
J Braz Comput Soc (2013) 19:235–256
DOI 10.1007/s13173-013-0110-1

ORIGINAL PAPER

Incremental validation of NCL hypermedia documents

Rodrigo Costa Mesquita Santos · José Rios Cerqueira Neto ·
Carlos de Salles Soares Neto · Mário Meireles Teixeira

Received: 22 August 2012 / Accepted: 23 April 2013 / Published online: 18 May 2013
© The Brazilian Computer Society 2013

Abstract This paper proposes an incremental, structural
and contextual validation method for Nested Context Lan-
guage (NCL) documents. As part of the proposed method,
we define a declarative metalanguage to ensure low coupling
between NCL structure and the validator code, which sim-
plifies the validation of new language profiles. Requirements
such as incremental processing and multilingual messages
are also covered by this work. We present an implementation
of this method using component architecture as a proof of
concept and also conduct a performance evaluation to com-
pare the traditional and incremental validation approaches.

Keywords NCL · Incremental validation ·
Code validation · Ginga · ISDB-Tb · iDTV

This is an extended version of the paper “Método de Validação
Estrutural e Contextual de Documentos NCL”, presented as one of the
Best Papers of Webmedia 2011 (Brazilian Symposium on Web and
Hypermedia Systems).

R. C. M. Santos · J. R. C. Neto
Post Graduate Program in Computer Science,
Federal University of Maranhão, Av. dos Portugueses,
s/n, Campus do Bacanga, CEP 65080-040 São Luís, MA, Brazil
e-mail: rodrim.c@laws.deinf.ufma.br

J. R. C. Neto
e-mail: rios@laws.deinf.ufma.br

C. de Salles Soares Neto · M. M. Teixeira (B)
Department of Informatics, Federal University of Maranhão,
Av. dos Portugueses, s/n, Campus do Bacanga,
CEP 65080-040 São Luís, MA, Brazil
e-mail: mario@deinf.ufma.br

C. de Salles Soares Neto
e-mail: csalles@deinf.ufma.br

1 Introduction

Digital TV applications are those in which an application
is sent by broadcast together with extra media contents to
viewers, enriching the user experience. With digital TV, soap
operas, reality shows, auditory programs and TV news allow
the viewers to access extra content through interactive mul-
timedia applications.

The authoring of these applications is basically done based
on two main paradigms: imperative and declarative. In the
former, it is necessary an algorithmic description of the entire
presentation and of the relationships among media, what is
commonlymadewith use of general-purpose languages, such
as Java. In the latter, domain-specific languages (DSL) are
frequently used, whose main concern is the final author’s
description. When there is a DSL that matches the domain of
a given problem, its use, in general, implies in reduction of
the authoring time when compared to general-purpose lan-
guages [1], because one single DSL sentence can have an
equivalent meaning to several imperative ones. Some declar-
ative languages commonly used to hypermedia authoring
are XHTML [2], SMIL [3] and NCL [4], all of them being
XML-based.

When one use a development environment for designing
and implementing a hypermedia application, in general, the
effort spent during the authoring is reduced compared with
non-specialized authoring tools. This occurs because author-
ing tools implement a set of features that guides authors
throughout development process. Thus, an Integrated Devel-
opment Environment (IDE) is an environment that can pro-
vide both graphical abstractions for users who feel more
comfortable with visual authoring, and useful features for
textual authoring. In [5], a study is done on visual and tex-
tual authoring, explaining the advantages and disadvantages
of each of these two approaches. A functionality provided by

123

236 J Braz Comput Soc (2013) 19:235–256

both graphical and textual IDEs is code validation. Validation
can be understood as a routine that checks whether a given
instance of source-code has any syntactic or semantic errors
regarding the grammatical rules of the chosen programming
language. At authoring time, this validation may help pro-
grammers to identify programming mistakes more quickly,
whichmay result in a reduction of the time needed to develop
the application.

Regardless of the approach chosen, the authoring of hyper-
media documents is essentially incremental. Thus it is likely
that, while you are editing the application, only a small num-
ber of changes havebeenmadebetween twoconsecutive code
verifications. There are textual authoring tools, for exam-
ple, that validate the code whenever the user stops typing,
although it is possible that the difference between one and
another checking is of just a single character. In visual author-
ing, on the other hand, validation may be performed after the
addition, editing or removal of a given visual component. It
is noticeable that in both situations it is not strictly neces-
sary to reconstruct the entire data structure representing that
instance of code and validate it completely. This creates the
opportunity to manage such a structure in memory and per-
form the validation only in the modified and affected parts
of the document. This type of validation that checks only the
pieces of code changed and those affected by the changes is
commonly referred to in the literature as incremental valida-
tion [6].

In the context of digital TV systems, we can intuitively
see the influence of incremental validation in the conven-
tional process of authoring, but this is not the only situation
where such validation can offer performance gains. The fact
that set-top boxes (device that executes interactive applica-
tions) are environments with limited computing resources
raises the need for validation techniques that avoid redun-
dant checks in such a limited hardware. A particular case of
this need is the validation of applications created within the
set-top box in TV viewers’ households (Social TV) [7], since
this validation must be done without affecting performance.
On the other hand, systems such as ISDB-Tb [4] allow broad-
casters to send editing commands to applications while they
are being displayed, allowing what is known as live editing
of content [8]. Before applying such edits, first it is neces-
sary to validate them in order to make sure that the editing
commands will result in consistent, accurate and coherent
documents. From the above discussion, we can notice that
the need for incremental validation mechanisms is present in
various circumstances.

Nested Context Language (NCL) is a modular declarative
hypermedia language focused on the definition of synchro-
nization relationships between media objects. It is the stan-
dard language of ISDB-Tb for development of interactive
applications and is also an international ITU-T recommen-
dation for IPTV [9]. The complete validation of NCL doc-

uments cannot be made through traditional XML validation
techniques, since NCL has a set of particularities that are not
supported by these techniques. Section 3 brings up some of
these particularities.

This work identifies several non-functional requirements
that an NCL validation proposal must meet. Since NCL has
been adopted by several countries in Latin America and in
Africa as the standard for creation of interactive applications
in openTV, a first requirement, which can be easilymet, is the
availability of multilingual error messages in the validation
engine. Also, the code validation must be easily integrated to
authoring tools, allowing its reuse in several environments.
Thus, we come across our second requirement: reuse support
and technological independence.

The fact thatNCL is amodular language allows thedefined
modules to be grouped into profiles. For example, we cite
two NCL profiles defined in the digital TV context: EDTV
(Enhanced Digital TV) and BDTV (Basic Digital TV). So,
the support to adjustment of the validation process to dif-
ferent profiles of the language is another requirement. Dig-
ital TV receivers have insufficient computational resources,
with respect to both memory and processing. So, a digital
TV middleware running in one of those receivers has lim-
ited computational power to execute interactive applications.
An interesting approach under such conditions would be the
middleware itself validating the code of the interactive appli-
cation received, avoiding the possibility of running corrupted
applications that would just waste resources. However, this
validation process must be efficient, or it would be an obsta-
cle, spendingmore resources than the trial of running a faulty
application. This scenario just reinforces a fourth require-
ment: efficiency.

Thiswork presents a detailed proposal for incremental val-
idation of NCL documents, which meets the non-functional
requirements raised in the previous paragraphs and carries
out a study in order to quantify the gain of the incremental
validation, compared to the traditional method. This valida-
tion proposal is also generic, that is, it can be adapted to
various authoring environments, both visual and textual, and
has a component-based architecture, allowing components
to be replaced by others with the same interface, but still
keeping the whole functional process.

