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Abstract Microalgae are unicellular organisms that have
different shapes, sizes and structures. Classifying these
microalgae manually can be an expensive task, because
thousands of microalgae can be found in even a small
sample of water. This paper presents an approach for an
automatic/semi-automatic classification of microalgae based
on semi-supervised and active learning algorithms, using
Gaussian mixture models. The results show that the approach
has an excellent cost-benefit relation, classifying more than
90 % of microalgae in a well distributed way, overcoming
the supervised algorithm SVM.

Keywords Active learning - Semi-supervised learning -
Microalgae classification

1 Introduction

Microalgae are unicellular organism that can be found in a
variety of sizes, structures and forms. These characteristics
allows us to classify microalgae into different phytoplankton
taxonomic groups. Microalgae classification is relevant to
biology and oceanology, because the description of microal-
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gae species at a certain time and place is important to the
understanding of how energy is transferred from the food
chain base to higher trophic levels [5]. Furthermore, it reflects
changes in fish stocks and the carbon cycle of a given environ-
ment. The classification of microalgae and characterization
of the predominant taxonomic groups has a diversity of appli-
cations, such as understanding of a phytoplankton commu-
nity’s structure. A recent census of marine life [4] gathered
research from more than 80 nations, and lasted one decade,
in order to obtain a global benthic biomass map predicted to
the seafloor, phytoplankton included.

Microalgae are classified in groups based on different
characteristics, with huge morphological variations such as
round, oval, cylindrical, and fusiform cells, as well as projec-
tions like thorns, cilia, etc. In addition to the taxonomic clas-
sification, phytoplankton organisms can be classified accord-
ing to their sizes: picoplankton (0, 2-2 pwm), nanoplankton
(2-20 pm), and microplankton (20-200 pwm). Specific com-
position, size structure and biomass studies about phyto-
plankton communities are being developed through the clas-
sic method of optic microscopy [13], in which an observer
has to manually manipulate a small water sample requiring
more than a day for a complete analysis.

The use of particle analyzers has been an important tool to
obtain information about the aquatic environment. It intends
to efficiently obtain data about density, composition and mor-
phometry of phytoplanktonic organisms. Typically, this auto-
matic equipment is composed of an optical system capable of
distinguishing microalgae from other particles in the sample
and capturing images, along with software that assists in the
classification and visualization of the cells. An automatic,
or even semi-automatic, approach to classifying microal-
gae would greatly benefit research on this topic. This work
presents an approach to an automatic/semi-automatic classi-
fication of microalgae based on machine learning algorithms.
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The proposed approach combines two types of learning:
semi-supervised and active. The first assumes that only a
small part of data has known ranking a priori, and tries to
use information from non-ranked data to improve the clas-
sification. The second, active, searches the non-ranked data
for the one that provides the most information gain, and then
asks the user the rank of that data. In this work, both learning
types were combined to improve microalgae classification.
The process is initialized with semi-supervised learning, and
then is improved using active learning.

In order to acquire the microalgae data, a FlowCAM par-
ticle analyzer [15] was used. It is capable of obtaining infor-
mation concerning microorganism in water samples. Four
experts analyzed and ranked the obtained data in order to
validate the proposed approach.

2 Related work

Most studies found in the literature try to classify plankton,
which, although not exactly the focus of this work, shares
some similarities with our goal. Blaschko et al. [1] presented
acomparison of supervised approaches to learning and classi-
fying plankton. Those approaches are used to classify larger
organisms than the targets of this work, thus presenting a
greater number of relevant features, facilitating the learn-
ing process. Furthermore, those approaches used extensive
supervised data, which makes it very costly and not extensi-
ble. Finally, Blaschko et al. [1] also used the FlowCAM and
the best results obtained were around 70 %.

Another work of interest was proposed by Xu et al. [21],
which uses a restrict set of supervised data classified with a
SVM classifier, using non-ranked data to improve the learn-
ing. Although the presented approach is adequate to this
work, it does not use experts as an information source. They
obtain the information through a density method technique,
which is sensitivity to the microalgae size. Due to the small
size of the microalgae used in this study, the amount of infor-
mation is reduced, which makes this approach unfeasible.

