
J Braz Comput Soc (2013) 19:493–510
DOI 10.1007/s13173-013-0113-y

ORIGINAL PAPER

CogTRA: a deployable mechanism for cognitive transmission rate
adaptation in IEEE 802.11 networks

Luciano J. Chaves · Edmundo R. M. Madeira ·
Islene C. Garcia

Received: 20 May 2012 / Accepted: 27 May 2013 / Published online: 12 June 2013
© The Brazilian Computer Society 2013

Abstract Wireless local area networks have become vastly
popular, and IEEE 802.11 is the chosen standard for almost
all wireless devices. This standard specifies several modula-
tion and channel coding techniques that must be implemented
by all wireless interfaces to adapt to changes in wireless chan-
nels. As a result, these interfaces support multiple transmis-
sion data rates. However, this standard does not define how
to dynamically select the appropriate data rate; instead, man-
ufacturers can design and implement their own algorithms.
Although several solutions have been proposed in the litera-
ture, only a few are used in practice. Moreover, their perfor-
mance is still limited to specific conditions, such as highly
dynamic environments. To tackle these challenges, this paper
introduces CogTRA, which is a deployable mechanism built
upon an existing cognitive framework called CogProt. Due to
its self-adjustment functionality, CogTRA can work not only
in stable but also in dynamic environments. It was imple-
mented in the OpenWrt Linux distribution for embedded
devices and evaluated through experiments using real net-
work equipment. The results underline performance benefits
with respect to existing data rate adaptation algorithms, with
CogTRA exhibiting better performance especially in such
dynamic networks.

Keywords IEEE 802.11 networks · Rate adaptation ·
Self-configuration · Cognitive algorithms

L. J. Chaves (B) · E. R. M. Madeira · I. C. Garcia
Institute of Computing, University of Campinas (Unicamp),
Av. Albert Einstein, 1251, Campinas, SP 13083-852, Brazil
e-mail: lchaves@ic.unicamp.br

1 Introduction

Wireless local area networks have emerged as key build-
ing blocks in broadband Internet access networks, and IEEE
802.11 [1] is the chosen standard for almost all wireless
devices. Among the factors that have contributed to the suc-
cess of this standard, one key aspect has been the develop-
ment of sophisticated modulation and channel coding tech-
niques, which convert data streams into suitable form for
transmission over wireless channels. It is possible to achieve
higher data rates using techniques that efficiently take advan-
tage of good channel conditions. However, these techniques
are more sensitive to signal degradation and do not perform
well either for long-range transmissions or in environments
with high interference or noise. In these cases, it is appropri-
ate to use robust solutions, which lead to resilient connections
but reduce the data rate due to redundancy overhead.

To address unstable environments, a group of several
modulation and channel coding techniques were defined as
mandatory by this wireless standard. For instance, IEEE
802.11g supports up to 12 combinations of techniques to
achieve nominal data rates. However, the standard does not
specify how to select an appropriate data rate for current con-
ditions to optimize performance. This issue is known as the
transmission data rate adaptation problem.

Because the IEEE 802.11 standard offers no support for
choosing the transmission data rate, the general approach
used by existing rate adaptation mechanisms consists in
assessing link conditions first and then selecting the most
appropriate rate based on link quality estimation [3]. For
this, information must be gathered at the sender (and possi-
bly also at the receiver) to evaluate it in accordance with the
goals of the algorithm. The most common indicators include
throughput of probe frames sent at different rates, the number
of consecutive successes or failures in frame transmissions,

123

494 J Braz Comput Soc (2013) 19:493–510

the frame error rate (FER), and signal quality indicators like
signal-to-noise ratio (SNR).

The absence of a standard solution has motivated the
development of many rate adaptation algorithms, some of
which are used on off-the-shelf devices [4,20,25,36]. How-
ever, they still present limitations. Mechanisms based on sig-
nal quality indicators suffer from a lack of a strong correla-
tion between the indicator and the delivery probability at a
given data rate. In addition, data rate configuration is per-
formed at the sender. Meanwhile, the signal information is
available at the receiver, which leads to communication over-
head [12]. Moreover, the use of statistics like throughput of
probing frames or FER is affected by the difficulty of find-
ing proper thresholds for optimal rate selection. Addition-
ally, such mechanisms present long convergence time, which
leads to performance degradation in dynamic environments
[39].

An effective rate adaptation algorithm should be able to
dynamically find the proper data rate in both stable and
dynamic environments. In the former, the algorithm is espe-
cially useful at initial set-up, as it helps to identify which rate
should be used during network operation. In the latter, the
signal quality varies over time, and therefore, the algorithm
must suit the environment and dynamically adjust the data
rate to match current link conditions. Among existing solu-
tions, there is a cognitive mechanism called CORA [6], which
implements a cognitive self-configuration functionality to
adapt the data rate in accordance to the CogProt framework
[28]. However, CORA is not ready to be deployed in embed-
ded devices, and it only performs well in stable environments
with low channel fluctuations. Another important solution
is Minstrel [36], which is a high-performance mechanism
mainly used in devices with open-source systems. Minstrel
presents better results in dynamic environments, but its per-
formance is still poorly explored in the current literature.

To address some of the aforementioned issues, as well as
to increase the performance of previous solutions, this paper
introduces a cognitive transmission rate adaptation algo-
rithm (CogTRA). The first main contribution of this paper
is the development of a novel cognitive data rate adaptation
mechanism, which is built upon the CogProt framework but
enhanced with cutting-edge features specifically designed to
make CogTRA a deployable solution (this involves lower
computational resource usage and the self-adjustment of con-
figurable parameters to match both static and dynamic envi-
ronments). The second main contribution is the implemen-
tation of this mechanism into the OpenWrt Linux distribu-
tion for embedded devices equipped with Atheros wireless
chipsets [29]; and a comparison of the performance evalua-
tion of this algorithm with the results from the Minstrel and
other typical rate adaptation mechanisms.

Because CogTRA is a deployable mechanism, it can be
implemented in a straightforward way and put to use on

existing wireless embedded devices. It requires no changes
on previously established standards. Additionally, there are
advantages regarding computational resource usage. Cog-
TRA reduces frame loss by quickly reacting to changes in
channel conditions, and it achieves long-term stability when
there are no link quality fluctuations. In this regard, CogTRA
self-adjusts some of its configurable parameters to suit the
environment. Relatedly, Minstrel is one of the most important
existing algorithms, and its performance is significant com-
pared to other solutions. To the best of the authors knowledge,
[40,41] are the only works that evaluate Minstrel’s perfor-
mance in detail. Thus, this paper also compares CogTRA
and Minstrel, highlighting the benefits of both approaches.

The rest of this paper is organized as follows. Section 2
presents the rate adaptation problem. Section 3 summarizes
related work, including the CogProt framework and the cog-
nitive rate adaptation (CORA) algorithm. Section 4 details
the CogTRA mechanism, and it presents the set of improve-
ments offered by this novel solution. Each improvement is
discussed separately, and the complete algorithm is described
at the end. Section 5 provides a performance evaluation and
comparison of CogTRA using the typical transmission rate
adaptation mechanisms. Finally, Sect. 6 presents the conclu-
sion of this work.

2 The rate adaptation problem

The IEEE 802.11 standard specifies support for multiple
transmission data rates at the physical layer so that networks
can perform properly in environments with different levels
of interference and noise. Each data rate is derived from a
coding algorithm for error correction, a digital modulation
process, and a spread spectrum technique. Table 1 summa-
rizes the techniques used in 802.11abg networks.

Each data rate is calculated using some form of forward
error correction with a coding rate expressed by k/n, where
n coded bits are transmitted for every k bits of data. The
coded bits are translated into symbols through the digital
modulation process, and these symbols are transmitted over
the radio interface using a spread spectrum technique. Each
nominal data rate is found by multiplying the coding rate, bits
per symbol, and the number of symbols per second. However,
the nominal data rate cannot be achieved in practice due to
protocol overhead.

Higher data rates demand high-quality signals to perform
proper demodulation with a small bit error rate (BER). This
is a necessary condition for bit error correction when using
high coding rates. Because the signal quality is not always
good and because the distance between nodes can increase,
it may be necessary to use lower rates to maintain the con-
nection alive and, therefore, recover more bit errors success-
fully. These rates are considered to be robust because they are

123

J Braz Comput Soc (2013) 19:493–510 495

Table 1 A summary of the
IEEE 802.11 data rates [4] Rate

(Mbps)
IEEE 802.11
standards

Spread
spectrum

Digital
modulation

Coding
rate

Bits per
symbol

Symbols
per second

1 b/g DSSS-BK BPSK 1/11 1 11 × 106

2 b/g DSSS-BK QPSK 1/11 2 11 × 106

5.5 b/g DSSS-CCK QPSK 4/8 1 11 × 106

11 b/g DSSS-CCK QPSK 4/8 2 11 × 106

6 a/g OFDM BPSK 1/2 1 12 × 106

9 a/g OFDM BPSK 3/4 1 12 × 106

12 a/g OFDM QPSK 1/2 2 12 × 106

18 a/g OFDM QPSK 3/4 2 12 × 106

24 a/g OFDM QAM-16 1/2 4 12 × 106

36 a/g OFDM QAM-16 3/4 4 12 × 106

48 a/g OFDM QAM-64 2/3 6 12 × 106

54 a/g OFDM QAM-64 3/4 6 12 × 106

immune to small variations in channel conditions. Because
of that, it is possible to increase the coverage area and per-
form well not only for long-range transmission but also in
environments with high levels of interference [14].