This paper is organized as follows: Sect. 2 presents some
related work. Section 3 discusses the particularities of the
validation of NCL documents and presents the metalan-
guage used to support the incremental validation proposed
herein. Section 4 illustrates an implementation of the pro-
posed method as a proof of concept. Section 5 presents the
integration between our implementation and the IDE Com-
poser. Section 6 discusses a performance analysis, making
a comparison between a non-incremental and an incremen-
tal approach. Finally, Sect. 7 brings the conclusions of this
work.

123

J Braz Comput Soc (2013) 19:235–256 237

2 Related work

As this paper presents an incremental validation mechanism
that can be integrated to other authoring tools, this section
is organized as follows: in Sect. 2.1 some source code vali-
dation mechanisms of different authoring tools are presented
with focus onXMLvalidation techniques and Sect. 2.2 refers
to the XML incremental validation discussion, highlighting
some works found in literature that address to this topic.

2.1 Source code validation in authoring tools

When one analyzes the several existing authoring environ-
ments for applications development, we notice that most of
them has some built-in scheme to validate source code, and
such schemesmayvary from the simpler,which just performs
the lexical verification of the keywords of the language [10],
to those which implement more complex methods, such as
code correction suggestion [11].

In the scope of imperative languages, it can be noticed
that several authoring tools implement various code valida-
tion methods. Lua Eclipse [10] is a plug-in for the Eclipse
IDE [12] designed for the development of Lua scripts. This
environment features few validation resources, doing not
muchmore than the verification of keywords of the language.
Other tools, like CDT [13]—C/C++ development plug-in for
Eclipse—and Visual Studio—proprietary development tool
designed to the .NET platform—go beyond this simple veri-
fication and approach other syntactical and semantic aspects
of the code. JDT [11]—another Eclipse plug-in, which offers
a development environment for the Java language—even
implements a scheme for suggestion and application of cor-
rections in the source code.

For the code validation of declarative languages derived
fromXML, the most trivial is to think of using XML Schema
validation [14], since it specifies validation rules for the ele-
ments and attributes of the language. There are several tools
that implement this validation method. Intelligent Knowl-
edge Management Environment (IKME) [15] is a static code
validation tool that identifies syntactical errors with basis
just on XML Schema of the language. XML Screamer [16]
is another tool that uses XML Schema to validate XML doc-
uments and has an architecture that tries to optimize this
process. Such optimizations are possible because of the inte-
gration between the SAX parser and the XML deserializa-
tion. For example, in a traditional scenario, a SAX parser
throws an event whenever it finds a start tag. Then the dese-
rialization catches this event and converts the information of
the start tag for some business class related to the applica-
tion. The XML Screamer integrates the scanning, parsing,
validation and deserialization process in a single low level
tool, making unnecessary creating and catching SAX events.
It also carries out performance evaluations in order to prove

the gain when using that approach. Finally, there are also val-
idation libraries that useXMLSchema, like the standard Java
library for XML treatment and the Xerces API (Application
Programming Interface) [17].

Despite being an XML-based language, the NCL code
validation using this approach is insufficient, since NCL has
some specificities not covered byXMLSchema.NCLdefines
several references among its elements, and some of these ref-
erences are only valid if both elements are in the same com-
position (feature called “perspective-based scope”). This par-
ticularity cannot be described using only the XML Schema.
In practice, validating an NCL code using just XML Schema
neglects some important referential and contextual particu-
larities inherent to NCL. Section 3 presents more NCL par-
ticularities not covered by the XML Schema.

There are other validation processes for XML-based lan-
guages not based on XML Schema. SMIL Author [18], for
instance, is an authoring environment that employs vali-
dation techniques not based on it and is able to identify
temporal inconsistencies in the documents. It used Real-
TimeSynchronizationModel (RTSM) as internal datamodel.
SMIL Builder [19] is another authoring tool that does not
use XML Schema and performs incremental validation on
SMIL documents (in the next section this tool is described
in more details). Because of the XML Schema limitation
on describing some NCL features, our approach also does
not use it and defines a proper metalanguage to describe
NCL.

The two most important NCL authoring tools are NCL
Eclipse [20] and Composer [21]. Both tools use NCL Val-
idator [22] as validation component. TheNCLValidator is an
NCL document validation process consisting of three stages:
(i) lexical validation; (ii) structural validation; and (iii) vali-
dation of contexts and references. Stage (i) checks whether
the document structure is in accordance with the rules of a
well-formedXML. Stage (ii) validates structural aspects, like
the presence or absence of mandatory attributes or children.
Finally, stage (iii) checks whether the references in the doc-
ument are in accordance with the perspective-based scope
schema defined for NCL. This tool also features support to
multilingual error messages.

Besides performing an efficient validationprocess onNCL
documents, some requirements met by the present proposal
are notmet byNCLValidator. As it does notmake a clear sep-
aration of the language structure and the application source
code, the NCL particularities are not generalized, resulting
in the validation of each element of the language as a partic-
ular case. In practice, for each language element is defined
a class and the referential checking is hardcoded on it. The
perspective-based scope is, perhaps, the clearest example of
one of the particularities that are not generalized in the source
code. This non-separation of the structure of the language
brings a second inconvenience: in order to validate different

123

238 J Braz Comput Soc (2013) 19:235–256

profiles of the language, it is needed to change the source
code and make a new compilation of the tool.

NCL Validator uses a DOM tree [23] as internal data
modeling structure. This means that an authoring tool using
NCL Validator needs to convert the NCL code instance to
the respective DOM tree that represents it every time the
code is checked (once the validator does not maintain state
between validations), which demands more computational
cost to the process. The process would possibly be improved
if the authoring tool could work with a DOM tree to keep the
document structure. This approach brings, however, some
inconvenience. First, this forces the authoring tool to use
the same data modeling used by NCL Validator. The ideal
situation is when the validation tool is adapted to the author-
ing tool, not the contrary. A second inconvenience of this
approach is the cost of keeping aDOMtree inmemory always
updated. This problem is particularly hard to solve when we
deal with textual authoring, when it is impracticable to build
a DOM tree while the document is not well formed, making
the validation unfeasible.

As a third undesirable characteristic, NCL Validator nei-
ther employs nor allows any kind of technique that enables a
partial or incremental validation on the NCL document. So,
we notice that, despite focusing on the same target language,
NCL Validator and the method proposed in this paper have
significant differences in the validation process.

Dos Santos, in [24], discusses the validation and verifica-
tion of hypermedia documents focusing on structural, refer-
ential and behavioral checks. Structural check consists in
analyzing whether a given document satisfies the syntac-
tic rules defined by the language grammar. An example of
structural validation is the checking if a given element can
be child of its element parent. Referential check consists in
analyzing whether references between elements are valid.
Behavioral check investigates whether the hypermedia doc-
ument created describes a temporal scenario free of errors.
For example, consider two elements A and B. If the end
of element A ends element B, it is important that A ends
after B starts. Another example of behavioral check is the
verification if there is some node that is never started. An
API called aNaa (API for NCL Authoring and Analysis) was
developed following the MDA (Model Driven Architecture)
approach which implements both structural and behavioral
validation in NCL documents. Our approach is addressed for
structural and referential validation and not for behavioral
check. As in [24] is not covered the incremental validation
topic, we assume that aNaa does not perform this type of
validation.

Finally, we also cite NCL Inspector [25], which is an NCL
code reviewing tool that allows the author to define new rules
to be validated. These rules can be defined using the Java
programming language or using XSLT documents. This tool,
however, does not validate NCL code; it just validates the

defined rules. Thiswork does not focus on supporting specific
validation rules defined by users, but in establishing general
validation rules to NCL documents.

