signal indicates when the FIFO is empty, and the
rd_full signal indicates when the FIFO is full.
The RECV_CTRL module generates the control sig-

naling to all other modules, thus controlling data pack-
age reception, CRC verification, package transferring
from the internal FIFO to the FIFO output, the internal
FIFO cleaning in case of error in checksum verification,
retransmission request through NACK signaling, package
reception through ACK signaling, and the demultiplexer
(DEMUX_RX) and multiplexer (MUX_OUT) switches.

Dynamic clock phase adjustment
The data captured from the data bus must be done on
themost stable moment. This occurs exactly between data
transitions. The simplest way to ensure this is by estab-
lishing a phase shift in the clock bus to ensure that the
clock transition occurs at the desired moment. Figure 10
illustrates that.
A fixed clock phase shift could ensure the timing of the

bus clock transition to the data stability time. However,
multi-platform FPGAs have particular characteristics -
bus width, bus length, and internal chip features - that
generate different timing delays on signal propagation.
Thus, it would be virtually impossible to ensure that the
data was always captured at the best time. In order to

Fig. 10 Data capture in the opposite border. Data capture in the most
stable moment

create a flexible communication bus for use in different
platforms, a system capable of dynamically configuring
and reconfiguring the clock phase when necessary was
developed. The configuration is made through the PLL
interface that receives the bus clock. Thus, the communi-
cation bus proposed in this work is able to self-adapt to the
target platform without requiring manual configuration.
The process of identifying and dynamically adjusting

the clock phase initiates after the PLL lock. After this
step, the transmitter signals the receiver that the dynamic
adjustment process has started by asserting high level to
i_sync_start signal and starts sending a steady pattern of
alternating 0’s and 1’s on the 32-bit data bus. The hex-
adecimal representation of this pattern corresponds to
“0xAAAAAAAA55555555”. Initially, the clock phase is
set to 0 °. The receiver compares the received data on
the bus with the expected pattern. While the phase shift
controller does not recognize the expected pattern, its
program phase shift increments through the PLL inter-
face. The phasestep signal is responsible for the phase
increment and decrement. The phaseupdown signal deter-
mines the phase shift direction. When phaseupdown is
0, phasestep generates an increment to the clock phase,
otherwise a decrement. When the PLL has adjusted each
generated pulse phase of the phasestep signal, it signals
the end of this operation through the phasedone signal.
When the pattern is recognized, the controller starts to
count the number of increments given to the clock phase
and keeps incrementing until the pattern stops to be rec-
ognized again. This counting allows the controller to get
the exact size in degrees of the valid data window. The
last step consists in performing decrements to the clock
phase corresponding to half the number of increments
performed before. This process ensures that data will be
captured at exactly half of the valid data window. When
this process ends, the receiver signals to the transmit-
ter that the synchronization process has been completed
through the o_sync_ready signal and begins the normal
operation. If the data bus presents a configurable number
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of invalid transmissions, the dynamic adjustment of the
clock phase runs again.

Results
The communication channel was tested on a GiDEL
PROCStarIII platform connected to an Intel Xeon 3 GHz
computer with 4 GB of DDR memory through a PCIex8
bus. Different clock rates and package sizes were tested.
Each test was performed considering at least 1 h of
continuous data transfer between the FPGAs on the
platform.
The data to be transferred is generated by an applica-

tion at high level and sent to the host platform through the
PCIex8 bus. A specific memory controller from GiDEL
(GiDEL PROCMultiPort [15]) is used to transfer the data
sent from the application to the transmitter. For testing
purposes and correct analysis, the data received by the
receiver is sent back to the host, and there, it is compared
to the previously sent data.
The times presented in the result tables refer only to the

effective data transmission time on the bus. The time of
sending data to the host platform, the time to transfer data
from the DDR2 memory (located on the platform) to the
FPGA transmitter, and the time of data transmission from
the receiver on the FPGA to the host were not taken into
account.
As a basis for testing, the amount of transferred data

during 1 h and a package size of 8 words was adopted.
With the data amount transferred in this configuration, it
was possible to repeat the tests varying the package size
and measuring the transfer time.
Tables 1, 2, 3, and 4 show the results obtained for trans-

missions at frequencies of 50, 100, 120, and 150 MHz,
respectively.
All the tests with the configurations presented in

Tables 1, 2, 3, and 4 were successfully performed, and
no transmission error was detected. For all results, a
higher data rate was observed when the package size
is increased from 8 to 16 words, and then from 16 to
32 words. This occurs due to the clock cycles required
to generate and check the CRC at the transmitter and
receiver. Once the data package becomes smaller, more
cycles will be required to generate the CRC check, conse-
quently increasing the overall transmission time. Figure 5
shows a transmission flow for a package size equal to
4 words. Note in the diagram that after sending the

Table 1 Results at 50 MHz

Package Transfer rate Data amount Transmission
size (Gbps) (Gb) time (s)

8 0.7 316.65 3600

16 1.14 316.65 ∼2200

32 1.68 316.65 ∼1500

Table 2 Results at 100 MHz

Package Transfer rate Data amount Transmission
size (Gbps) (Gb) time (s)

8 1.4 633.30 3600

16 2.29 633.30 ∼2200

32 3.37 633.30 ∼1500

effective data, some data cycles are required to send the
CRC.
According to the presented tables, it is possible to see

that the data amount transferred increases with the fre-
quency. The tests conducted at a frequency of 150 MHz
obtained the best transfer rates. For package transmis-
sions with a size equal to 8, 16, and 32 words, transmission
rates of 1.98, 3.24, and 4.76 Gbps were obtained, respec-
tively.
It is important to mention that the same archi-

tecture developed and tested in PROCStarIII may
have different transmission rates when instantiated on
other platforms. Inherent characteristics to the plat-
form design can directly influence the communication
performance.