Appropriate rate selection is essential for optimal network
utilization [15,18,22]. According to [18], for a given link
condition, there exists a rate that maximizes performance
(usually in terms of throughput). If a higher rate is used,
then the throughput may be reduced due to retransmissions,
as BER generally increases along with the rate for a con-
stant SNR. This is only a general trend that has exceptions:
the 9 Mbps data rate has a higher BER than 12 Mbps in
almost every case, as noted by [14,25]. However, the use of
a lower rate limits the performance because transmissions
will require more time to complete. Thus, an effective rate
adaptation algorithm should be able to dynamically find the
optimal data rate by itself in both stable and dynamic envi-
ronments. In the former, the algorithm can be useful at initial
set-up, identifying which rate should be used during network
operations. In the latter, where the signal quality varies over
time, the algorithm must dynamically adjust the data rate
to match current link conditions. In this case, the goal is to
boost performance when possible and to always sustain the
connection between network nodes alive when link quality
decreases.

A relevant problem that arises when using multiple data
rates is the performance anomaly effect, which was first
investigated in [13]. This problem occurs because the carrier
sense multiple access with collision avoidance (CSMA/CA)
protocol, which is used at medium access control (MAC)
layer, only guarantees that the long-term channel access prob-
ability is equal for all nodes. However, it does not restrict the
amount of time during which a node can reserve the channel.
Because of that, when a node using a lower data rate captures

the channel, it takes too long to release it, thereby penalizing
all other nodes that use a higher rate during smaller peri-
ods of time. According to [13], if there is a node using a
lower rate, than the throughput of other nodes transmitting
at higher rates can be degraded roughly to level of this lower
rate in specific conditions, such as in highly congested envi-
ronments. This anomaly should be considered in the design
of rate adaptation algorithms to avoid transmission at lower
data rates when it is not necessary [27].

3 Related work

A fundamental problem in wireless networks is to design
communication protocols capable of achieving high through-
put in the face of noise, interference, and fading, all of which
vary with time. An ideal promising solution to this prob-
lem is the implementation of rateless wireless systems [10].
In a rateless network, the sender encodes data without any
explicit estimation or adaptation, implicitly adapting to the
vagaries introduced by noise, interference, or fading. The
receiver processes the symbols as it arrives, decoding it,
until the message is received successfully. In this case, the
network can perform well without incurring the complexi-
ties and challenges of implementing multiple fixed data rate
together with a rate adaptation algorithm to select between
them. Existing rateless coding schemes, such as Strider [11]
and spinal codes [31], allow near Shannon capacity [35], and
improved communication performance when compared to
state of the art rate adaptation mechanisms.

However, these rateless solutions cannot be implemented
in existing off-the-shelf hardware or without modifications
in the 802.11 standard. For this reason, there are still efforts
in the design and implementation of more efficient rate

123

496 J Braz Comput Soc (2013) 19:493–510

adaptation algorithms to proper handle multiple data rates.
In Sect. 3.1, we highlight some of the most relevant solu-
tions to the rate adaptation problem. Specifically, because
our proposed cognitive mechanism CogTRA was built based
upon the CogProt framework, Sect. 3.2 presents CogProt, and
Sect. 3.3 details CORA, which is the plain CogProt imple-
mentation for the rate adaptation problem.

3.1 Existing rate adaptation algorithms

The rate adaptation process involves two steps: first, assess
wireless link conditions, and then select the most appropriate
rate based on quality information. Existing algorithms can be
classified according to the approach used to assess link con-
ditions [2,3], including (1) history-based algorithms, which
use information from previous transmissions to infer future
conditions; (2) signal-strength-based algorithms, which rely
on signal quality measurements as link indicators; and (3)
hybrid algorithms, which combine the first two categories.
The major rate adaptation solutions are presented as follows.

One of the early history-based solutions was the auto rate
fallback (ARF) algorithm [20]. ARF defines fixed thresh-
olds to increase or decrease the data rate according to the
number of successes or failures on consecutive transmission
attempts, respectively. It is a simple solution that attempts to
use the highest effective data rate at each moment. However,
it suffers from instability, as it tries to increase the rate even
when it reaches the optimal one. Adaptive auto rate fallback
(AARF) [25] was proposed as an improvement over ARF. It
uses a binary exponential back off mechanism to dynamically
adjust increase and decrease thresholds to mitigate instabili-
ties resulting from unnecessary changes on the data rate.

The authors of AARF also proposed the adaptive multi-
rate retry (AMRR) algorithm [25]. AMRR is based on the
same ideas as AARF, although it is designed to work in high
latency systems like those using Atheros chipsets. AMRR
uses a set of four pairs of rate and transmission counts (r0/c0,
r1/c1, r2/c2, r3/c3) per frame. Originally the frame is trans-
mitted with the rate r0. If this transmission fails (as deter-
mined by the absence of an ACK response), the hardware
makes c0−1 attempts to retransmit the frame. If the transmis-
sion is still unsuccessful, AMRR makes c1 attempts with the
rate r1; then c2 attempts with rate r2; and, finally, c3 attempts
with rate r3. When the transmission fails c0 + c1 + c2 + c3

times, the frame is discarded. In AMRR, the first rate r0 is
selected using the AARF algorithm’s principle. Then, rates
r1 and r2 are set to the next lower available rates, follow-
ing a decreasing order. Finally, rate r3 is always set to the
lowest available rate. Counters c0 to c3 are always set to
1. This approach is called multi-rate retry (MRR) and is used
to handle short-term channel variations. In fact, MRR can
almost serve as patch to the limitation imposed by the imple-
mentation of the rate adaptation as part of the wireless inter-

face driver. Due to the fairly short timing issue facing frame
retransmissions at the MAC layer, the rate adaptation mech-
anisms implemented in the driver are not able to react in a
per frame basis. So, MRR is a workaround for this problem.

All theses solutions provide acceptable performance on
scenarios with a minimum number of clients and access
points (APs). However, while they adapt the data rate based
on frame acknowledgment, they are unable to identify the
cause of frame loss. Because of that, in an environment with
APs and clients transmitting on the same channel, there is a
high probability of experiencing a collision if two simulta-
neously transmitted frames interfere at the receiver. To avoid
this, the IEEE 802.11 CSMA/CA employs the carrier sense,
a random back off, and the RTS/CTS mechanisms. Never-
theless, in hidden-terminal or congested environments, col-
lisions will occur anyway. This increase in collision-based
packet errors leads the ARF, AARF, and AMRR algorithms
to unnecessarily decrease the rate as observed in [33].

To overcome these difficulties, the collision-aware rate
adaptation (CARA) algorithm [21] was developed. It is sim-
ilar to ARF, but it uses the RTS/CTS mechanism to identify
the cause of frame loss. When the collision is the cause,
the algorithm can prevent unnecessary rate decreases. This
approach reduces misleading link quality information due to
collisions, but it introduces overhead and can lead to instabil-
ity by alternating between using or not using the RTS/CTS
control frames.

Another history-based solution is the SampleRate algo-
rithm [4]. It periodically sends single frames at rates other
than the current one to estimate the expected transmission
time per frame at that rate. Then, it adjusts the rate to the
best-known one. The limitations include the small number of
probing packets, which can be misleading and trigger incor-
rect rate changes.

Using a similar principle, there is the Minstrel [36] algo-
rithm, which aims to increase the throughput based on larger
sample performance measurements. As with AMRR, Min-
strel uses MRR with four rate-count pairs. The rate order is
based on the measured throughput and probability of success
for each rate. These metrics are recalculated every 100 ms,
and Minstrel uses 10 % of frames to randomly try other
rates to collect statistics. Therefore, frames can be transmit-
ted during normal or “look around” phases. Table 2 details

Table 2 Minstrel multi-rate retry chain table

Rate Normal Look around

Random < best Random > best

r0 Best tp. Best tp. Random rate

r1 2nd best tp. Random rate Best tp.

r2 Best prob. Best prob. Best prob.

r3 Lowest rate Lowest rate Lowest rate

123

J Braz Comput Soc (2013) 19:493–510 497

the Minstrel MRR table. If a frame is to be transmitted in
the normal phase (as with 90 % of frames), then the MRR
retry chain table r0 is the best throughput; r1 is the next best
throughput; r2 is the best probability; and r3 is the lowest
data rate. During the “look around” phase (as with 10 %
of frames), if the randomly selected rate is slower than the
current rate with the best throughput (random < best col-
umn), then it is placed second in the chain; otherwise, it
is placed first. Thus, slower random rates are only sampled
during this “look around” phase when the first frame trans-
mission attempts fail. Consequently, if the link is ideal, all
frames will be sent at the best rate. The retry counters (c0 to
c3) are adjusted to ensure the packet is sent or dropped in at
most 26 ms, to avoid delaying the next data packet due to a
TCP congestion control mechanism.

All history-based algorithms presented so far rely on
prior statistical information to adapt the rate. When using
a throughput-driven history-based algorithm (like SampleR-
ate and Minstrel), it is expected that the collision probability
remains independent of the rate choice and that the colli-
sions should cancel each other out when comparing differ-
ent rates. Based on this assumption, these algorithms should
be resilient to congestion. However, in extremely congested
environments, theses solutions are also affected by through-
put degradation, as with other previous approaches [33].

Using a different approach, the receiver-based auto rate
(RBAR) algorithm [14] is a signal-strength-based solution
that gets feedback on link quality from the receiver node to
determine the optimal rate at the sender. This algorithm uses
RTS/CTS control frames to piggyback this information. This
solution is not affected by collisions and can perform well
even in highly unstable environments. However, measuring
the SNR and mapping it onto a specific rate is a complex task
[2,4]. In addition, this solution requires changes in frame for-
mats and introduces the RTS/CTS overhead, which is gener-
ally not used in practice.