2.2 XML incremental validation

There are several works in literature that discuss XML incre-
mental validation in many different scenarios. The fact that
XML has become the de facto standard for storage and
exchange of information in modern computer systems has
increased the need for more efficient validation techniques
of such documents. In this subsection is discussed some of
these works in several contexts.

In [26] is proposed a validation approach based on an
incremental data model called SXESP (SimplifiedXMLEle-
ment Sequence Pattern) that checks whether a given XML
document conforms to the rules expressed in XML Schema.
The SXESP represents the XML tree through a sequence of
elements using some operators to connect elements that have
structural relations. An update U transforms the document D
in a newdocument D′. The first step of incremental validation
is to find the root element of the subtree to be validated. If U
is the removal of the element E, then the subtree generated
from E is moved to its parent and it is validated. If U is the
editing of the element E or the adding of a subtree rooted in
E, then the validation is performed from E and to its descen-
dants. In order to persist the new document D′ it is necessary
that U to be a valid update, otherwise U is discarded and the
system rollbacks the document to its original state.

Vianu and Papakonstantinou [6] present a method for
incrementally check XML documents. The method analyses
a given document with respect to a DTD or XML Schema
and uses complex data structures to represent the document (a
balanced tree is used for storing the children of each element).
That work is focused on database management applications
and its main concern is the structural check, ignoring any ref-
erential check between elements. The main issue addressed
in this paper is the incremental validation ofNCLdocuments.
As discussed in Sect. 3, NCL has several particularities that
ask for more sophisticated validationmethods than those that
only perform structural checks in the documents.

Thao and Munson [27] use the incremental approach to
perform a three-way merge on XML documents in a ver-
sioning system. Each document version is represented by a
delta (the changes between the original document and the
derived one) and the merging algorithm creates a result doc-
ument based on the original document and the deltas. When
any modification is made in any node, the system marks that
node. Thus, for presenting a specific document version, the
system takes the original document, the list of marked ele-
ments and the delta of that version to compute the result
document. That work carries out a performance evaluation
of the proposed algorithm against commercial tools, prov-

123

J Braz Comput Soc (2013) 19:235–256 239

ing the former to be faster, with lower memory utilization
and more precise. In our proposal, we also mark modified
elements to identify which of them need to be validated. In
addition to marked elements, we use the concept of affected
elements to identify those that were not directly modified,
but may be affected by changes in the document.

In the context of authoring, the SMIL Builder [19] is an
example of tool that performs incremental check in order to
verify the temporal consistence of SMIL documents. Like
NCL, SMIL is a hypermedia language focused on the def-
inition of synchronism relations among media composing
the application. This environment uses a structure called
H-SMIL-Net [28] (a temporal extension of the Petri Net
structure [29]) for internal representation of the SMIL doc-
ument, which offers a structured data representation model.
So, changing a part of the application code does not lead
to the verification of the entire model, but only of that part
affected by the change (incremental validation). The use of
this data structure is justified by the need, in SMIL, for check-
ing thedefinitionof inconsistent temporal synchronisms [30].
H-SMIL-Net eases the perception of temporal inconsisten-
cies, besides supporting incremental validation.

The visual nature of SMIL Builder reduces considerably
the task of validating a document. Since every interaction
between the author and the document are mediated by visual
abstractions, the validation tool may infer that the code gen-
erated by the authoring tool will always be syntactically
correct, constraining the validation process to the seman-
tic verification of the temporal synchronisms defined by the
author. Despite seeming a reduced work, the process of veri-
fying these synchronisms is not trivial. Thevalidation process
described here is equivalent to that used by SMIL Builder in
the sense that both are incremental. Besides the target lan-
guage, one of the main differences between our proposal and
the validation method employed in SMIL Builder is that the
latter is strongly coupled to an authoring tool, whereas the
former is not. Our proposal also performs structural checks,
once we cannot assume that all authoring tools that will
instantiate our validator will prevent the authors of structural
mistakes during the authoring.

3 NCL validation

NCL inherits the NCM [31] causality and constraint par-
adigm, which specifies the spatio-temporal relationships
defined among themedias that form an application. For inter-
active digital TV, the NCL profiles only support the causality
paradigm, in which a set of actions is triggered when a set of
conditions is satisfied.

Trying to provide a better structuring and encapsulation to
applications, the NCM model introduces the notion of com-
posite nodes. Composite nodes can be of two types: con-

text and alternative. Context nodes cluster nodes that have
any semantic relation between each other, as well as their
respective relationships. The body of the document itself is
a context node. The alternative nodes, on the other hand, are
responsible for adapting the content of an application.

The composite nodes, besides better structuring an appli-
cation, define the perspective of the elements inside it. So, the
links in a composition are only capable of referencing ele-
ments inside the same composition. The perspective notion
can also be understood as a nested hierarchy where an ele-
ment is found. Due to this notion, we say that NCL has
a perspective-based scope. Furthermore, the verification of
NCL code must be contextual, that is, it must take the con-
texts perspective into consideration.

Among other NCL features, this perspective notion is one
of the cases that hinder the validation of NCL documents
with basis on XML Schema only. Actually, XML Schema
would only be enough for syntactic and structural validation
of the documents, since there are several particularities in
NCL that it cannot express. For example, when checking the
correctness of a link, it is necessary to be sure whether the
nodes that are being associated are valid identifiers and are
present in the same composition (which cannot be verified
by an XML Schema specification alone).

Another feature recurrently employed in the NCL project
is the multiple references that can be made among the ele-
ments of the language. The NCL project was conceived to
allow a high reuse degree [32]. A media node, for example,
makes reference to a descriptor that, in turn, makes reference
to a region. Notice that both the descriptor and the region can
be in separate files, making the validation evenmore difficult.
A special type of reference is the one made possible by the
refer attribute. If node A refers to node B by means of the
refer attribute, then Awill inherit all of the features of B, and
theymust necessarily be of the same type. A constraint to this
reference is that it cannot happen if B is a context element
ancestor of a context element of A, or if B is one element that
also has the refer attribute referring to another node C.

A third characteristic of NCL that makes validation diffi-
cult is that the value of some attributes may depend on the
value of another attribute (like the attributes type and subtype
of the <transi tion> element). In some cases, even the car-
dinality of the elements may depend on their parent elements
(as occurs with the <compoundCondition> element, that
has different cardinalities depending whether its child of a
<causalConnector>or another<compoundCondition>)
or on the value of an attribute (as in the cardinality of the
<bind> elements of a <link>).

The above singularities tend to increase the complexity
of systematization of the validation process, eventually lead-
ing to the implementation of a validator that analyzes each
element of a language individually, making it less generic.
An inconvenience of a validator that does not generalize its

123

240 J Braz Comput Soc (2013) 19:235–256

Listing 1. Skeleton of the metalanguage primitives.

validation method is the difficulty in maintaining its code,
making unfeasible the adaptation of the validation to other
versions or profiles of the language.

The main objective of this work is to develop a method
that generalizes the treatment of part of the particularities
of NCL, allowing the development of a validation process
that deals with a reduced number of particular cases. Besides
generalizing part of the process, we also look forward to
giving support to the incremental validation of documents,
which is normally a desirable feature for authoring tools.

3.1 NCL validation metalanguage

A way to make the validator aware of the NCL structure is
to embed the structural aspects directly in the source code,
using an abstract data structure. This approach, despite being
very direct, has the problem of strongly coupling the source
code to the NCL structure. This makes difficult, for example,
to adapt the validation for different NCL profiles (or even
versions).