The work of Sosik and Olson [19] used the FlowCytobot
equipment to extract features from the phytoplankton, on a
similar process to the FlowCAM. The results obtained in the
automatic classification were around 68 and 99 %, depending
on the type of organism that were classified. They obtained
least significant results to smaller plankton, the focus of this
work.

Another work from Hu and Davis [14] uses co-occurrence
matrices techniques and SVM to classify plankton. Using
both supervised learning techniques, they obtained around
72 % of accuracy.

The problem of classification of microalgae was addressed
in the work of Drews, Jr., et al. [9], where Gaussian mix-
ture models were used together with semi-supervised and
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active learning. The present work is an extension of the pre-
vious work, where the methodology is detailed. Furthermore,
we present and discuss a more thorough experimental data
acquired using FlowCAM.

3 Methodology

As explained on Sect. 1, this work uses an approach based
on the combination of two learning types: semi-supervised
and active, with the objective to classify microalgae. The
first step of the work was to obtain the data of the microal-
gae using the FlowCAM. Given a water sample, this equip-
ment is capable of finding and analyzing microalgae in order
to identify up to 26 different features to compose the data-
bases used in this work. This work used only seven of these
features: ESD diameter, ESD volume, width, length, aspect
ratio, transparency, and CH1 peak.

We selected the best of these features using the approach
proposed by Peng et al. [16]; the method is an optimal first-
order approximation of the mutual information criteria. The
selected features are in accordance with FlowCAM software
manual [11], which defines these seven features as good fea-
tures in general cases. Four experts analyzed and classified
these datasets in order to generate a ground truth to validate
the proposed approach. Fig. 1 shows the FlowCAM interface.

The first step of this proposed method is the development
of a semi-supervised algorithm to classify the microalgae. IN
this step, the algorithm receives as input just a small sample
of ranked data, wherein at least one instance of each class
needs to be provided. This allow that the algorithm is able
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Fig. 1 FlowCAM interface [11]—The interface is divided into two
windows. In the left, the Visual Spreadsheet is shown, where tables,
graphics and histograms illustrate some statistics about the dataset.
On the right, the View Sample window shows the microalgae images.
The classification mechanism provided by FlowCAM is too simple and
restricted to selecting limit values to features
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Fig. 2 Proposed approach

to identify and cluster microalgae with similar characteris-
tics, creating a model of the microalgae class. This model
allows new instances, non-ranked, to be observed and classi-
fied through their characteristics, updating the model simul-
taneously.

When the semi-supervised algorithm finishes, the active
algorithm analyzes the instances that were not ranked and
searches among them for the one that provides the largest
information gain for the model. In order to identify which
instance this is, three methods were used: least confident sam-
pling, margin sampling and entropy-based sampling. Then,
the chosen instance is presented to the user, who will indi-
cate the class to which it belongs. This class is incorporated
into the model, which is then updated and tries to classify the
other non-ranked instances. This process is repeated as long
as the user finds it to be favorable or until the information
gain is too small. Figure 2 illustrates the described process.
In the following sections, we describe the semi-supervised
and active learning algorithms.

3.1 Semi-supervised learning

Due to the nature of the data used on this work, where the
instances have similar characteristics when they belong to
the same class, it is costly to rank a large set of instances.
Thus, it favors an approach that uses clustering to classify
microalgae. Furthermore, as the number of classes, species
of microalgae on a sample are known and small,' and the

! This size is dependent of the environment. Typically, we have around
ten different classes.

classes are relatively well separated, the use of the Gaussian
mixture model (GMM) with expectation-maximization(EM)
becomes a natural choice [7].

3.1.1 Gaussian Mixture Models

The Gaussian mixture model (GMM) is a probability den-
sity function (PDF) given by a linear combination of a
Gaussian PDF. More specifically, the function is a mixture
of a Gaussian PDF if it has the following form:

K
p(x|K,6) =D m N (x|, Zp), ()

k=1

where K is the number of the Gaussian PDF and 7y is the
weight of each one in the mixture. This weight can be inter-
preted as the a priori probability that the random variable
value was generated by the Gaussian k.

Considering, 0 < 7 < 1 and 3K, m = 1, the GMM
can be defined by the parameter list 6, which represents the
parameters from each Gaussian and their respective weights,
ie.,0 ={m, u1, X1,..., 7K, UK, Xk}, where y and X are
the mean and the covariance matrix, respectively.