Channel-aware rate adaptation (CHARM) [19] is a signal-
strength-based mechanism that leverages link symmetry to
obtain signal information at the transmitter without incurring
RTS/CTS overhead. It also uses the SNR collected by wire-
less cards to help rate selection. However, link asymmetry
and high fluctuation are two salient characteristics of wire-
less channels, especially in mobile environments. Based on
that, a more recently developed mechanism is the rate adap-
tation in mobile environments (RAM) [9]. RAM allows the
receiver to convey the feedback link information to the trans-
mitter via ACK transmission rate variation. It requires some
small changes for the protocol implementation, but RAM
adopts a scheme to guarantee interoperability with legacy
IEEE 802.11 devices.

The hybrid rate control algorithm [12] combines these
techniques to reduce network delay and jitter. It uses history-
based information on probe frames as the basis for operation.

Moreover, it also uses the signal indicator SNR from ACK
frames to infer the signal quality at the receiver, eliminating
rates that definitely cannot improve performance and allow-
ing quick adaptation in unstable environments.

Concerning vehicular networks, there is the context-aware
rate selection (CARS) [34]. Vehicular networks face key
challenges such as the rapid variations in link quality caused
by mobility at vehicular speeds and sparse bursty transmis-
sions, which forces the rate adaptation scheme to estimate
link quality with few or no transmitted frames. CARS uses
context information (e.g., vehicle speed and distance from
neighbor) to systematically address these challenges while
maximizing the link throughput using MRR capability dur-
ing frame transmissions.

To overcome some issues associated with the afore-
mentioned solutions, the cognitive rate adaptation (CORA)
algorithm was developed [6]. It implements the cognitive
approach proposed by the CogProt framework to perform
rate adaptation. CogProt and CORA will be reviewed in the
following subsections.

3.2 The CogProt framework

The CogProt cognitive framework [7,23,28] considers the
principle of cognitive networks. This is a promising paradigm
to address performance degradation resulting from changes
in network conditions. It relies on cognitive algorithms to
provide a dynamic reconfiguration of protocol parameters,
through learning and reasoning, to optimize system-wide per-
formance [37].

The proposed framework introduces the cognitive network
node architecture presented in Fig. 1. It considers a cogni-
tive plane in parallel to the protocol layers. This plane is
capable of monitoring protocol parameters as well as con-
trolling them by issuing configuration commands. The cog-
nitive self-configuration process involves a quality feedback
loop assisted by a knowledge base and remote cognitive

Fig. 1 Cognitive network node

123

498 J Braz Comput Soc (2013) 19:493–510

information (i.e., from neighbor nodes and from a central-
ized CIS server).

Such quality feedback loop consists of three conceptual
phases: data analysis, decision-making, and action. Consider
the adjustment of a parameter of interest P within its oper-
ational range Pi ∈ [Pmin, Pmax]. Performance information
is analyzed at the end of each iteration interval τ , according
to a predefined quality metric associated with the parameter
being adjusted. In the data analysis phase, the mechanism
updates the knowledge base with average performance for
the current value of P . In the decision-making phase, the
mechanism analyzes both the knowledge base and the cog-
nitive remote information to find the value of P that provides
the best performance. The corresponding value is assigned to
the mean of the normal distribution employed for the selec-
tion of the next value of P . In the action phase, a new random
value is randomly generated according to the previous con-
figured normal distribution and assigned to parameter P .

This loop continuously adjusts the mean of the normal dis-
tribution to the value of P that provides the best performance
under current network conditions. Thus, the mean converges
to the optimal value for P . As a result, that optimal value is
chosen with a higher frequency because it is the mean of the
normal distribution. Meanwhile, the mechanism will choose
values nearby the mean, which allow it to react to changes
on the network state [23].

3.3 The cognitive rate adaptation algorithm

The CORA rate adaptation algorithm was built upon the Cog-
Prot framework. CORA aims at maximizing the throughput
(T) at the MAC level by periodically reconfiguring the data
rate (R) based on past experience. To this end, CORA imple-
ments the CogProt’s quality feedback loop as illustrated in
Fig. 2. This loop follows a slightly different phase division
known as Observe, Orient, Decide, and Act, as proposed in
[5]. Each phase of this self-optimization process is explained
below.

Observe Performance information on each data rate Ri ∈
[Rmin, Rmax] is stored in a local knowledge base (KB).
Let Rc be the current transmission data rate. In this first
phase, the mechanism monitors the system performance
measuring the throughput Tc obtained from the use of
the current data rate Rc during the last time interval.
Then, this information is averaged with an exponentially
weighted moving average (EWMA) as follows:

KBc = (1 − α) ∗ KBc + (α) ∗ Tc (1)

where KBc is the stored performance information for the
rate Rc, and α is the weight assigned to the currently

Fig. 2 Quality feedback loop implemented by CORA

measured performance Tc. In other words, the measured
throughput for the current rate is used to calculate and
update the average performance.
Orient During this phase, the mechanism identifies the
rate with the best performance. It looks up the knowl-
edge base for the data rate Rb that provides the highest
throughput. The index b of the corresponding data rate is
assigned to the mean μ of a normal distributionN (μ, σ 2)

that will be used in subsequent calculations.
Decide In this phase, the algorithm decides which rate
Rr will be used during the next cycle iteration. This rate
is selected from a random r ∈ [min, max], generated
according to the normal distribution previously config-
ured. Later, this r is approximated to the integer index
r = �r + 0.5�.
Act Finally, the mechanism assigns the random rate Rr
to the MAC layer, which completes the loop. All of the
following frame transmissions up to the next quality feed-
back loop iteration will use this Rr rate.

This quality feedback loop is independently performed
by each network node at the end of a sample interval τ =
100 ms. It continuously adjusts the mean of the normal dis-
tribution to the index b of the rate Rb that provides the best
throughput according to the knowledge information base. As
a result, the mean of the normal distribution converges to the
optimal value. Consequently, most of the randomly chosen
values for Rr are optimal under current network conditions.
Meanwhile, the cognitive process explores alternative rates
“around” the best rate Rb to track eventual changes in the
wireless environment. CORA algorithm does not make use
of any remote cognitive information; this means it returns a

123

J Braz Comput Soc (2013) 19:493–510 499

decentralized solution that relies only on information avail-
able at the network element itself.

Preliminary simulation results have demonstrated that
CORA outperforms two classical rate adaptation algorithms
(namely, ARF and RBAR), and it gets close to the best theo-
retically achievable performance in ad hoc scenarios with a
single pair of nodes [6]. In an attempt to confirm these simu-
lation results, the CORA mechanism was implemented into
the OpenWrt Linux distribution and evaluated through exper-
iments conducted on real network equipment. However, this
validation revealed some shortcomings of the mechanism,
including high computational usage due to unnecessary qual-
ity feedback loop iterations, frame loss due to poor rate selec-
tion, slow convergence to the appropriate transmission data
rate, and reduced performance in stable environments (where
the signal quality remains approximately constant over time
but does not allow for the use of the highest available data
rate).

To address aforementioned problems and increase the cog-
nitive solution’s performance, this paper introduces Cog-
TRA, which is a deployable Cognitive Transmission Rate
Adaptation mechanism. CogTRA was designed upon this
same CogProt framework, but it is enhanced with novel fea-
tures that were specifically designed to overcome some previ-
ous issues, making this a deployable mechanism that can be
used in embedded network equipment. The following sec-
tion introduces the CogTRA mechanism and discusses its
characteristics in detail.

4 Proposed mechanism

CogTRA is a cognitive mechanism built upon the same
foundation as CORA: the CogProt framework. However,
to make it a high-performance deployable solution for real
network equipment, it was necessary to incorporate some
improvements. Before presenting the CogTRA solution,
Sects. 4.1–4.4 discuss some problems that are addressed by
this mechanism (specially those related to the algorithm’s
deployment) as well as the improvements that the CogTRA
mechanism offers. Finally, Sect. 4.5 presents the entire algo-
rithm, describing in detail all phases of the CogProt’s quality
feedback loop implementation.

4.1 Reducing computational overhead

To design a rate adaptation mechanism that can be imple-
mented and used in embedded systems, such as home wire-
less network equipment, the algorithm should demand low
computational resources. So, instead of a time-based inter-
val as proposed by the CogProt framework (and also adopted
by CORA), the CogTRA mechanism implements a packet-
based interval to perform subsequent rate adaptations. In fact,

Table 3 CogTRA packet-based rate adaptation approach

Scenario Average traffic
(kbps)

CogTRA
(interval)

Quake3 72 148 (405 ms)

Heavy UDP 27,632 651 (92.2 ms)

YouTube 323 17 (3,567.9 ms)

we have observed that a packet-based approach reduces com-
putational cost because the number of feedback loop itera-
tions is reduced when the network is not in intense use.

A packet-based approach is also used by other data rate
adaptation algorithms such as ARF, AARF, and AMRR.
Some authors in the literature had already established that
this approach has little influence on the behavior of the algo-
rithms, particularly when the number of packets (Pktn) is
suitably chosen [14,32]. In CogTRA, the default value of
Pktn = 150 was selected for the interval between subse-
quent quality feedback iterations. This choice was made to
get the packet-based interval close to the same 100 ms used
by other algorithms, such as CORA and Minstrel. The aver-
age transmission time for a single packet of 1200 bytes in
IEEE 802.11a networks, across all eight available rates, is
673 µs (where 673 µs × 150 � 100 ms).

As a proof of concept, three different experiments were
conducted to validate this improvement in the number of rate
adaptations and the average time between them. All exper-
iments are 60-s long and were performed on a high-quality
signal environment, which allowed for the use of a data rate of
54 Mbps. CORA behavior is the same on all experiments: 600
rate adaptations using a 100 ms time-based interval. Table 3
shows the results for CogTRA.