An alternative to this strong coupling is to describe the
language to be validated by means of a metalanguage. In this
case, the validation must dynamically interpret a specifica-
tion written in this metalanguage and run according to this
definition. With this approach, making the validator able to
accept different NCL profiles is just a matter of describing
these profiles through the metalanguage, without changing
the validator source code. Another important advantage of
this approach is the fact that the generalization of the valida-
tion process is directly proportional to the expressive power
of the metalanguage to describe NCL particularities. In other
words, the use of ametalanguage can considerably reduce the
number of particular cases that the validator must handle,
minimizing the implementation effort and the codification
errors margin.

In our previous work [33] we define a metalanguage for
NCLdescription that can express its perspective-based scope,
one of the main limitations of the use of XML Schema to
validate NCL. Besides this characteristic, this language also
describes several other NCL structural aspects. The remain-

der of this subsection is intended to explain it, highlighting
the way it describes several NCL aspects.

The declarativemetalanguage proposed is based on primi-
tives that describe certain aspects of the language.We defined
four primitives: ELEMENT, ATTRIBUTE, REFERENCE
and DATATYPE. Each one of these primitives has a set of
arguments and informs specific NCL aspects to the validator
so that it can check the code. Listing 1 presents the skeleton
of these primitives with their arguments.

The primitive ELEMENT defines the XML elements of
the NCL. This primitive has four arguments: the name of the
element, the name of the parent element, the cardinality (the
number of occurrences) of the element related to this parent
and a boolean value indicating whether this element defines
a scope or not.

In NCL, one element can be child of different parent
elements. This is the case, for example, of the element
<media>, which can be child of <context>, <body> or
<swi tch>. Another interesting particular case happenswith
the element <compoundCondition>. This element can be
either a child of a <causalConnector> element or itself.
The element <causalConnector> can have 0 or 1 element
<compoundCondition>, but a <compoundCondition>

can have as many children <compoundCondition> as we
want. This characteristic shows that for one single element,
we can have different cardinalities for different parent ele-
ments. So, according to the proposed metalanguage, a dec-
laration of an ELEMENT primitive is needed for each pair
of parent and child elements.

The cardinality of the elements can be an integer or one of
the following special characters: *, +, ?, #. There is also the
operator A followed by the numerical indexes (A1, A2...). If
the cardinality of an element is a number, this value indicates
the exact number of times that this element should appear.
The “*” indicates that the element can appear zero or more
times. The symbol “+”, on the other hand, indicates that the
element must appear at least one time, and “?” tells that the
element must appear zero or one time. The adoption of these
symbols is based on the notation commonly used to describe
regular expressions.

123

J Braz Comput Soc (2013) 19:235–256 241

The symbol # has the following meaning: let us say that
the element X has the elements Y and Z as children with
cardinality #. Then, at least once either Y or Z must appear
as child of X , with the possibility of both elements to appear
simultaneously. This is the case, for example, of the ele-
ment<regionBase>, which must have at least one element
<region> or an element <import Base> as child.

The operator A followed by the indexes defines elements
among which just one of them should appear exactly once,
and the other should not appear. Let us say that the elements
Y and Z, children of the element X, have cardinality A1. This
means that the element X must have, mandatorily, either Y
or Z as child, being allowed the existence of just one element
Y or Z as child of X. Still following this example, if the
elements P and Q are also children of X, but with cardinality
A2, then, mandatorily, besides Y or Z, the element X must
also have as child either P or Q, which can appear just once.

The primitive ATTRIBUTE specifies all attributes of the
XML elements. For each attribute of a given element, it is
needed a new ATTRIBUTE entry, even if different elements
have the same attribute. An example of this is the id attribute,
sharedbymost elements,which requires several declarations.
The first argument is a boolean value that indicates whether
this attribute ismandatory or not. Finally, the fourth argument
must be the identifier of a data type defined by the primitive
DATATYPE.

The DATATYPE primitive defines all data types that the
attributes of the elements may have. This primitive has two
arguments. The first one is the data type identifier and the
secondone is a regular expression that is capable of validating
it. So, if we want to create a new data type (boolean, for
instance), we could create a DATATYPE entry with this kind
of identifier (BOOLEAN) and a regular expression capable
of validating this new data type (∧(true|false)$).

Finally, there is the REFERENCE primitive. This prim-
itive can express references that can be made among the
elements. In NCL, saying that an element A references an
element B means that there is an attribute of A whose value
equals an attribute that identifies the element B (some exam-
ples in NCL of attributes that identify an element are id,
alias and name). The arguments of the REFERENCE primi-
tive are: the name of the element which makes the reference;
the attribute of the element which makes the reference; the
name of the referred element; the attribute of the referred
element; and the scope where the referred element must be
found.

Summarizing, there are three forms in which a reference
may occur. There are elements that can be referred from
any scope of NCL code. The id attribute of an element
<descriptor>, for example, can be referred by the descrip-
tor attribute of any element <media> , regardless of the
scope where the element <media> is. In this case, we say
that the scope of this reference is ANY.

Table 1 Attributes and children of the element <regionBase>

Element Attribute Content

regionBase id, device, region (importBase|region)+

In other case, a reference is valid only if both elements are
in the same scope (or perspective, in the NCL jargon). The
component attribute of an element <port>, for example,
mustmake reference to the id attribute of one of the following
elements: <media>, <context> or <swi tch>. However,
this reference will be valid only if the referred element is in
the same perspective of the element <port> (that is, if both
elements are children of the same element <context> or
<body>). The scope of this reference will be SAME.

Finally, in a third form of reference, the scope is defined
by the value of another attribute. Considering the element
<port> of the previous example, its interface attribute must
refer to any of the interfaces of the element referred by the
component attribute. So, if the component attribute of an
element <port> makes reference to the id attribute of an
element <media>, then the value of the interface attribute
should be: (i) the id attribute of an element <area> child
of the referred <media> ; or (ii) the name attribute of an
element<property>, child of the referred<media>. This
kind of reference, where the scope of the element depends on
the value of another attribute, is indicated by the following
syntax: $ELEMENT.ATTRIBUTE. For the case of element
<port>mentioned, this scopewould be $THIS.component.
THIS is a syntactical sugar that represents the very referenc-
ing element. There is also the syntactical sugar GRAND-
PARENT, which represents the parent of the parent of the
referencing element.

To exemplify the use of the metalanguage described in
this subsection, we will take the element <regionBase>
as a use case. According to the definition in [4], this ele-
ment has three attributes, where none of them is mandatory:
id, device and region. Two possible children are defined:
<import Base> and <region>, with the condition that at
least one of these children must be defined at least once. The
element <regionBase> is child of the element <head>,
and a document may contain either several or no element
<regionBase>. Table 1, extracted from [4] summarizes the
attributes and child elements of the element<regionBase>.

Listing 2 illustrates part of the document that represents,
in the metalanguage, the element <regionBase> in an
NCL profile. It shows the entries that define the element
<regionBase>, its attributes, its child elements and the ref-
erence made by the region attribute to one of the elements
<region> defined in the document.

Since there is only one possible parent (<head >) for the
element <regionBase>, an entry of the ELEMENT prim-
itive is sufficient to define it (line 1). In an NCL document
there can be zero or more elements of this type, so its cardi-

123

242 J Braz Comput Soc (2013) 19:235–256

Listing 2. Piece of the metalanguage that defines the element <regionBase>.

nality is defined by the operator *. The perspective concept
does not apply to this element, justifying its last argument
as false. Three ATTRIBUTE entries are needed to define the
attributes (lines 2 and 4). The possible children of the element
<regionBase> are defined by two entries of theELEMENT
primitive (lines 5 and 6). Since at least one of these elements
must appear at least once, the cardinality of both is defined by
the operator #. It is defined a reference (REFERENCE prim-
itive) which can be made by means of the region attribute,
which makes reference to the id attribute of another element
region. As the element <region> can be referred from any-
where in the document, the last argument of this primitive
is ANY (line 7). Finally, the types of each attribute declared
in Listing 2 are defined by three DATATYPE entries (lines 8
and 10).