Communication error test
In order to test the package retransmission, a module that
forces errors in the communication bus was implemented
in the architecture. This error generator is positioned at
the TRANS_PHY module output and modifies some data
bits according to an insertion error rate configured in mil-
liseconds. Thus, it is possible to simulate transmission
errors and test the operation of the communication bus
under these conditions. Such testing ensures the commu-
nication bus reliability in an unstable scenario.
In the presented test, one wrong bit was inserted

in a period of 4 ms. The transfers were probed
at 100 MHz, and the package size was equal to
eight words. The amount of transferred data was of
633.30 Gb, the same amount used in the tests at
100 MHz and normal conditions. Table 5 presents the
results.
The number of retransmissions performed in this test

was of 849,871, indicating that this was the number of
packages captured in the receiver that did not match
the checksum. Despite the great number of errors, the

Table 3 Results at 120 MHz

Package Transfer rate Data amount Transmission
size (Gbps) (Gb) time (s)

8 1.58 715.25 3600

16 2.6 715.25 ∼2200

32 3.8 715.25 ∼1500
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Table 4 Results at 150 MHz

Package Transfer rate Data amount Transmission
size (Gbps) (Gb) time (s)

8 1.98 894.06 3600

16 3.24 894.06 ∼2200

32 4.76 894.06 ∼1500

retransmitted data amount was of just 25.93 Mb, causing
no major impacts in relation to the total communication
time. The time required for these retransmissions was
approximately 144 ms. This time was measured consider-
ing the difference between the test with and without error
insertion.
After the analysis of these test results, observations

showed that the communication was successful despite
the errors that had been deliberately inserted in the bus.
Therefore, a stable communication between the FPGAs
can be obtained under similar conditions.

RTM algorithm results
The implemented communication bus was used for pro-
cessing the RTM algorithm on the GiDEL PROCStarIII
platform. The RTM algorithm is used in the oil and gas
industry to generate images of the subsurface helping
well exploration identification. This algorithm has high
computational cost and therefore needs to be processed
on multiple computing units, making it necessary to use
four FPGAs of the GiDEL platform in this study case.
Tests were performed aiming to validate the communi-
cation bus and measure the overhead generated by the
communication. As a consequence, the algorithm pre-
sented the expected results and the execution time was
very close to optimal, which confirms that the commu-
nication did not become the bottleneck in the algorithm
execution on multiple FPGAs. After that, Table 6 presents
these results. The first column lists the size of selected
problems, and the following ones are the performance of
a single FPGA, optimal performance with four FPGAs,
and the actual measured performance, respectively. The
performance unit used is of GSamples/s, which corre-
sponds to the number of points calculated every second of
execution.

Discussion
The presented implementation obtained transfer rates on
the order of magnitude of Gbps. At 150 MHz, the com-
munication bus achieved transfer rates of up to 4.76 Gbps.

Table 5 Error test at 100 MHz clock frequency and 633.3 GB of
data transferred

Error insertion Amount of Amount of Retransmission
rate (error/ms) inserted errors retransmitted data (Mb) time (ms)

1/4 849,871 25.93 ∼144

Table 6 Results of the RTM algorithm execution on GiDEL
platform

Problem Single FPGA 4 FPGAs optimal 4 FPGAs real
size performance performance performance

(GSamples/s) (GSamples/s) (GSamples/s)

400× 216× 216 0.42 1.68 1.65

300× 288× 288 0.35 1.42 1.38

1000× 432× 432 0.35 1.42 1.41

Although the obtained data transfer rates were satisfac-
tory, the use of LVDS pins would certainly provide higher
data transfer rates. Taking the data presented in [6] as ref-
erence, if it was possible to instantiate 32 lanes on the
communication bus, each one with rates of 625 Mbps, it
would be possible to obtain transfers up to 20 Gbps.
Most modern FPGAs have indicated transceivers for

data transfers. Stratix V devices, from Altera, can reach
transfer rates up to 28.05 Gbps [16]. However, it is essen-
tial that the PCB track routing that will accommodate
these devices is done carefully, avoiding communication
instabilities.

Conclusions
The use of multi-FPGA platforms enables the applica-
tion of performance increase, as multiple reconfigurable
devices can be used to perform the same task or work in
cooperation. The use of several FPGAs integrated on a
single board demands the establishment of a communica-
tion channel among such devices.
The presented work describes a bi-directional inter-

FPGA communication bus using a DDR interface for data
transmission. An architecture was designed as a reconfig-
urable platform, requiring only few parameter settings on
the transmitter and receiver to port for different configu-
rations.
A detection error module was also implemented. It

was based on the CRC method and has also a dynamic
clock phase shift adjustment in order to ensure a
stable communication. The proposed architecture has
been tested and validated on the GiDEL PROCStarIII
platform.
The proposed communication channel achieved an

excellent performance on platforms that do not have
advanced features like LVDS interfaces and transceivers.
The next step will be to implement it in another plat-
form, the GiDEL PROCStarIV. This platform is based
on Altera Stratix IV FPGAs and more advanced fea-
tures. Thus, the authors expect to achieve higher fre-
quencies with the use of the presented communication
channel.
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