The first experiment, called Quake3, used a traffic pat-
tern similar to those generated by the online game Quake31.
It is possible to observe that for a small average UDP traf-
fic with packets ranging from 50 to 150 bytes, the number
of rate adaptations was reduced from 600 (under CORA) to
148 loop iterations using the packet-based approach. This is
an improvement of 75 % in computational resource usage,
increasing the time between consecutive rate adaptations to
405 ms with a 95 % confidence interval of 0.9 ms. The sec-
ond experiment, called Heavy UDP, considers continuous
UDP traffic with packets of 1,500 bytes saturating the net-
work capacity. The average time between two consecutive
rate adaptations is 92.2 ms with a 95 % confidence interval
of 1.4 ms. Note that this is very close to the predicted value
of 100 ms, with a computational cost only 8.45 % supe-
rior to CORA under extreme traffic load like this. The third
experiment, called YouTube, considers a more realistic traf-
fic of a YouTube 720p video download over a 1 Mbps ADSL

1 This traffic was generated by the D-ITG application [38].

123

500 J Braz Comput Soc (2013) 19:493–510

connection. In this case, the average time between consecu-
tive rate adaptations was increased to 3,567.9 ms with a 95 %
confidence interval of 3.7 ms. Only 17 rate adaptations were
performed. This represents an improvement of � 35.6 times,
mainly due to large TCP packets and low traffic.

Based on these experiments, it is possible to conclude that
a packet-based approach incurs a higher computational cost
(loop iterations) compared to CORA only in extreme cases.
It is worth to emphasize that the CORA (and for that matter,
Minstrel) time-based approach can be seamlessly executed in
commercial devices. However, the improvement offered by
CogTRA can help to avoid resource waste whenever possible.

4.2 Preventing dropping frames

Several high-latency devices support multi-rate retry (MRR),
such as those equipped with Atheros chipsets. With MRR, it
is possible to define a retry chain table with four segments.
Each segment is an advisement to send the current packet
at some rate, with a fixed number of retry attempts. Once
the packet is successfully transmitted, the remainder of the
retry chain table is ignored. A recent study has shown that
MRR usage is very effective, especially in a non-congested
environment [24].

In contrast to CORA (following the same principle used
by AMRR and Minstrel), CogTRA also makes use of
MRR’s capability to optimize performance when transmit-
ting frames. Table 4 shows how this retry chain table is pop-
ulated by the CogTRA mechanism. With this approach, the
first two transmission attempts are always performed with
the random rate Rr, which is obtained from the normal dis-
tribution as specified by the CogProt framework. If the use
of this rate Rr fails, then the next two attempts are performed
using the best-known rate Rb (defined as the normal curve
mean). Because Rb is the best rate for current link conditions,
there is a high probability of successful transmission using
this rate. If the previous transmission attempts fail, two new
attempts are performed with the highest delivery probability
rate Rp. Finally, the last two attempts are performed with the
lowest rate Rl, which is the same rate used for management
and control frames transmissions.

The decision to use two tries for each segment acknowl-
edges two potential pitfalls: a single attempt can be badly

Table 4 CogTRA’s multi-rate retry chain table

Try Rate Attempts

r0 Random rate (Rr) c0 = 2

r1 Best performance rate (Rb) c1 = 2

r2 Best probability rate (Rp) c2 = 2

r3 Lowest rate (Rl) c3 = 2

affected by collisions or by some transient interference, while
more than two attempts on each segment can significantly
increase the overall retry limit (currently set to 7), inducing
latency on the network.

4.3 Speeding up the convergence process

One of the main CogProt parameters is the standard deviation
σ of the normal distribution, which controls the aggressive-
ness with which the algorithm tests random values other than
the best-known one. To illustrate this concept, Fig. 3 exposes
three normal curves with the same mean μ = Ro (represent-
ing the optimal data rate) and different values for the standard
deviation σ .

As shown in Sect. 3.3, any random value r ∈ [Ro − 0.5,

Ro + 0.5) will reflect in the use of data rate Ro. The area
under the curve reflects the probability of finding a number
within this interval. For the normal curve B, the hatched area
graphically represents this probability. Decreasing σ , as in
curve A, increases this probability. However, the chances of
selecting a data rate other than Ro decreases, reducing the
algorithm’s aggressiveness. The opposite occurs in the case
of curve C, which has a higher σ value.

This parameter imposes a trade-off between stability and
convergence time during network operation. Using a low-
level of aggressiveness results in good performance in stable
networks, but it takes too long to identify some change and
move the mean to a better value. A high-level aggressiveness
results in quick convergence to the best rate, but it decreases
performance when the link remains stable because it con-
stantly checks other rates beyond the best-known one.

To overcome this issue, CogTRA introduces an aggres-
siveness self-adjustment (ASA) improvement. The key idea
is to increase the value of σ whenever changes occur in link
quality and decrease it during periods of stability. Thus, it is
possible to keep the standard deviation always set to a value

Fig. 3 Normal curves with μ = Ro and different σ values

123

J Braz Comput Soc (2013) 19:493–510 501

close to the ideal value, allowing the mechanism to quickly
converge when needed but remain stable otherwise.

To identify link quality fluctuations, ASA checks whether
the actual performance (Tr) differs from the previous one
(To) by more than a δT%. When such a change occurs, it is
possible to infer some link quality fluctuation, in which case
ASA increases the current standard deviation σ by 0.1 U.
Otherwise, the standard deviation is decreased by the same
amount. Algorithm 1 describes this improvement. The initial
value of σ is set to 1.5; δT is always 10 %; and the algorithm
keeps the new standard deviation within the operating range
σ ∈ [0.4, 1.5]. These parameters values are discussed in the
following paragraphs.

To validate this improvement, experiments in an IEEE
802.11a network were conducted in a stable environment
with two stationary nodes and a high-quality link between
them. Figure 4 presents both the average throughput and the
throughput over time for CogTRA using a fixed standard
deviation σ ∈ {0.4, 0.8, 1.5}. When σ is controlled by ASA
improvement, this figures also includes the values of σ over
time.

At start-up, there is no information about data rates, and so
frames are transmitted using the lowest base rate (6 Mbps).
However, the link quality is sufficiently good so that the net-
work nodes can communicate using the highest rate. When
the algorithm performs rate adaptation for the first time,

Algorithm 1 Aggressiveness Self-Adjustment
Require: Tr, To, σ ;
Ensure: σ ;
1: δT ← 0.1 ∗ To;
2: if |Tr − To| > δT then
3: σ ← min (1.5, σ + 0.1);
4: else
5: σ ← max (0.4, σ − 0.1);
6: return σ ;

σ
σ
σ

σ

Fig. 4 CogTRA with Aggressiveness Self-Adjustment

the initial convergence process starts. The analysis of the
throughput over time indicates that σ = 1.5 accelerates
the convergence process. However, this high value of σ

reduces the maximum throughput achieved during stabil-
ity. The opposite occurs when using a small value, such
as σ = 0.4 or σ = 0.8. These lower values sustain high
throughput while the network remains stable, but they are
slower in reaching the stability.

It is possible to observe that CogTRA with ASA improve-
ment makes the convergence faster, starting with σ = 1.5,
and it maintains high throughput during stability, thanks to
a small σ = 0.4. In this experiment, CogTRA with ASA
resulted in a gain of 19.2 % compared to fixed σ = 0.4,
8.7 % compared to fixed σ = 0.8, and 13.9 % compared to
fixed σ = 1.5. Notably, these gains were obtained from a
single initial convergence process, and any other link condi-
tion change may trigger a new convergence process, which
can also take advantage of this improvement.

To properly identify lower and upper bounds for the opera-
tional range of σ , the same previous scenario was used. Cog-
TRA was configured without ASA improvement, but with
fixed σ ∈ {0.2, 0.3, . . . , 2.0}. Figure 5 shows the experi-
ment results in terms of throughput, the time spent during
the convergence process, and the rate stability after reaching
the stable phase. It is considered that the algorithm reached
stability when the same data rate is identified as the best rate
twice consecutively.

When using extremely low σ values (i.e., 0.2 and 0.3),
CogTRA spends too much time in the convergence phase, and
it is even unable to reach the best data rate of 54 Mbps in some

Fig. 5 CogTRA performance for different σ values

123

502 J Braz Comput Soc (2013) 19:493–510

Table 5 ASA performances for different δT values

δT (%) Throughput
(Mbps)

95 % confidence

5 18.32 2.20

10 20.66 2.24

20 20.63 2.55

of the experiments for σ = 0.2. Moreover, the stability at
54 Mbps data rate is extremely low (9 %). However, σ = 0.4
provides the highest observed stability (90 %), an acceptable
throughput, and modest convergence time. Because of that,
σ = 0.4 was chosen as the lower bound, with the caveat that
this value should only be used during periods of stability. As
σ increases, it is possible to observe that the convergence time
decreases and the throughput increases, improving overall
performance. However, the stability decreases. Nevertheless,
because high values of σ are generally not used during stable
periods, this does not affect the performance. An upper bound
of σ = 1.5 was selected because it reduces the convergence
time to 6.78 s, which is close to the smallest observed value
of 6.02 s using σ = 2.0. Furthermore, it was observed that
after σ = 1.5, the throughput decreases, indicating that this
value is an appropriate upper bound.

With respect to δT, the same scenario was used, now with
the ASA improvement enabled. Table 5 shows the result in
terms of the average throughput for experiments for δT ∈
{5, 10, 20 %}. It is possible to observe that δT = 5 % reduces
the throughput because it does not allow σ to stabilize; this
is because 5 % is a small variation that can occur even when
using the same rate over time. δT = 10 % and δT = 20 %
both provide statistically identical results, and because of
that, 10 % was arbitrarily selected as the default value.

4.4 Improving performance in stable environments

According to the CogProt framework, even when environ-
mental conditions remain stable, the algorithm must ran-
domly select and use different data rates other than the
best-known one. This strategy is fundamental to the self-
configuration functionality, as it allows the algorithm to
check for link fluctuations and possibly adjust the normal
curve. However, when there is a high-quality link, too much
time is spent sampling slower rates. Thus, the throughput is
lower than that derived from a higher fixed rate. The gen-
eral idea is that CogTRA should sample less at lower rates
if the link is working well. However, if the link deteriorates,
CogTRA should immediately recover.