3.2 NCL incremental validation

Incremental validation consists in validating only the parts of
the document that needs to be validated. It avoids the unnec-
essary checking of previously validated parts that have not
been affected by recent modifications.We define incremental
validation, based on the definition found in [26], as follows:

Definition 1 (Incremental validation) Being M the NCM
data model and S(M) the set of all NCL documents whose
structure follows the rules and restrictions defined by M, if
D is a representation of an NCL document, a sequence of
modifications U transforms D into U(D). Thus, considering
D ε S(M), incremental validation consists in analyzing U and
extracting from U(D) the subset of elements that needs to be
validated so as to verify whether U(D) ε S(M).

According to Definition 1, the focus of incremental val-
idation should be on checking small pieces of code rather
than the whole document. Thus an important task to allow
incremental validation is being able to infer, based on the

set of document modifications, which segments of the doc-
ument need to be further validated. In other words, we need
to identify the parts of the document that have been modified
since the latest validation and also those parts to be possibly
affected by thosemodifications, thus eliminating the need for
a complete rebuild of the NCL document representation, as
is the case with the standard validation method.

Having identified the set of elements to be validated, it
is necessary to decide which type of validation to apply
in each case. Depending on the nature of the element and
on the modification to be performed, it is quite possible
that some elements may only need a structural or referen-
tial validation, thus discarding a thorough time-consuming
document checking. Structural validation checks the element
structure regarding the arguments of the defined ELEMENT,
ATTRIBUTE and DATATYPE primitives while referential
validation checks the references made regarding the argu-
ments of the defined REFERENCE primitive.

To better organize the process of identifying the type of
validation suitable for each element, we divided NCL ele-
ments into four distinct groups: A) independent elements;
B) referencing elements; C) referred elements; and D) refer-
encing and referred elements. Figure 1 illustrates these cate-
gories.

Fig. 1 Classification of NCL elements according to their references
to/from other elements

123

J Braz Comput Soc (2013) 19:235–256 243

Listing 3. Example of validation of group A elements.

The elements in group A are those which do not reference
any other element and are not referred by any other element,
the precise reason why they are named independent. When
we need to validate a modification in an element of this kind,
all that is required is the structural checking of the element
itself and of the subtree it spawns. It is not necessary to per-
form a referential validation, as the example in Listing 3
shows: if an editing changes the value of attribute compara-
tor from eq to lt, in element <assessment Statement> ,
the validation merely needs to check if the new value of the
attribute belongs to the set of possible values and then val-
idate the structure of the subtree it generates, which in this
case comprises only the elements<attributeAssessment>
and <valueAssessment> as well as their corresponding
attributes.

It is important to note that whether type A children
elements have references or not, it does not affect the
type of validation to be made, since an edition on an ele-
ment of this type does not affect any reference in the
document, only its subtree structure. For example, chang-
ing <assessment Statement> in Listing 3 does not affect
any reference made to its <attributeAssessment> and
<valueAssessment> children.

On the other hand, when elements of group B are mod-
ified, the validation is a bit more complicated. Since these
elements make reference to other elements, it is necessary
to perform a referential validation besides the structural val-
idation, including both the element and its associated sub-
trees. Consider the case of the element <link> when refer-
encing elements of the type <causalConnector>. Accord-
ing to Sect. 3, there should be as many <bind> elements
as there are roles defined by the referred connector. Thus
if an editing in the document creates a link to a differ-
ent connector, it is vital to verify whether the new con-
nector does exist and the <bind> elements are consistent
with the roles defined in its scope. Listing 4 presents an
excerpt of code where validation becomes mandatory since

attribute xconnector is now referencing a new connector
named conn2.

We now discuss the validation of elements belonging to
group C, i.e. elements referred by others. When a mem-
ber of this group is modified, the referencing elements also
need to be checked. Two different types of validation are
required in this case: the subtree generated by the modi-
fied element needs to be checked structurally, and the ele-
ments affected by the changes need to be checked referen-
tially. Consider an element <region> being referred by an
element <descriptor>. If the id attribute of the element
<region> with value rg1 is modified, it is necessary to
check if the new value of the id attribute is valid and it
is also necessary to check whether the reference made by
the <descriptor> element is still valid for this modifica-
tion. Listing 5 shows the code snippet where the validation
described is applied.

Finally, in group D there are the elements that refer to
other elements and are also referred by other ones. The sub-
tree generated from the modified element should be checked
structurally and referentially, and the referencing elements
should have their references checked as well. Listing 6 shows
an example of this type, in which a<media> element refers
to a <descriptor> and is referred by an element <bind>.
If a change occurs in <media>, it is necessary to check if
the values of its attributes are correct and whether the refer-
ence to the element <descriptor> and the reference from
the element <bind> remain valid.

From the above discussion, we conclude that the issue
here is whether an element refers to other elements or not.
Referential validationmust bemadewhen every element that
makes reference or is referred by other elements is edited. In
the first situation, it will be referentially validated, since its
edition does not affect the elements referred by it. In the
second situation, however, all the other elements that make
reference to it must go through a reference validation as well.
Structural validation is thus related to the fact that the element

123

244 J Braz Comput Soc (2013) 19:235–256

Listing 4. Example of validation of group B elements.

Listing 5. Example of validation of group C elements.

was directly modified and then needs to have its structure
checked again.

4 Implementation

As a proof of concept, we developed an incremental valida-
tion tool thatwasmodeledusing a component-based architec-

ture, intending to provide a low coupling among its elements.
Figure 2 illustrates this architecture, whereas the elements
Validation, Interpreter and Messages represent the valida-
tor components with well-defined functions, and the element
Model is the component that represents theNCLdocument to
be validated. For integrationwith any other tools, it is used the
Adapter design pattern [34] to convert the model used by the

123

J Braz Comput Soc (2013) 19:235–256 245

Listing 6. Example of validation of group D elements.

Fig. 2 The component-based architecture proposed for the validation
tool

tool to our model. Section 5 presents the integration between
our implementation and the IDENCLComposer. In that sec-
tion is discussed how a tool can integrate the implementation
described here in order to support the NCL authoring. Figure
2 shows the proposed architecture for the validation tool.

A user usually edits a NCL document through an IDE that
has its own model to maintain the document. It is unfeasi-
ble for the validation tool to understand the several existing
IDE models, each of which with its own particularities. The
Model component in Fig. 2 is the model used by the valida-
tor tool. A developer must create an adapter to track the IDE
model and updates the validator one. Every edition on the
Model component triggers a routine that checks which ele-
ments were affected by the edition. When the user submits
a Model instance to be validated, the Validation component

validates only the affected elements according to the type of
validation needed, using the Interpreter component to sup-
port the validation. The Interpreter component is tied to the
language structure through an instance of the metalanguage
defined in Sect. 3.1. For each error found, a corresponding
message is created in the Messages component to return to
the user. The following sections delve in each component.

It is worth mentioning that, in our implementation, there
are two phases clearly distinct: the first is the update of the
model and the second is the validation itself. Note that the
first phase takes place in a previous moment to the valida-
tion itself. Once the focus of this work is the later phase,
that is, the (incremental) validation of NCL documents, it is
beyond the scope to provide a deep discussion about which
is the best model for representing NCL documents. Never-
theless, in order to better explain how the validator imple-
mented works, in the next subsection will be detailed how
our model is defined and how it can be updated. Also note
that even if one can use othermodel completely differentwith
the same interface, the incremental validation here described
still would work. The performance tests discussed in Sect.
4.5 were carried out with focus on the validation phase.