The problem with estimating the Gaussian mixtures lies in
determining 6, given that only K and the data are known and
the other parameters are unknown (7 and 6y = (ug, X))-

Considering ¥ = {y1, ..., yu,..., yn} with y,, € RM,
the independent sample set, where M is the size of the data
sample space and N is the number of samples. In this work,
vy represents the dataset instances, the microalgae. It is pos-
sible to estimate the probability p(y,|K, 6) directly for each
K. However, a logarithmic function of the probability is nor-
mally used for ease of handling numbers. Thus, we have:

6 = argmax log p(y|K, 6). 2)
6,K

Solving the Eq. 2 is not an easy task [8,10]. The number
of variables to be estimated can grow exponentially with the
size of K and 0, thus making the computation very costly.
We used the EM algorithm to solve this problem.

3.1.2 EM algorithm

The EM algorithm is used to determine the class of each data
[7]. The algorithm aims to solve problems in which we do
not know all the information needed for the solution.

The algorithm is composed of two steps:

E-step: On this step, the missing data are estimated using
the observed data and the actual status of the model para-
meters.

M-step: The maximum likelihood function is maximized,
considering that the missing data are known.
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The EM algorithm seeks to classify the y, data on classes,
or Gaussian, and, later, to re-estimate each class value. Using
Bayes’ rule the probability that a point y, belongs to class k is
computed. Considering ) to be the 6 value on the iterative
step ¢ of the algorithm and known in this step, the probability
of E-step is given by:

(@)
p(Klyn, G(i)) _ ;{Tk J\/(anGk )(i) ' 3)
zlzl T -N(yn|91 )

Calculating these probabilities makes it possible to esti-
mate 6 and 7. These equations below show how each value
is estimated in the maximization step (M-step). First, one
normalizing parameter N is estimated by the posterior esti-
mation of new values for 7y, 11y, E_k From this, the update
equations from step M can be defined:

Ny = Zp(km, 09, “)
n=1
N
Te= ®)
1 N
Ty = 7, - Z Y klyn, 69, 6)

N
Z — ) - On =) pklyn, 6. ()

The algorithm initialization is critical for a good perfor-
mance, i.e., the ©. In this work, the initialization is done
based on the ranked data available, generating a initial model
using random initialization. Thereafter, using non-ranked
data information, this model is updated. This approach has
the major advantage of ensuring that data labeled as distinct
classes remain this way.

The approach of Zhu and Goldberg [22] was used to esti-
mate the GMM model from ranked and non-ranked data. The
ranked data are computed distinctly in the E-step. This way,
the ranked data have their probability set to 100 % for their
class and 0 % to the other classes.

3.2 Active learning

After executing the semi-supervised learning algorithm, it
is possible to divide the dataset into two groups: ranked
instances and non-ranked instances. Considering X =
{x1,...,xn, ..., xn}asthe set of non-ranked instances and k
the possible classes, the active algorithm must find an x; € X
that maximizes the amount information added to the system
when it is classified as k;.

In order to define which instance x; is going to be pre-
sented to the user, three metrics were used to calculate
the information contained therein. The three metrics, based
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on the work of Settles [18] and Friedman et al. [12], are
described below:

1. Least-confident sampling: involves choosing the instance
with the least probability of belonging to the class with
the most probability. The instance x to be chosen is the
one that:

x = argmin p(z; = k|x;) ®
i

where k = argmax; p(z; = k|x;) is the class with most
probability.

2. Margin sampling: involves choosing the instance with the
least margin between the class with most probability and
the one with the secondmost probability. The instance x
to be chosen is the one that:

x = argmin [p(z; = ki|x;) — p(zi = kalx;)] ©)
1
where 121 and 122 are the most likely classes.
3. Entropy-based sampling: involves choosing the instance
with the most entropy of the classes’ probabilities. The
instance x to be chosen is the one that:

x = argmax — »_ p(zi =klx;)log p(zi =klx;) (10)
1
k

After defining which instance is the most informative, the
user must inform the system its rank. This classification is
used by the EM algorithm in order to find the best model for
the data, ranked or non-ranked, with this new information.
Such model is initialized with the best representation until
the present moment.