During CogTRA’s rate adaptation process, when a higher
rate is randomly selected, the transmission success proba-
bility tends to decrease. If the transmission succeeds at first
attempt, then there is no performance loss. If the first two

attempts with r0 fail, then the next attempt will be performed
using rate r1 defined in the MRR retry chain table. As rate
r1 is precisely the best-known rate Rb, the impact on the
network will be only affected by those first two unsuccess-
ful attempts. The major problem arises when the randomly
selected rate Rr is slower than the current best one (Rb).
In this case, it is very likely that the frame transmission will
succeed at first try, which initially seems to result in good per-
formance. However, this lower rate spends more time during
frame transmission, reducing network throughput and induc-
ing the performance anomaly effect discussed in Sect. 2.

In an attempt to solve this problem, CogTRA features an
interval self-adjustment (ISA) improvement. The working
principle behind this improvement is the self-adjustment of
the Pktn parameter, which reduces the number of packets that
will be transmitted using the lower random rate Rr during
the next interval to Pktn = 20. This approach minimizes
the performance anomaly effect and mitigates throughput
losses caused by the use of lower rates. At the end of this
short interval, once the next rate adaptation is performed, the
value is restored to its default Pktn = 150 unless another
random Rr < Rb is obtained for use. Algorithm 2 describes
this feature.

To evaluate this ISA improvement, experiments in an
IEEE 802.11a network were conducted in a stable envi-
ronment with two stationary nodes and a high-quality link
between them. Figure 6 shows the throughput over time and
the average throughput for the CogTRA algorithm with and
without ISA. It is possible to observe that there is no perfor-
mance improvement during the first 10 s, when the mech-
anism is converging from the initial lowest 6 Mbps to the
best rate of 54 Mbps. When CogTRA reaches stability, ISA
starts improving performance by avoiding the unnecessary
use of lower rates during long intervals. In this experiment,
ISA improved network throughput by 6.6 %. This experiment
was conducted without ASA improvement (as in Sect. 4.3).
ASA reduces this effect somewhat by decreasing the aggres-
siveness of the algorithm while the environment remains sta-
ble. Still, lower rates need to be assessed continuously, and
ISA takes action to prevent performance degradation when
it occurs.

Algorithm 2 Interval Self-Adjustment
Require: Rb, Rr;
Ensure: Pktn;
1: if Rr < Rb then
2: Pktn ← 20;
3: else
4: Pktn ← 150;
5: return Pktn;

The value of Pktn = 20 was chosen as a small value
to minimize possible losses in network performance, but it

123

J Braz Comput Soc (2013) 19:493–510 503

Fig. 6 CogTRA with Interval Self-Adjustment

Table 6 ISA performances for different Pktn values

Pktn Throughput
(Mbps)

95 % confidence

10 22.15 2.41

20 22.09 2.38

30 21.85 1.92

remains representative for throughput and delivery probabil-
ity evaluations. To provide a better analysis of this parameter,
this same experiment was executed with Pktn values of 10,
20, and 30. Table 6 shows the result in terms of the average
throughput. It is possible to observe that there is no signif-
icant difference between the results, and because of that, a
value of 20 was chosen as the default.

4.5 The CogTRA algorithm

CogTRA is a groundbreaking algorithm for transmission rate
adaptation in IEEE 802.11 networks. It is built upon the
CogProt framework and equipped with the improvements
described in the previous subsections. The core of the algo-
rithm is the quality feedback loop implementation. Each
phase of this OODA loop is explained below:

Observe Performance information on each data rate
Ri ∈ [Rmin, Rmax] is stored in two local knowledge
bases: the throughput base (KtB) and the probability
base (KpB). CogTRA monitors the system performance
by measuring both the probability of success in frame
transmission Pi and throughput Ti obtained by each rate
Ri ∈ {Rr, Rb, Rp, Rl} that was used during the last inter-
val. Equation 2 [36] is used to compute Pi and Ti :

Pi = Suci

Atti
; Ti = Pi ∗ Mbi

T xi
; (2)

where Atti and Suci are the number of frame transmis-
sion attempts and successes, respectively; Mbi is the total

of Megabits transmitted; and T xi is the time for one try
of one frame to be sent using rate Ri . Ti and Pi are aver-
aged using the same EWMA Equation 1, and both KtBi

and KpBi are updated with this current information. At
this point, the ASA improvement compares the current
updated throughput information for the random rate KtBr
against the previous KtBr value for the purpose of adjust-
ing the standard deviation σ of the normal distribution
N (μ, σ 2).
Orient At this point, CogTRA looks up KtB and KpB to
derive rates Rb and Rp that provide the best throughput
and the best delivery probability, respectively. The index
b of the corresponding rate Rb is assigned to the mean μ

of the normal distribution N (μ, σ 2).
Decide In this phase, CogTRA decides which rate Rr
will be used during the next cycle iteration. This rate
is obtained from a random r ∈ [min, max], which is
generated according to the normal distribution previously
configured. Later, this r is approximated to the integer
index r = �r + 0.5�. At this point, ISA improvement
compares the current best rate Rb against the random
rate Rr to check for Rr < Rb and possibly reduce Pktn
for the next interval.
Act In the action phase, the mechanism assigns the rates
Rr, Rb, Rp, and Rl to the MRR retry chain table, com-
pleting the quality feedback loop.

Algorithm 3 formalizes this entire process. Lines 3–7 are
responsible for updating knowledge bases with recent infor-
mation. During the orientation phase, function best_idx
(KB) at lines 10 and 11 looks up both knowledge bases
for the indices corresponding to the rates with the best

Algorithm 3 The CogTRA quality feedback loop
1: {Observation phase}
2: To ← KtBr;
3: for all i ∈ {r, b, p, l} do
4: Pi ← Suci /Atti ;
5: Ti ← (Pi ∗ Mbi)/T xi ;
6: KpBi ← (1 − α) ∗ KpBi + α ∗ Pi ;
7: KtBi ← (1 − α) ∗ KtBi + α ∗ Ti ;
8: σ ← Aggressiveness Self-Adjustment (Tr, To, σ);
9: {Orientation phase}
10: b ← best_idx (KtB);
11: p ← best_idx (KpB);
12: μ ← b;
13: {Decision phase}
14: r ← � random (N (μ, σ 2)

) + 0.5 �;
15: Pktn ← Interval Self-Adjustment (Rb, Rr);
16: {Action phase}
17: r0 ← Rr;
18: r1 ← Rb;
19: r2 ← Rp;
20: r3 ← Rl ;
21: c0 ← c1 ← c2 ← c3 ← 2;
22: sleep (Pktn packets);

123

504 J Braz Comput Soc (2013) 19:493–510

stored values. In the decision phase, a function called
random (N (μ, σ 2)) derives a new random data rate index
according to the normal distribution. This loops repeats at
every Pktn packets transmission, as represented by a func-
tion called sleep.

Before each frame (f) transmission, Algorithm 4 identi-
fies the frame type and attempt number used to select the
appropriate rate (R f). The frame type is obtained by the
function type (f) in line 1. To ensure interoperability,
the standard defines the control frames and any multicast
or broadcast frame must be transmitted using the mandatory
lowest rate Rl . In other cases, function attempt(f) returns
the attempt number for frame f , which is used by function
mrr_rate (att) to select the proper rate from the MRR chain
table.

Algorithm 4 Send frame
Require: f ;
Ensure: R f ;
1: t yp ← type (f);
2: if t yp is (control or multicast or broadcast) then
3: R f ← Rl ;
4: else
5: att ← attempt (f);
6: R f ← mrr_rate (att);
7: return R f ;

5 Performance evaluation

To evaluate performance in real environments, we have
used the OpenWrt Linux distribution for network embed-
ded devices, with a fully writable file system with pack-
age management. OpenWrt (version 10.03.1 backfire) was
extended with CogTRA functionality [8] using the ath5k
wireless driver. The modified firmware was compiled and
installed into a Ubitiqui RouterStation Pro equipped with a
MiniPCI Engenius 2.4/5 GHz NL-5354MP PLUS ARIES 2.
This hardware was used as the AP in all experiments. The
network clients were notebooks equipped with Ubuntu and
Atheros wireless cards. The available bandwidth was esti-
mated using Iperf, which is a common network-testing tool
that generates TCP or UDP data streams on the network and
measures the throughput of these streams [16].

Wireless network cards were configured according to the
IEEE 802.11a standard at channel 36 (5,180 MHz). This
setup was adopted because there was no other wireless net-
work using the same spectrum nearby, allowing us to exper-
iment in scenarios with controlled interference. There are
8 available nominal data rates in IEEE 802.11a: 6, 9, 12,
18, 24, 36, 48 and 54 Mbps. An integer index i ∈ [0, 7]
was mapped to each rate Ri ∈ [Rmin, Rmax]. At start-up,
both knowledge bases were empty, and the standard devia-

tion was set to σ = 1.5, the packet interval Pktn = 150,
EWMA α = 0.75 (Eq. 1), and initial rates to Rr = Rb =
Rp = Rl = 6 Mbps (as a conservative approach). Experi-
ments were 120 s long, with the first and last 10 s discarded as
transient intervals. The results were obtained from 20 itera-
tions, and average values are presented with 95 % confidence
interval.

The rest of this section is organized as follows. Section 5.1
compares the proposed CogTRA mechanism with CORA.
Section 5.2 presents results from experiments conducted in
stable environments, while Sect. 5.3 shows CogTRA perfor-
mance in dynamic environments. An interfering traffic was
included in experiments at Sect. 5.4, and a scenario to evalu-
ate the performance anomaly effect is considered in Sect. 5.5.
Section 5.6 finalizes the performance evaluation, summariz-
ing the results of all experiments.