4.1 Model

The model is the data structure that must be used by the
Entity1 so that the NCL document can be validated by the

1 From now on we will use the term “Entity” as alias for a hypothetical
authoring tool that uses the implementation described in this paper.

123

246 J Braz Comput Soc (2013) 19:235–256

Fig. 3 Vertical arrows illustrate the flow of elements in the Model.
Horizontal arrows illustrate the flow of the Model between the Entity
and the Validator

tool.2 It represents the document and performs important
operations as the Entity interacts (throughwell-defined prim-
itives) with the document. Figure 3 illustrates the role of the
model in the architecture.

The vertical arrows illustrate the flow of elements in the
model. The Entity is the data source, which feeds the model
through the ADD/EDIT/REMOVE ELEMENTS and ADD
CHILD and must guarantee that the model matches the state
of the document to be validated. The Validator, in turn,
receives the elementsmodified and affected by the operations
performed in the model. This scheme is mainly responsible
for making the incremental validation viable. It concentrates
on the concepts discussed in Sect. 3.

The horizontal arrows illustrate the flow of the model
between the Entity and the Validator. Every time that the
Entity wants to validate an NCL document, it must forward a
model instance to the Validator (through the Validator API),
which, in turn, returns the messages informing the consis-
tence of the document.

Each document element is represented in the model by
an instance of the class ModelElement. This class has a set
of data structures that keeps information about the elements.
EachModelElement has an attribute list, a child elements list,
a pointer to its parent and a special list (called references) that
keeps all the references made to it. The model, on the other
hand, is represented by an instance of the class Model. This
class maintains some data structures to represent NCL doc-
uments and offers an API that allows the Entity preserve the
consistence between the model and the document. Figure 4
illustrates the Model class.

Whenever one of the primitive is invoked, the model per-
forms some internal processing to verify the elements that

2 The term “tool”, on the other hand, will be used as alias for the
Validator implemented.

Fig. 4 Class that represents the Model component in Validator

need to be validated after the operation. The use of well-
defined primitives to update the internal state suits the incre-
mental nature of authoring, in which features are being added
successively to the document. This also ensures that the
model is always in a state that can be validated, i.e., the
model is always in a state susceptible to validation before
and after a primitive is invoked (because each primitive is an
atomic operation). Consequently, this approach leaves room
for heuristics that seek to optimize the exact moment that
the validation process should be performed, e.g., a tool can
expect a minimum number of updates be realized before val-
idating the Model.

The Model maintains two main data structures that allow
the identification of elements to be validated: a list of marked
elements (marked_elements) and a list of affected elements
(affected_elements). Whenever one element is added or
edited, the Model inserts it into the marked elements list.
Whenever one element is marked or removed, then all the
elements that refer it are inserted into the affected list, unless
they already are in the marked list (otherwise a double val-
idation would be performed in these elements). Thus the
Model can differentiate edited elements (marked list), ele-
ments affected by the editions (affected list) and other ele-
ments that do not need to be validated.

Despite the two lists discussed above, there is also amapof
elements that performs the search of elements inserted in the
Model in a constant time (O(1)). Such performance justifies
the use of this map, instead of other options like a linked list
(since its average search time is O(N), compromising the
Validator performance).

To complete the data structures maintained by the Model,
there is a map that stores the references to elements that
were not inserted into the Model. Considering the Listing
7, the descriptor elements identified as “d1” and “d2” are
referring a region element identified as “rg1” that was not
inserted into the Model. When the author creates the region
“rg1” and inserts it into the Model, this should be able to
identify that “d1” and “d2” do a reference to this region and
then add them to the references list of “rg1” (list of elements
that reference this region). A map of elements not inserted
(not_inserted_elements) is used to store the identifiers of the
elements that were not inserted and the list of elements that
reference them.

123

J Braz Comput Soc (2013) 19:235–256 247

Listing 7. Descriptors pointing to a region not created yet.

It is important to emphasize again that the instant that
the primitives are called to update the Model and the instant
that validation occurs are distinct. This enable in theory the
possibility of one implementation of the validator allow the
entity tool to interfere in the primitive calls (e.g., though
listeners) making themmore costly (this could happen while
the document is being edited, for example) without affecting
the validation time of the Model after. Although the focus of
this work is on (incremental) validation, we briefly describe
the complexity of theModel primitives in the next subsection.

4.1.1 Complexity analysis of Model’s primitives

There are basically four operations to be realized when
adding an element E to the Model: creating the E object of
the class ModelElement; checking whether an element has
made a reference to E before; checking whether E does ref-
erences to other elements; inserting E into the marked list
and the elements which reference it into the affected list. The
instantiation of E is a time constant operation (O(1)). Check-
ing whether an element has made a reference to it before its
inclusion into the Model is a time constant operation too
(O(1)). However, if there are R elements that do references
to E, it is necessary to copy all of them to the references list
of E, making the complexity of this operation be O(R). On
the other hand, to figure out whether E does any reference
to others elements it is necessary to check its attributes. If
A is the number of attributes of E, the complexity of this
operation is O(A). Finally, inserting E into the marked list
is a time constant operation while inserting the elements that
do references to it into the affected list is an O(R) operation.

Briefly, we can say that the complexity of the primitive
addElement is O(R + A). Given one element of the NCL
current version (3.0), there are at most six other elements that
can correctly do reference to it. Just to compare, NCL has 45

elements. This implies that in a real scenario R will always
be lesser than N, unless the authors have purposely created
an abnormal number of elements that do reference to one
specific element, what will make R tending to N. Likewise if
we have inmind that the element that have the highest number
of attributes is the descriptor, which has only 18 attributes,
we can conclude that the complexity O(R + A) will always
be lesser than O(N) in a real scenario.

The edition of elements consists basically in updating the
attribute values of an element to new ones. However, it is
necessary to ensure that the old references made to the ele-
ment will be updated to the new ones. Considering A1 as the
number of attributes of an element E before its edition, A2
as the number of attributes of E after its edition and R1 as
the number of elements that do reference to E. To update the
references of E, it is necessary to process each attribute of
E, what is an O(A1 + A2) operation.

The worst case of the editElement primitive is when the
identifier attribute of E is changed. In this case, it is neces-
sary to update the list of elements that do reference to the
old identifier of E (O(R1)), because these elements now do
reference to an element that was not inserted into the Model,
and check whether any element of the not_inserted_map has
made a reference to the new identifier attribute of E. If R2 is
the number of elements that do reference to the new identifier
of E, then copying them to references list of E is an O(R2)

operation. Finally, it is necessary to add E into the marked
list (O(1)) and the elements that do reference to it into the
affected list (O(R1+ R2)). So the complexity of the editEle-
ment, in the worst case, will be O(A1 + A2 + R1 + R2).
By the previous paragraph, we can say that in a real scenario
such complexity will always be lesser than O(N).

The removeElement primitive is simpler in comparison
with the previous ones. It consists in removing one element
E of the Model and adding all the elements of it references

123

248 J Braz Comput Soc (2013) 19:235–256

list to the Model affected list. In that case, if R is the length
of the references list, the complexity of this operation will be
O(R).

Finally, addChild primitive manipulates some pointers of
the Model elements in order to associate the parent/child
relation of these elements. If P is the parent element and C
the child element, this primitive will add C to the children list
of P and make the parent pointer of C points to P. After this
operation, it is necessary to add both P and C to the marked
list (O(1)).