4 Experimental results

The results were obtained using two different datasets
acquired using the FlowCAM equipment. The Oceano-
graphic Institute of FURG collected the data during an
oceanographic expedition on the Atlantic Ocean in different
place and depth. In order to validate the results, four different
experts classified these datasets. Doubtful data were elimi-
nated, typically they were small microalgae, around 1 pwm, or
really big microalgae, which were problems on the acquisi-
tion by the FlowCAM or were microalgae colonies. Figure 3
illustrates some excluded data during the process.

The first dataset was classified on four different classes:
flagellates (Fig. 4a), mesopores (Fig. 4d), pennate diatoms
(Fig. 4c) and others (Fig. 4b). An important characteristic,
usually found in this kind of data, is the unbalance of classes.
The flagellates and the others classes represent more than
90 % of the data. Furthermore, as shown at Fig. 4a or b, these
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Fig. 3 Some examples of microalgae acquired by FlowCAM that were
excluded due to acquisition problems or the presence of microalgae
colonies. The presence of colonies is due to a failure in the segmentation
process of FlowCAM. These fail are common due to the acquisition
process of the FlowCAM device

are reduced size data with few characteristics, which makes
the classification problem difficult to solve.

The second dataset was classified on four different classes:
pennate diatoms (Fig. 5a), flagellates (Fig. 5b), gymnodinium
(Fig. 5¢) and prorocentrales (Fig. 5d), respectively. Both
datasets have two similar species of microalgae and two
different ones. This is due to different place and, mainly,
depth where the samples were acquired. The characteristics
of the data are similar, both datasets are unbalanced and with
reduced size data.

In order to validate the proposed approach, we used
some evaluation metrics. As there are multiple classes, the

| BoRN-BoN-N B |
BN ROoNoNONCNS

NNl

metrics need to deal with this kind of information. It was
used the F-score metric [17], defined by the Eq. 11, which is
the harmonic mean between the recall () and the precision
(p), defined by Eq. 12.

_
B%p) +r’

where $ is a constant factor. At the present work, 8 was equal
to 1, obtaining the F1-score metric.

Fp=(+§) (11)

T pi T pi

= =, =7, 12
Tpr + Fpx Tpx + Fny (12)

where, T py is the number of correctly classified microalgae
for class k; Fpy is the number of false positives, the number
of microalgae that were wrongly classified as class k; Fny is
the number of false negatives, the number of microalgae that
are from class k, but were defined to another class; k is the
microalgae class. These metrics are defined for each class.
The F1-score values are defined on the interval (0, 1), and
if they are near one they represent a better classification, while
small values, near zero, represent a low classification quality.
However, to evaluate the performance for all classes was used
the micro-average and macro-average metrics [20]. These
metrics evaluate the average performance of the classifier,
based on precision and recall metrics. The macro-average
metric gives an average where every class is treated with same
importance, while the micro-average metric gives an average
where the microalgae are treated with the same importance.
It is important to evaluate these two metrics due the
fact that the micro-average is more influenced by the clas-
sifier performance on classes with large samples, while
the macro-average is more influenced by classes with less

Fig. 4 Examples of the four classes of microalgae acquired by Flow-
CAM on the first dataset. This dataset were classified on four different
classes: a flagellates, ¢ pennate diatoms, d mesopores, and b others.

This figure shows some important characteristics of this data as the
unbalance and the reduced information about each microalgae
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Fig. 5 Examples of the four classes of microalgae acquired by Flow-
CAM on the second dataset. This dataset were classified on four dif-
ferent classes: a pennate diatoms, b flagellates, ¢ gymnodinium and

samples. Thus, using both metrics, the F1-score was evalu-
ated. It is called maxF1 when obtained using macro-average
and minF1 when obtained using micro-average. In the case of
multiple classes, the minF1 has the same value as the metric
known as accuracy (Ac), which is defined by Eq. 13. Thus,
this work uses these two metrics: accuracy, or minF1, and
maxF1.

_ Zk T pi
N

where N is the total number of samples on the data base and
>, is the sum for all classes.