5.1 CORA and CogTRA performance comparison

Early experiments were intended to demonstrate that the set
of improvements comprising CogTRA mechanism had been
indeed effective in addressing some pointed difficulties in
the existing cognitive algorithm CORA. For that purpose,
this first experiment considers only two network elements:
an AP and a mobile client, with a single downloading TCP
traffic between them. During the initial 60 s, the client stands
near the AP, creating a high-quality wireless link that allows
for the use of the highest available data rate. At this moment,
it is possible to achieve the maximum network performance
as well as to evaluate both algorithms in stable environments.
At t = 60 s, the mobile client starts moving away from the
AP, until it reaches an intermediate distance of 7 meters away
from the AP (in an indoor environment). The client remains
at this position until t = 90 s, when it starts moving again
to reach 15 meters away from the AP. This is the farthest
distance where network can sustain a satisfactory connection
in the experimental environment.

Figure 7 shows experimental results for both cognitive
algorithms CORA and CogTRA in terms of TCP throughput
over time (top), average aggregate throughput (bar graph),
and data rate usage over time (bottom). The data rate usage
was obtained by sampling at constant intervals of 1 s, using
the debug system available on OpenWrt. It is possible to
observe that CORA performs well only in stable environ-
ments with a high-quality link (i.e., the first 60 s of the
experiment). During this interval, the performance of both
algorithms is practically the same, specially because in this
experiment CORA was configured with σ = 0.8, which is
a fixed value with good performance, according to Figs. 4
and 5.

When the mobile client moves away from the AP, decreas-
ing link quality, CORA performance is drastically reduced.

123

J Braz Comput Soc (2013) 19:493–510 505

Fig. 7 CogTRA and CORA performance comparison

Because CORA does not make use of MRR capabilities, after
retrieving a random data rate Rr, this rate will be used by all
frame transmissions up to the next quality feedback loop
iteration. This means that, for each packet, the seven frame
transmission attempts (that is, retry count) will be performed
using the same Rr rate. If this rate does not work (as with
a high rate in a low-quality link), then all frame transmis-
sion attempts will fail, and the packet will be reported as
discarded to the upper layers. In this case, the TCP protocol
will interpret this as network congestion and will reduce the
throughput. This is the main reason for CORA’s poor perfor-
mance, especially just after the link-quality decreases (note
that after t = 70 s, CORA’s throughput increases somewhat).
On the contrary, CogTRA uses MRR. If the first four attempts
fail (two for the random Rr rate, and two for best rate so far),
then the rate with the best success probability is used, pos-
sibly resulting in a frame transmission success that avoids
all performance degradation caused by the TCP protocol.
Another CORA behavior that can be observed involves the
instability in selecting random rates under average-quality
signal. This is an immediate consequence of the high stan-
dard deviation value, which is automatically adjusted by the
ASA improvement in CogTRA.

In this experiments, CogTRA outperforms CORA by
19.7 % in average throughput, mostly in situations where
the link quality is changing or stable at lower levels. It is
possible to conclude that CORA, as it was originally pro-
posed, is not suitable to be used in real environments. Most

Fig. 8 CogTRA performance in high SNR scenario

of these problems can be addressed by CogTRA, which will
is evaluated and compared against the other rate adaptation
algorithms in the following subsections.

5.2 Performance in stable scenarios

CogTRA was compared against the typical rate adaptation
mechanisms, namely ARF, AARF, and Minstrel. Although
there are other related, newer algorithms in the literature
(such as RAM, CHARM, and CARS), CogTRA was com-
pared here only with these traditional solutions and the
widely used Minstrel. To the best of authors’ knowledge,
[40,41] are the only works that evaluate the performance of
Minstrel by comparing it with other rate control mechanisms
implemented in the madwifi and ath5k Linux drivers, such as
SampleRate, Onoe, AMRR, and PID. The evaluations pre-
sented in these papers were carried out in a platform that
provides a controllable and repeatable environment. The ulti-
mate conclusion is that the Minstrel performance is superior,
achieving more than fourfold the throughput of SampleRate
in certain experiments. Therefore, we considered it suitable

123

506 J Braz Comput Soc (2013) 19:493–510

to compare CogTRA with Minstrel, as the latter is a practical,
high-performance solution that has been sparsely explored in
the literature until now.

The first scenario for this experiment involves a single
stationary client close (0.5 m) to the AP. There is a single
downloading TCP traffic from the AP to the client. Because
network nodes are close to each other, there is a high-quality
link between them. In this configuration, the average SNR
was measured in 35 dB, which allows for the use of the
highest data rate (54 Mbps). Figure 8 shows the results in
terms of throughput and data rate usage over time, and it
also includes the average aggregate throughput for all mech-
anisms. To improve the analysis of the data rate usage, a
custom debug mechanism was implemented, and the graph
now shows the actual choice made by the algorithms.

It is possible to observe that all mechanisms perform well
in this situation by always selecting the best data rate over
time. Because ARF and AARF are solutions that attempt to
use the highest effective data rate at each moment, this can
be considered the perfect scenario for them. Nevertheless,
it is possible to observe that these solutions often alternate
between rates of 54 and 48 Mbps, indicating that there is some
difficult in stabilizing. In practice, Minstrel and CogTRA also
select the best data rate throughout the entire experiment.
Moreover, ASA and ISA improvements are primordial in this
scenario. Without them, CogTRA could not reach the high-
est performance in stable environments because it constantly
selects random rates other than the best known one. Using
both improvements, this becomes less frequent (ASA) and
incurs a lower penalty (ISA). In terms of average through-
put, there is no statistical difference that may indicate bet-
ter performance for either algorithm. The average aggregate
throughput for this experiment is 25.24 Mbps.

A second scenario was also evaluated that considers a sta-
tionary client not so close to the AP, which leads to a stable
link with moderate quality. In this scenario, the SNR was
measured in 12 dB on average, allowing for the use of an
intermediate rate. Figure 9 shows the experiment results for
this configuration. Here, it is possible to observe some signif-
icant differences. The most striking of them is the substan-
tial inferior performance of ARF and AARF mechanisms.
Because these two solutions are always trying to increase the
data rate (ARF is more aggressive in this aspect compared
to AARF), they become unstable, as can be observed by the
data rate usage plot. Even when these two algorithms are
using the rate with the best performance, they still attempt to
use the next (not feasible) data rate. This induces frame loss,
which decreases the throughput.

Average throughput for ARF is 2.90 Mbps, and for AARF,
it is 4.73 Mbps. Is this scenario, CogTRA outperforms Min-
strel mainly due to its stability; the former uses the proper
36 Mbps data rate 82 % of the time. Minstrel switches con-
stantly between 36, 48 and 54 Mbps data rates, and it stays

Fig. 9 CogTRA performance in low SNR scenario

on the proper 36 Mbps data rate only 45 % of the time. Cog-
TRA average throughput is 13.39 Mbps, representing gains
of 20.8 % compared to Minstrel and � 250 % compared to
ARF and AARF.

5.3 Performance in dynamic scenarios

For the purpose of evaluating CogTRA under dynamic envi-
ronments, a scenario with a stationary AP and a mobile client
was used for indoor experiments. During the first 25 s, the
client remains side-by-side with the AP, with 0.5 m between
them. Then, it starts moving away at � 0.5 m/s until it reaches
a distance of � 12 m at t = 50 s. At t = 70 s, the client
returns, reaching its initial position at t = 95 s. There is a
single TCP traffic from the AP to the mobile client. Figure 10
shows the results, also including the average SNR value over
time within a 95 % confidence interval.

As observed in previous experiments, the performance of
all algorithms is satisfactory during the first and last seconds,
when the signal quality remains stable at high SNR. At the
moment the client starts moving away, the throughput for all

123

J Braz Comput Soc (2013) 19:493–510 507

Fig. 10 CogTRA performance in dynamic scenario

mechanisms drops. At this moment ARF and AARF start to
become unstable, switching between lower and higher data
rates very often, as can be observed in the data rate usage
graph. In contrast, Minstrel is resistant to decreasing the rate,
and it always tries to use high rates even in moments of low
signal strength. Because of this, many packets are dropped,
affecting the performance. During mobility, CogTRA shows
better performance compared to other algorithms. In dynamic
environments, it is possible to see that CogTRA is fine-
grained in terms of data rate usage due to Pktn self-adjustment
(that is, ISA) and aggressive in unstable environments (i.e.,
ASA). As a consequence, CogTRA achieves better perfor-
mance during the mobility period. Average throughput for
CogTRA in this experiment is 15.06 Mbps, representing
gains of 9.8, 33.3, and 18.9 % compared to Minstrel, ARF,
and AARF, respectively.

Fig. 11 Scenario used during experiments

5.4 Performance under interfering traffic

A problem related to every history-based rate adaptation
algorithm is frame loss differentiation, which is needed to
avoid unnecessary rate decreases due to collisions. To eval-
uate the performance of all algorithms in such situations,
we extended the previous stable scenario with a high-quality
link between the AP and the client (presented on Sect. 5.2) by
adding four interfering nodes (INs) to generate eight inter-
fering UDP flows at a constant throughput of 1 Mbps each.
Figure 11 illustrates this topology. All nodes (i.e., the AP, the
stationary client, and the four interfering nodes INs) are close
to each other, allowing for the use of the highest 54 Mbps
data rate during the entire experiment. The average SNR per-
ceived by the AP was measured at 34 dB.