4.2 Validation

TheValidation component is the one responsible for perform-
ing the validation indeed. For each element in themarked list,
it identifies the type of the element (according to the types
defined in Sect. 3.2) and performs a validation regarding this
type. It uses the Interpreter component knowledge about the
language structure to identify the element type.

All the elements in the marked list, regardless of its type,
must be structurally validated. Type A and C elements do not
need to be referentially validated because they do not have
any attribute that does reference to others elements. Type A
and B elements can directly build error messages to all ele-
ments of its references list without checking the references,
since they do not have any referenceable attribute. Thus, type
D elements are the most costly ones to the validation, since
both elements (beyond the structurally validation) and the
elements that do reference to them must be referentially val-
idated.

Last but not least, it is important to emphasize that due
to the inability of the metalanguage (as of other languages,
like XML Schema) in covering all NCL particularities, some
minor featuresmust be directly hardcoded on the source code
of this component, e.g., the number of instantiated roles in a
link element must match the number of defined roles in the
causalConnector element.

4.3 Interpreter

The Interpreter component is the one responsible to know-
ing the rules and the structure of the target language. It uses
the metalanguage specification to process several Valida-
tion component requests about issues found in the Model
instance, e.g. an element E1 can be the parent of an element

E2, an attribute A1 of an element E3 can refer to an attribute
A2 of an element E4, an attribute A3 of an element E5 can
have S as value, etc. This component is also used to know the
type of each element, e.g. elements that do not have entries
in the metalanguage primitive REFERENCE are type A, ele-
ments that have entries in the REFERENCE primitive but
only on the first argument (element_name) are type B, etc.

The metalanguage specification can be stored in a text
document and must be updated whenever the target language
changes. In practice, separating the language structure and
the validation source code allows the validation to be adapt-
able to others languages and other profiles of the same lan-
guage (e.g., the BDTV profile of NCL) without affecting its
source code.

This component, as it is often used as a source of infor-
mation, shall have fast routines that do not affect the valida-
tion performance. Thereby one implementation should do an
initial preprocessing on the metalanguage specification and
organize the information in an efficient way instead of being
frequently performing system calls and searches on the entire
metalanguage document.

4.4 Message

TheMessage component is the one that manages all the mes-
sages from the validation process. For each error found dur-
ing the validation, the Validation component requests a mes-
sage for this component.

The independence of the validation process and the mes-
sages creation allows a more flexibility support to multilin-
gual feature. During the instantiation of this component, it is
informedwhich is the preferred language for themessages. If
the preferred language is not supported, the messages will be
created in the default language (English). The messages for
each supported language are stored in text files (called “lan-
guage files”) that are parsed in the Validator constructor. The
namesof the languagefiles are encoded according to the IETF
BCP 47 [35] standard. This means that in order to add a new
language to Validator, one just have to create a new file, name
it according to the standard used and place it in the default
directory where the Messages component searches for lan-
guage files. It is not necessary to recompile any source code.

Finally, beyond the file name convention, the content
of the language files needs to follow a simple syntax.
Listing 8 presents a snippet of the language file that stores

Listing 8. A snippet of the file that stores English messages.

123

J Braz Comput Soc (2013) 19:235–256 249

Listing9: File B.ncl.

the English messages. Note that each message has a unique
identifier (left side of the equal symbol) and a set of para-
meters (‘%s’). The Validation component needs to know the
identifier of the message that will be created and also needs
to inform the parameters that will fill the “%s” gaps. This is
the same approach adopted by the NCL Validator (actually,
the language files currently being used are also the same for
both tools).

4.5 Case study

This section develops a simple case study to illustrate the
validator features described in this work. Considering that
the author begins the development of the NCL document
from the preexisting B.ncl of the Listing 9. The first step that
one tool should do is to map the existing document to the
Validator Model though the primitives described in Sect. 4.1.

Figure 5 illustrates the mapping of the B.ncl file to the
validator Model. Beside the B.ncl file there is the primitive
execution log (the attributes list was omitted of the primitives
asmatter of space). The tree at the right side of the picture rep-
resents the document structure (parent/child elements rela-
tionship) and each node symbolizes one ModelElement with
it attributes and references list (the ref_by list in each node of
the picture). The list of elements that were not inserted into
the Model is represented by the Not Inserted bottom table,
in which the left field is the identifier of the element (e.g., id
and name attributes) and the right field are the elements that
do reference to this identifier.

The marked and affected lists are detached in the bottom
right part of the picture. We can note that the marked list has

all the elements of the document while the affected list is
empty. This happens to avoid repeated validations because,
likewe said, if one element is in themarked list it will already
be referentially validated.

TheModel is always in a state capable of validation before
and after one primitive is executed. As we said, the decision
of the exact moment that the validation will be performed is
left to the tool. Considering, then, that the Model of Fig. 5 is
committed to the validation described in Sect. 4.2, the Listing
10 shows the errors found in the presented NCL document.

Continuing the example, the author now adds more infor-
mation to the NCL document. The Listing 11 illustrates
the new NCL document (B++.ncl), to which was added the
descriptorBase element. Figure 6 illustrates the mapping of
this new NCL to the Model.

Because the Model stores the document state, it is not
necessary to insert all the document elements again, only the
modifications made, avoiding redundant processing of the
primitives. When inserting the new element descriptorBase,
is necessary to update the tree structure, placing the descrip-
tor element as a descriptorBase child and this one as a head
child. The marked list, then, will have the element descrip-
tor (that did not leave the list in the last validation), the new
element descriptorBase and its parent head that needs to val-
idate its children cardinality. The affected list, on the other
hand, will only have the media element, because this is the
only element that can be affected by the modifications made
(it does a reference to descriptor).

When submitting the Model to the validation again, we
found that it does not have any errors, showing that NCL doc-
ument is correct. The first validation acted as a conventional

123

250 J Braz Comput Soc (2013) 19:235–256

Fig. 5 B.ncl mapping to Model

Listing 10: Errors found in B.ncl.

validation because all the elements were both structurally
and referentially validated. The second validation, however,
shows the real gain with the incremental validation. In the
case of a conventional validation, all the elements would be
validated again independently of the modifications made on
the document. This leads to a wastage of resources, since
several elements that were not affected by the modifications
madewill pass again through the sameunnecessary) tests bat-
teries. In the incremental validation case, only the elements
that can be affected by the modifications made are checked
again, and these validations can be referential or structural
(or both) for each element.

5 Integration with IDE composer

The Composer is an authoring tool based on multiple syn-
chronized views of the same document. Each one of these

views, in practice, is one plugin that can be added to the tool.
Figure 7 shows the Composer IDE with six views: textual,
structural, layout, outline, properties and debug.

The Composer architecture is composed by onemicroker-
nel that maintains an internal data structure that represents
the NCL document being edited. Whenever one plugin mod-
ifies the model (adding, editing or removing elements) the
microkernel sends a message to all the other plugins notify-
ing them of these modifications. The Composer allows that
each plugin performs reading operations without sending a
message to the microkernel in order to forward it to the other
plugins (this ensures that all plugins will always be aware
of the current state of the Composer model). We can note
that the Composer strategy of incremental modification on
its model suits to the incremental validation described in this
work.

In [21] is described the necessary steps in order to create a
plugin to Composer. Here we just provide a brief description.

123

J Braz Comput Soc (2013) 19:235–256 251

Listing11: B++.ncl.