Some results were obtained in order to validate the
approach using these two datasets completely classified. The
first dataset is composed by 1,526 microalgae divided into
four classes, as previously described, each one with 1,003
(Flagellates), 500 (others), 14 (pennate diatoms) and 9 sam-
ples (mesopores). The second dataset is composed by 923.
It is also divided in four classes, as previously described,
each one with 112 (Pennate Diatoms), 669 (Flagellates), 65
(gymnodinium) and 77 samples (prorocentrales).

From these datasets, smaller classified bases were ran-
domly generated, with approximately 1, 3, 5, 10, 20 and
50 % of the original dataset, where each class should have
at least one sample. In order to obtain quantitative results,
for each percentage were generated ten different instances.
Forty-eight samples were actively selected and classified.

Ac , (13)

4.1 Evaluation of the active learning
Firstly, the active learning capabilities were evaluated using

three different metrics: Least Confidence Sampling, Mar-
gin Sampling e Entropy, when compared with a random
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d prorocentrales. As in the previous figure, it shows some important
characteristics of this data as the unbalance and the reduced informa-
tion about each microalgae

selection. The results obtained in the first dataset is shown
in Fig. 6. It shows the results for 1, 10 and 50 % of ini-
tial supervision using both evaluation metrics: Accuracy and
maxF1.

Figure 6a and b show the results for 1 % of initial semi-
supervision, in which the random selection presents a small
accuracy and maxF1 raises with the addition of new sam-
ples. On the other hand, the other metrics had a significant
improvement, especially on accuracy, which means a better
classification independently of the classes.

On Fig. 6¢ and d, the results for 10 % of initial supervi-
sion are shown. It can be noted that the accuracy starts at
a higher value than 1 % of semi-supervision and increases
smoother for all metrics and the random selection. For the
results obtained with 50 %, the variance is even smaller, as
shown in Fig. 6e and f. Moreover, in this case, the active
learning presents a small improvement for accuracy and
maxFl1.

The random selection can be seen as a semi-supervised
addition of samples, thus, it can be noted that the active learn-
ing represents a significant gain, especially when there is little
initial information.

Considering the second dataset, the results are similar to
the ones obtained with the first dataset. One important differ-
ence between the datasets is the mean of accuracy and maxF1.
The second dataset has different classes of microalgae, and
the intraclass variability is larger than the first dataset. Thus,
it is hardier to classify.

Figure 7 shows the results for 1, 3 and 5 % of initial super-
vision. It is interesting to see in Fig. 7a and b that the random
selection of samples to classify in the active learning presents
better results than the statistical techniques. This improve-
ment happens after five samples and remains until the end of
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Fig. 6 Comparative of active learning metrics against a random selec-
tion using the first dataset, with results showing mean and standard
deviation for the datasets with ten different bases. The vertical axis
represents the accuracy and the horizontal axis represents the num-
ber of active samples informed to the system. a Accuracy for 1 % of
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initial semi-supervision, b MaxF1 for 1 % of initial semi-supervision, ¢
accuracy for 10 % of initial semi-supervision, d MaxF1 for 10 % of ini-
tial semi-supervision, e accuracy for 50 % of initial semi-supervision,
f MaxF1 for 50 % of initial semi-supervision (color figure online)
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Fig. 7 Comparison of active learning metrics against a random selec-
tion using the second dataset, with results showing the average and
standard deviation for the datasets with ten different instances. The ver-
tical axis represents the accuracy and the horizontal axis represents the
number of active samples informed to the system. a Accuracy for 1 % of
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the active learning. The main reason for these results is due
the large intraclass variance in this dataset. Thus, the sys-
tem is not able to classify with a small number of supervised
samples. In this case, the statistical selection falls into “local
minima”. In this case, the random selection chooses samples
that improve the results, while the statistical methods choose
samples that obtain a small improvement in relation to the
random one.

In Fig. 7c and d, the results obtained by all selection meth-
ods are similar, with the maxF1 metrics of the random selec-
tion being worse than the others are. Considering 5 % of
initial supervision the statistical methods are better than ran-
dom selection, as shown in Fig. 7e and f. This results remain
to the 10, 20 and 50 %. The entropy based sampling obtains
a small advantage to the other metrics in all cases.