Figure 12 shows the results for this scenario with inter-
fering traffic with collisions. An average FER of 16 % was
observed during the experiment, indicating the presence of
collisions, as all wireless links have high SNR, and the other
parameters are the same as that for the first experiment of
Sect. 5.2. It is possible to observe that ARF and AARF
are highly affected by the interfering traffic, reducing the
data rate and mitigating throughput performance. Minstrel
and CogTRA are immune to this problem, sustaining higher
rates and practically achieving the same performance during
experiments. This happens because Minstrel and CogTRA
do not rely on single frame transmission to infer rate perfor-
mance, thereby avoiding unnecessary rate changes. More-
over, CogTRA sometimes selects the 48 Mbps data rate as a
consequence of its cognitive approach in looking for network
changes. Regardless, its performance is not severely affected
thanks to ISA improvement that adjusts the Pktn parame-
ter. There is no statistical gain of CogTRA over Minstrel,
with an average throughput of 10.48 and 10.64 Mbps, respec-
tively. CogTRA outperforms ARF by 185.2 % and AARF by
84.1 %.

123

508 J Braz Comput Soc (2013) 19:493–510

Fig. 12 CogTRA performance with interfering traffic

5.5 Performance under the anomaly effect

A final experiment was conducted to verify CogTRA behav-
ior in environments with multiple clients associated with the
same AP to analyze performance under the anomaly effect
discussed in Sect. 2. This scenario included the AP and three
clients: a distant stationary client DC, an adjacent stationary
client AC, and a mobile client MC that moves away from the
AP during experiment. There is a single uploading TCP traf-
fic from each client to the AP. Figure 13 shows the topology
of this experiment, including information about the average
SNR at each location.

Figure 14 shows the per-client average throughput infor-
mation for each TCP flow. It is possible to observe that the
mobile client has the lowest performance compared to both
stationary clients for all algorithms. This is expected because
this mobile node demands more rate adaptations due to the
unstable signal strength. As shown in Sect. 5.3, CogTRA
outperforms other mechanisms in dynamic environments,
and this behavior can also be observed here for this mobile
node. With respect to both stationary clients, CogTRA allows

Fig. 13 Scenario used during experiments

Fig. 14 CogTRA performance under anomaly effect

higher TCP throughput when compared to other algorithms,
especially for the closest stationary client.

Jain’s fairness index [17] was used to quantify the dif-
ference between the throughputs achieved by each client,
and it is represented by a percentage, whereby 100 % means
that all clients have the same throughput. This index yields
95.6 % for CogTRA, 94.8 % for Minstrel, 94.3 % for ARF,
and 97.3 % for AARF. The important conclusion is that Cog-
TRA is affected by the anomaly effect in the same proportion
as the other algorithms. In terms of absolute results, CogTRA
has the higher throughput, reaching an average performance
of 4.5 Mbps. This represents gains of 18.1, 128.4, and 75.4 %
compared to Minstrel, ARF, and AARF, respectively.

5.6 Performance evaluation analysis

After analyzing the results of all experiments, it is possible
to conclude that ARF and AARF provide competitive results
in stable scenarios with high-quality links. In other cases, the
instability of these solutions may affect their performance,
reducing the throughput in dynamic environments.

Regarding Minstrel and CogTRA, we can observe that
they provide high performance in stable environments. The
absence of significant changes in the environment simply
leads the algorithms to work during the initial network set-
up. However, in regard to dynamic scenarios, the CogTRA
mechanism seems to be superior, performing a fine-grained

123

J Braz Comput Soc (2013) 19:493–510 509

adaptation that improved results by almost 10 % in the
conducted experiments. With respect to scenarios includ-
ing some interfering traffic, the results indicate that Cog-
TRA and Minstrel are not affected by frame collisions,
effectively exhibiting the same performance in terms of
throughput. However, the evaluated scenario is simple, and a
more detailed analysis on the behavior of these mechanism
must be conducted to draw more definitive conclusions. In
the evaluation of performance anomaly effect, CogTRA was
affected in the same proportion as the other algorithms and
presented better results, surpassing Minstrel by 18.1 %.

6 Conclusion

This paper proposes CogTRA, which is a novel cogni-
tive transmission rate adaptation mechanism enhanced with
cutting-edge features to overcome the limitations of existing
solutions. This mechanism was designed to work not only
in stable but also in dynamic environments, as it quickly
reacts to changes in channel conditions and achieves long-
term stability in other conditions. Moreover, the mechanism
self-adjusts some of its configurable parameters to properly
suit the environment. Additionally, the use of MRR capabil-
ity contributes to avoid dropping frames when a bad rate is
selected. Finally, this is a deployable solution that does not
require any changes to the IEEE 802.11 MAC protocol, and
it can be implemented even on devices with limited resources
due to its low processing requirements.

CogTRA was implemented on the OpenWrt Linux dis-
tribution and evaluated through experiments using real net-
work equipment. The improvements that comprise this novel
solution were discussed and experimentally evaluated inde-
pendently. A complete performance evaluation was also
performed to compare CogTRA with Minstrel and other typi-
cal rate adaptation solutions (namely, ARF and AARF). The
results demonstrated that CogTRA is able to dynamically
adjust the transmission data rate to always match current
network conditions. The proposed mechanism outperforms
Minstrel up to 20.8 % in specific scenarios.

Future work will focus on integrating the cognitive mech-
anism CogTRA into the latest IEEE 802.11n networks. This
standard (1) relies on multiple antenna elements; (2) employs
algorithms to leverage the consequent spatial multiplexing
and diversity benefits that such antenna arrays can provide;
and (3) offers up to 77 data rates. This process requires special
attention, mainly in relation to the appropriate adjustment of
the normal distribution’s parameters and the large number
of rates and solutions to avoid sampling at rates that cannot
result in better throughput [26]. Furthermore, CogTRA per-
formance should be evaluated in scenarios with interfering
traffic and collisions using controlled environments as the
ORBIT testbed [30].

Acknowledgments The authors would like to thank both CNPq
(Grant number 132321/2008-4) and FAPESP (Grant number 2008/
07770-8) for supporting this work.

References

1. 802.11-2007 (2007) IEEE Standard for Information Technology—
telecommunications and information exchange between
systems—local and metropolitan area networks—specific
requirements—Part 11: Wireless LAN medium access control
(MAC) and physical layer (PHY) specifications. Technical report.
IEEE Computer Society, New York. doi:10.1109/IEEESTD.2007.
373646. Revision of IEEE Std. 802.11-1999

2. Ancillotti E, Bruno R, Conti M (2008) Experimentation and per-
formance evaluation of rate adaptation algorithms in wireless mesh
networks. In: PE-WASUN: proceedings of the ACM symposium on
performance evaluation of wireless ad hoc, sensor, and ubiquitous,
networks, pp 7–14. doi:10.1145/1454609.1454612

3. Biaz S, Wu S (2008) Rate adaptation algorithms for IEEE 802.11
networks: a survey and comparison. In: ISCC: proceedings of the
IEEE symposium on computers and, communications, pp 130–136.
doi:10.1109/ISCC.2008.4625680

4. Bicket JC (2005) Bit-rate selection in wireless networks. Master’s
thesis. Institute of Technology (MIT), Department of Electrical
Engineering and Computer Science, Massachusetts. http://pdos.
csail.mit.edu/papers/jbicket-ms.pdf

5. Boyd JR (1995) The essence of wining and losing. http://
pogoarchives.org/m/dni/john_boyd_compendium/essence_of_
winning_losing.pdf

6. Chaves L, Malheiros N, Madeira E, Garcia I, Kliazovich D (2009)
A cognitive rate adaptation mechanism for wireless networks. In:
MACE: proceedings of the IEEE international workshop on mod-
elling autonomic communication environments. Springer, Berlin,
pp 58–71. doi:10.1007/978-3-642-05006-0_5

7. CogProt—the cognitive framework. http://www.lrc.ic.unicamp.br/
cogprot

8. CogTRA—cognitive transmission rate adaptation for OpenWrt.
http://code.google.com/p/cogtra

9. Chen X, Gangwal P, Qiao D (2012) Ram: rate adaptation in mobile
environments. IEEE Trans Mobile Comput 11(3):464–477. doi:10.
1109/TMC.2011.91

10. Erez U, Trott MD, Wornell GW (2012) Rateless coding for
Gaussian channels. IEEE Trans Inf Theory 58(2):530–547. doi:10.
1109/TIT.2011.2173242

11. Gudipati A, Katti S (2011) Strider: automatic rate adaptation
and collision handling. ACM SIGCOMM. Comput Commun Rev
41(4):158–169. doi:10.1145/2043164.2018455

12. Haratcherev I, Langendoen K, Lagendijk R, Sips H (2004) Hybrid
rate control for IEEE 802.11. In: MobiWac: proceedings of the
international workshop on mobility management and wireless
access protocols, pp 10–18. doi:10.1145/1023783.1023787

13. Heusse M, Rousseau F, Berger-Sabbatel G, Duda A (2003) Per-
formance anomaly of 802.11b. In: INFOCOM: proceedings of
the international conference on computer communications, vol 2,
pp 836–843

14. Holland G, Vaidya N, Bahl P (2001) A rate-adaptive MAC protocol
for multi-hop wireless networks. In: MobiCom: proceedings of
the international conference on mobile computing and networking,
pp 236–251. doi:10.1145/381677.381700

15. Hou JC, Park KJ, Kim TS, Kung LC (2008) Medium access control
and routing protocols for wireless mesh networks. In: Hossain E,
Leung K (eds) Wireless mesh networks: architectures and proto-
cols, chap. 4. Springer, Berlin, pp 77–111