Figure 8 shows the results for accuracy of each of the
ten generated bases from both datasets, considering a semi-
supervision of 1, 3 and 10 %. The vertical axis represents the
accuracy and the horizontal axis represents the number of
active samples informed to the system. The accuracy results
for the semi-supervised learning can be seen at number zero
of the horizontal axis. As expected, the results shows that with
a small semi-supervision, the accuracy is ruled by the chosen
samples, and as the number of active samples increases, the
variance decreases. The first two columns in this figure show
the results using entropy for both datasets, and the last column
using random selection for the second dataset.

On Fig. 8aandb, itis possible to see the difference in accu-
racy obtained by the proposed methodology for both dataset
using 1 % of supervision. The second dataset is hardier to
classify, thus the results show bases with approximately 65 %
in accuracy. In these two figures is possible to see an inter-
esting characteristics of 1 % supervision, some samples are
capable to improve the accuracy in more than 5 %, as the
base in black in Fig. 8a and in blue in Fig. 8b.

This phenomenon also happens, in Fig. 8c, in a large scale,
where the random selection is used. It mainly occurs in bases
where the initial accuracy is smaller. Thus, this base is com-
posed by unrepresentative instances. Therefore, a represen-
tative sample can improved the capability of the system to
classify correctly the unclassified data. It explains the results
obtained in the Fig. 7a and b.

Figure 8d and e show the results for each base, consider-
ing 3 % of supervision. In this case, the first dataset shows
a better accuracy value than the second dataset. The char-
acteristics of the results are similar, with almost all bases
with a small increasing in the accuracy with the active learn-
ing. Moreover, both results presents a base with small initial
accuracy. This base, as previously explained, is sensible to
random selection that generated some steps in the accuracy,
as shown in Fig. 8f. The other bases are less sensible to the
random selection, where the increasing in the accuracy is
almost zero for the random selection, by the other side; the

entropy based sampling is able to select good samples that
increases the accuracy.

On Fig. 8d, there are two extreme cases. The first one, on
cyan, 92 % of accuracy is obtained with a small supervision,
while, on the second one, on red, only 86 % of accuracy is
obtained. It can be noted that all instances had an improve-
ment when new samples are actively selected. This is clearer
on the red instance that goes from 86 % to almost 90 %. This
fact also occurs in both datasets.

The results obtained using 10 % of supervision with
entropy selection is shown in Fig. 8g and h. As seen in
the previous results, the first dataset present a better accu-
racy than second dataset. The new actively selected samples
improve in a small way the classification. This is due to a
small capacity of generalization for this big group of sam-
ples, which means that new samples adds little information.
It is also possible to see in Fig. 8i, the random selection
presents a very small improvement in the accuracy. In this
case, there are only a small number of informative samples
to be selected, and the random method has a small chance of
selecting them. Although these facts, the entropy- based sam-
pling select informative samples. Itis shown by the increasing
in the accuracy of almost all bases, in Fig. 8g and h.

In order to evaluate whether the obtained performance was
adequate, the results were compared with the support vector
machine (SVM) [3] algorithm. This algorithm is considered
the state-of-art on supervised learning and classification. The
libSVM implementation [2] was used with a radial base ker-
nel function, which presented better results. All other para-
meters were kept to its default.

Figure 9 shows the results including the active learning as a
supervision addition. In black are shown the results obtained
using only semi-supervised learning. The results after using
the active learning are shown in red, which makes the super-
vision percentage to be raised. The blue line links the data
used on the initialization of the active learning after forty-
eight instances, in percentage.

Figure 9a and b shows semi-supervised learning, active
learning using entropy and SVM learning results to accu-
racy and MaxF1 metrics for the first dataset. It can be
noted that SVM has a small accuracy improvement with the
increase of supervision, although it has better results than
the semi-supervised algorithm alone. Only for 50 % of semi-
supervision the presented approach obtains a better accu-
racy, while the active learning has similar results to the ones
obtained by SVM.

On the other hand, the proposed approach presents supe-
rior results of maxF1. It is due to the unbalance between the
classes. The SVM had excellent classification for the flagel-
lates class, which has 1,003 samples, but did not have any
sample classified for mesopores class, which has only 9 sam-
ples. This has a reflect on the accuracy and maxF1 metrics,
as the accuracy metric only cares for the number of samples
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Fig. 8 Evaluation of the different instances of the semi-supervised
data. In order to obtain statistical results, we generated ten different
instances for each supervision percentage. The accuracy for all ten
instances is shown using the proposed method with entropy, in the first
two columns, and random selection, in the last column. The visual-
ization is improved using different colors. the vertical axis represents
the accuracy and the horizontal axis represents the number of active
samples informed to the system. It is important to call attention to the
vertical axis, where the intervals are different between the results from

that were correct classified, while the maxF1 cares for the
number of samples classified for each class. In addition, it
is interest of researchers to classify samples on all classes,
especially the ones with small number of microalgae.

It is possible to notice that the gain obtained by the active
learning is reduced as the semi-supervision increases. This
effect happens with both metrics, accuracy and maxF1.

For the second dataset, the results are similar, but there are
small differences, as shown in Fig. 9c and d. Due the large
intraclass variance, the SVM obtains a better accuracy only
until 5 % of supervision, after it, the semi-supervised algo-
rithm obtains a better results. The maxF1 metric shows the
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Number of Learned Instances

Number of Learned Instances

the first and the second datasets. a Results for 1 % of semi-supervision
in the first dataset. b Results for 1 % of semi-supervision in the second
dataset. ¢ Results for 1 % of semi-supervision in the second dataset.
d Results for 3 % of semi-supervision in the first dataset. e Results
for 3 % of semi-supervision in the second dataset. f Results for 3 %
of semi-supervision in the second dataset. g Results for 10 in the first
dataset. h Results for 10 % of semi-supervision in the second dataset. i
Results for 10 % of semi-supervision in the second dataset (color figure
online)

main problem of the SVM results. The method has difficult
to correct classify unbalanced datasets. But, it is a natural
characteristics in this kind of dataset.

The accuracy obtained in the second dataset is smaller
than the first one. However, the accuracy for bases with 50 %
of supervision in the second dataset is greater than the first
dataset, where after the active learning the accuracy is 95 %.
Differently of the first dataset, the maxF1 continues increas-
ing after active learning, even after 10 % of initial supervi-
sion, as shown Fig. 9d. It can be seen be the inclination of
the blue line at 50 % between semi-supervised learning and
the active learning.
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Fig. 9 Comparative of semi-supervised learning, in black color,
against active learning using entropy, in red color. Itis important that the
semi-supervised learning be used as initial step to the active learning.
Therefore, the semi-supervised results is s linked to the active learning
by a blue line. The results obtained using SVM method are trained from
the same supervised data used in semi-supervised approach, in green

5 Conclusion

This work proposed an approach for the classification of
microalgae using a combination of semi-supervised and
active learning algorithms. At the proposed approach, the
semi-supervised classification is done using Gaussian mix-
ture models together with the expectation-maximization
algorithm. This classification is improved by the use of an
active learning.

Two metrics, accuracy and maxF1, were used to validate
the proposed approach, which presented favorable results
for both metrics, achieving around 92 % of accuracy. The
approach was compared with a state of the art algorithm
of supervised learning, SVM, presenting similar results of
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color. The mean and standard deviation are estimated and illustrated in
the figure. Two different metrics are evaluated: accuracy and maxFI.
a Accuracy comparative in the first dataset. b MaxF1 comparative in the
first dataset. ¢ Accuracy comparative in the second dataset. d MaxF1
comparative in the second dataset (color figure online)

accuracy and much better results of MaxF1. In this work, we
presented three information evaluation metrics for the active
learning, which had similar results with a small advantage to
the entropy based sampling. The results show that the use of
active learning improves the accuracy and the maxF1 with
few samples.

The results obtained are relevant because, according to
Culverhouse et al. [6], the hit rate achieved by humans
remains between 67 and 83 %.

As a future direction, we intend to verify other methods
capable of dealing with a larger number of classes and data, in
order to generate a database of classified microalgae. Another
improvement is to develop an adaptive model that automati-
cally determines the number of classes. Finally, the features
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obtained by the FlowCAM are limited, and as shown in this
work, have problems concerning segmentation of microal-
gae. Thus, we will study image processing approaches to
improve the segmentation and increase the amount of rele-
vant features of the samples.
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