16. Iperf. http://iperf.sourceforge.net

123

http://dx.doi.org/10.1109/IEEESTD.2007.373646
http://dx.doi.org/10.1109/IEEESTD.2007.373646
http://dx.doi.org/10.1145/1454609.1454612
http://dx.doi.org/10.1109/ISCC.2008.4625680
http://pdos.csail.mit.edu/papers/jbicket-ms.pdf
http://pdos.csail.mit.edu/papers/jbicket-ms.pdf
http://pogoarchives.org/m/dni/john_boyd_compendium/essence_of_winning_losing.pdf
http://pogoarchives.org/m/dni/john_boyd_compendium/essence_of_winning_losing.pdf
http://pogoarchives.org/m/dni/john_boyd_compendium/essence_of_winning_losing.pdf
http://dx.doi.org/10.1007/978-3-642-05006-0_5
http://www.lrc.ic.unicamp.br/cogprot
http://www.lrc.ic.unicamp.br/cogprot
http://code.google.com/p/cogtra
http://dx.doi.org/10.1109/TMC.2011.91
http://dx.doi.org/10.1109/TMC.2011.91
http://dx.doi.org/10.1109/TIT.2011.2173242
http://dx.doi.org/10.1109/TIT.2011.2173242
http://dx.doi.org/10.1145/2043164.2018455
http://dx.doi.org/10.1145/1023783.1023787
http://dx.doi.org/10.1145/381677.381700
http://iperf.sourceforge.net

510 J Braz Comput Soc (2013) 19:493–510

17. Jain RK, Chiu DMW, Hawe WR (1984) A quantitative measure
of fairness and discrimination for resource allocation in shared
computer systems. Technical report, vol 301, Digital Equipment
Corporation. http://arxiv.org/abs/cs.NI/9809099

18. Joshi T, Ahuja D, Singh D, Agrawal DP (2008) SARA: stochastic
automata rate adaptation for IEEE 802.11 networks. IEEE Trans
Parallel Distrib Syst 19(11):1579–1590. doi:10.1109/TPDS.2007.
70814

19. Judd G, Wang X, Steenkiste P (2008) Efficient channel-aware rate
adaptation in dynamic environments. In: MobSys: proceedings of
the international conference on mobile systems, applications, and
services, pp 118–131. doi:10.1145/1378600.1378615

20. Kamerman A, Monteban L (1997) Wavelan-II: a high-performance
wireless LAN for the unlicensed band. Bell Labs Tech J 2(3):
118–133. doi:10.1002/bltj.2069

21. Kim J, Kim S, Choi S, Qiao D (2006) CARA: collision-aware rate
adaptation for IEEE 802.11 WLANs. In: INFOCOM: proceedings
of the international conference on computer communications, pp
1–11. doi:10.1109/INFOCOM.2006.316

22. Kim TS, Lim H, Hou JC (2006) Improving spatial reuse through
tuning transmit power, carrier sense threshold, and data rate in
multihop wireless networks. In: MobiCom: proceedings of the
international conference on mobile computing and networking,
pp 366–377. doi:10.1145/1161089.1161131

23. Kliazovich D, Malheiros N, Fonseca NLS, Granelli F, Madeira E
(2009) CogProt: a framework for cognitive configuration and opti-
mization of communication protocols. In: Mobilight: proceedings
of the international conference on mobile lightweight wireless sys-
tems, pp 280–291. doi:10.1007/978-3-642-16644-0_25

24. Koci N, Marina M (2009) Understanding the role of multi-rate
retry mechanism for effective rate control in 802.11 wireless lans.
In: LCN: proceedings of IEEE conference on local, computer net-
works, pp 305–308. doi:10.1109/LCN.2009.5355094

25. Lacage M, Manshaei MH, Turletti T (2004) IEEE 802.11 rate
adaptation: a practical approach. In: MSWiM: proceedings of the
international symposium on modeling, analysis and simulation of
wireless and mobile systems, pp 126–134. doi:10.1145/1023663.
1023687

26. Lakshmanan S, Sanadhya S, Sivakumar R (2011) On link rate adap-
tation in 802.11n WLANs. In: INFOCOM: proceedings of the inter-
national conference on computer communications, pp 366–370.
doi:10.1109/INFCOM.2011.5935183

27. Loiacono M, Rosca J, Trappe W (2007) The snowball effect: detail-
ing performance anomalies of 802.11 rate adaptation. In: GLOBE-
COM: proceedings of the IEEE global telecommunications con-
ference, pp 5117–5122. doi:10.1109/GLOCOM.2007.970

28. Malheiros N, Kliazovich D, Granello F, Madeira E, Fonseca N
(2010) A cognitive approach for cross-layer performance manage-
ment. In: GLOBECOM: proceedings of the IEEE global telecom-
munications conference, pp 1–5. doi:10.1109/GLOCOM.2010.
5684313

29. OpenWrt Wireless Freedom. http://openwrt.org
30. ORBIT: open-access research testbed for next-generation wireless

networks. http://www.orbit-lab.org
31. Perry J, Balakrishnan H, Shah D (2011) Rateless spinal codes. In:

HotNets-X: proceedings of the ACM workshop on hot topics in
networks, pp 6:1–6:6. doi:10.1145/2070562.2070568

32. Qiao D, Choi S, Shin K (2002) Goodput analysis and link adapta-
tion for IEEE 802.11a wireless LANs. IEEE Trans Mobile Comput
1(4):278–292. doi:10.1109/TMC.2002.1175541

33. Ramachandran K, Kremo H, Gruteser M, Spasojevic P, Seskar I
(2007) Scalability analysis of rate adaptation techniques in con-
gested IEEE 802.11 networks: an ORBIT testbed comparative
study. In: WoWMoM: proceedings of the IEEE international sym-
posium on a world of wireless, mobile and multimedia, networks,
pp 1–12. doi:10.1109/WOWMOM.2007.4351717

34. Shankar P, Nadeem T, Rosca J, Iftode L (2008) Cars: context-aware
rate selection for vehicular networks. In: ICNP: proceedings of
the IEEE international conference on network protocols, pp 1–12.
doi:10.1109/ICNP.2008.4697019

35. Shannon CE (1949) Communication in the presence of noise. IRE
proceedings of the Institute of Radio Engineers, vol 37, no. 1,
pp 10–21

36. Smithies D (2005) Minstrel rate control algorithm. http://
linuxwireless.org/en/developers/Documentation/mac80211/
RateControl/minstrel

37. Thomas RW, Friend DH, Dasilva LA, Mackenzie AB (2006) Cog-
nitive networks: adaptation and learning to achieve end-to-end per-
formance objectives. IEEE Commun Mag 44(12):51–57. doi:10.
1109/MCOM.2006.273099

38. Universita’ degli Studi di Napoli “Federico II” (2011) D-ITG,
distributed internet traffic generator. http://www.grid.unina.it/
software/ITG/

39. Xia Q, Hamdi M (2008) Smart sender: a practical rate adaptation
algorithm for multirate IEEE 802.11 WLANs. IEEE Trans Wirel
Commun 7(5):1764–1775. doi:10.1109/TWC.2008.061047

40. Yin W, Bialkowski K, Indulska J, Hu P (2010) Evaluations of mad-
wifi mac layer rate control mechanisms. In: IWQoS: proceedings
of the international workshop on quality of service, pp 1–9. doi:10.
1109/IWQoS.2010.5542745

41. Yin W, Hu P, Indulska J, Bialkowski K (2011) Performance of
mac80211 rate control mechanisms. In: MSWiM: proceedings of
the international conference on modeling, analysis and simulation
of wireless and mobile systems, pp 427–436 (2011). doi:10.1145/
2068897.2068970

123

http://arxiv.org/abs/cs.NI/9809099
http://dx.doi.org/10.1109/TPDS.2007.70814
http://dx.doi.org/10.1109/TPDS.2007.70814
http://dx.doi.org/10.1145/1378600.1378615
http://dx.doi.org/10.1002/bltj.2069
http://dx.doi.org/10.1109/INFOCOM.2006.316
http://dx.doi.org/10.1145/1161089.1161131
http://dx.doi.org/10.1007/978-3-642-16644-0_25
http://dx.doi.org/10.1109/LCN.2009.5355094
http://dx.doi.org/10.1145/1023663.1023687
http://dx.doi.org/10.1145/1023663.1023687
http://dx.doi.org/10.1109/INFCOM.2011.5935183
http://dx.doi.org/10.1109/GLOCOM.2007.970
http://dx.doi.org/10.1109/GLOCOM.2010.5684313
http://dx.doi.org/10.1109/GLOCOM.2010.5684313
http://openwrt.org
http://www.orbit-lab.org
http://dx.doi.org/10.1145/2070562.2070568
http://dx.doi.org/10.1109/TMC.2002.1175541
http://dx.doi.org/10.1109/WOWMOM.2007.4351717
http://dx.doi.org/10.1109/ICNP.2008.4697019
http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel
http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel
http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel
http://dx.doi.org/10.1109/MCOM.2006.273099
http://dx.doi.org/10.1109/MCOM.2006.273099
http://www.grid.unina.it/software/ITG/
http://www.grid.unina.it/software/ITG/
http://dx.doi.org/10.1109/TWC.2008.061047
http://dx.doi.org/10.1109/IWQoS.2010.5542745
http://dx.doi.org/10.1109/IWQoS.2010.5542745
http://dx.doi.org/10.1145/2068897.2068970
http://dx.doi.org/10.1145/2068897.2068970

	CogTRA: a deployable mechanism for cognitive transmission rate adaptation in IEEE 802.11 networks
	Abstract
	1 Introduction
	2 The rate adaptation problem
	3 Related work
	3.1 Existing rate adaptation algorithms
	3.2 The CogProt framework
	3.3 The cognitive rate adaptation algorithm

	4 Proposed mechanism
	4.1 Reducing computational overhead
	4.2 Preventing dropping frames
	4.3 Speeding up the convergence process
	4.4 Improving performance in stable environments
	4.5 The CogTRA algorithm

	5 Performance evaluation
	5.1 CORA and CogTRA performance comparison
	5.2 Performance in stable scenarios
	5.3 Performance in dynamic scenarios
	5.4 Performance under interfering traffic
	5.5 Performance under the anomaly effect
	5.6 Performance evaluation analysis

	6 Conclusion
	Acknowledgments
	References