<descriptorBase>

<

</descriptorBase>

Fig. 6 B++.ncl

123

252 J Braz Comput Soc (2013) 19:235–256

Fig. 7 IDE composer

Fig. 8 Textual View incorporates error messages from ValidatorPlugin

123

J Braz Comput Soc (2013) 19:235–256 253

Fig. 9 Multilanguage validator plugin

The Composer offers anAPI that has two interfaces that must
be implemented in order to create a plugin: IPluginFactory
and IPlugin. The first one creates an instance of one plugin,
storing information like version, developers, etc., while the
second one is the plugin itself. The IPlugin interface has three
main methods: onEntityAdded, onEntityChanged and onEn-
tityRemoved. Such methods are executed when elements are
added, edited and removed of the Composer model, respec-
tively.

As discussed in the last section, each authoring tool has
its own data structure to represent the NCL document being
edited, and such structures are different from the ones main-
tained by the ValidatorModel described in Sect. 4.1. Accord-
ing to [34], the design pattern Adapter converts a class inter-
face to a client interface, allowing different classes with
incompatible interfaces work together (this is the exactly
case of the Validator and the Composer interfaces). Thereby,
the integration between the implemented validation and any
authoring tool consist simply in creating an adapter that con-
verts the tool model to the Validator Model and ensures that
both are synchronized.

In order to integrate the Validator to the Composer, it was
developed a validation plugin. Three classes were created:
ValidatorPluginFactory, ValidatorPlugin and ComposerN-
CLAdapter. The ValidatorPluginFactory class implements
the interface IPluginFactory and instantiatesValidatorPlugin

objects that implements the IPlugin interface. ValidatorPlu-
gin objects instantiates the ComposerNCLAdapter adapter
thatmaps themethods onEntityAdded, onEntityChanged and
onEntityRemoved to the Validator primitives (addElement,
addChild, editElement and removeElement).

Whenever the validation plugin is notified about a modi-
fication made on the Composer model, it triggers the valida-
tion. Only the modified elements since the last validation and
those affected by suchmodifications are validated, according
to what described in Sect. 3.2. At the end of the validation
the plugin emits a message informing the errors found to the
other plugins. The emission of these messages allows other
plugins to incorporate the error messages from the validator.
Figure 8 shows the validation plugin running as well as the
integration of its messages with textual view plugin.

Finally, the Composer has the internalization functional-
ity. Currently there is support for two languages: English and
Portuguese. Figure 9 shows the same error message being
displayed in these two languages.

6 Incremental versus standard validation

This section presents a comparison between the methods of
standard and incremental validation in terms of speed and
responsiveness when applied to anNCL document according
to the implementation described in earlier sections.

123

254 J Braz Comput Soc (2013) 19:235–256

6.1 Experimental design

As a scenario, it is considered an NCL document of a given
size (namely, number of elements) which is being modified
by a user/programmer/application and that is validated in the
background by means of either a standard or an incremental
method. The time spent to validate the document was chosen
as response variable, i.e., the time necessary to examine the
document (in whole or in part) and return control back to the
programmer. As factors that may influence the outcome of
the experiment, there are the number of elements in the doc-
ument, the number of modifications between each validation
(the step), and the type of validation process. For each factor,
two levels are defined resulting in a 23 experimental design
as shown in Table 2.

We developed a program that generates anNCL document
of a certain size, introduces modifications in that document
and submits it to validation. It then measures the time nec-
essary to validate the modified document. Each experiment
was repeated 30 times and the means with a 95% confidence
interval were calculated.

6.2 Results

Figure 10 shows the result of a document with 100 ele-
ments validated by means of a standard/incremental method.
The standard validation has to inspect the whole document
and thus has an average time of 35ms. For the incremen-

Table 2 A 23 experimental design

Factors −1 1

No. of elements (A) 100 1,000

Step size (B) 5 15

Type of validation (C) Incremental Standard

Table 3 Influence of different factors on document validation time

Parameter Estimated average Variation (%)

q0 45.856 −
qA 31.7553 27.48

qB 1.4081 0.005

qC 40.5681 44.85

qAB −0.0461 0.00

qAC 31.8378 27.62

qABC 0.0618 0.00

tal method, the step between validations is incremented by
a factor of 5 elements each time and we observe that the
response time is dependent on the size of the step. This
time can be up to 7 times smaller than the time taken by
standard validation method, for a step of 5 elements, and
grows as the interval between validations stretches. Smaller
steps yield more responsiveness, as control is given back
promptly to the IDE, however, they can cause a certain perfor-
mance penalty because of the frequent calls to the validation
routine.

Table 3 summarizes the influence of each factor in the
response variable. We notice that the validation method (A)
and the number of elements in the document (C) were the
two most influential factors alone, accounting, respectively,
for 27.48% and 44.85% of the response variable. The com-
bination of factors A and C also had an influence of 27.62%.
The step size had a very small influence on the validation
time.

6.3 Discussion

The experiments performed have shown that the incremen-
tal validation method is more advantageous than its standard
counterpart. It is more intuitive, considering the nature of

Fig. 10 Comparison between
the time necessary to validate
the whole document and the
time to validate the document in
smaller parts (incrementally)

123

J Braz Comput Soc (2013) 19:235–256 255

the declarative authoring process, consumes less processing
time as it validates only the portion of the document that
has been modified, and, although it could potentially impose
a certain performance penalty when using small incremen-
tal validation steps, it has revealed in practice a negligible
overhead. Summarizing, the incremental validation is faster
and more flexible than the standard method as our tests have
demonstrated.

7 Conclusion

In the interactive digital TV (iTV) arena, application devel-
opment and presentation usually occur in distinct places. The
development stage is carried out at the broadcasters’ and/or
producers’ premises whereas presentation occurs at viewers’
households. In both cases, there is a clear need to validate
application code in order to guarantee it is in accordance
with current standards. This not only allows applications to
run on anymanufacturers’ equipment (as long as it adheres to
the standard) but it will also avoid wasting scarce computa-
tional resources on set-top boxes trying to execute erroneous
applications. Nowadays, with the advent of Social TV and
similar applications, which give the viewer the possibility to
create and share his/her own content, the need for on-the-fly
validation becomes more evident.

This work describes an incremental validation process for
NCL, a declarative hypermedia language used for iTV appli-
cations development in Brazil, Argentina, Japan and several
other countries. NCL is based on XML and is currently an
ISDB-Tb standard and also an international ITU-T recom-
mendation for IPTV.

The peculiarities ofNCLhave been discussed in the paper,
especially those that make it particularly difficult or imprac-
tical to be validated by XML Schema or DTD, standards
commonly used with other XML-based languages employed
in iTV, such as SMIL, XHTML and BML. Given the incre-
mental, almost interactive approach by which hypermedia
documents are created, we believe that incremental valida-
tion, which is carried out gradually, as the user types a new
line of code or adds a visual component to an IDE, is more
natural and efficient, besides consuming less computational
resources.

The incremental validation process proposed and imple-
mented in this paper is based on a categorization of NCL
language elements that highlights which parts of code need
to be validated further after the developer makes an editing
on the document. Our proposal is organized into two dis-
tinct stages: firstly, it analyzes the local effects of a code
modification and looks for any side effects that it may have
triggered. Secondly, it selects the type of validation to be
employed in order to guarantee document consistency. The
determination of side effects is especially important, since

NCL has elements, such as links and connectors, that seman-
tically and syntactically bind elements distributed through-
out the NCL document and which may not be so obvi-
ously correlated. This feature is accomplished through a
metalanguage that provides a formal annotation of these
relationships between elements and media objects in NCL
documents. The incremental method implemented here also
allows the fine tuning of the interval between subsequent
validations, given one may wish a more immediate sys-
tem response (by validating each change) or a more con-
servative and efficient behavior (by validating a group of
changes).

This work also reports an implementation of our proposal
with focus on the instantiation of the method described. The
validator implemented has a Model that maintains the state
of the NCL document being created and performs impor-
tant preprocessing operations in order to efficiently support
incremental validation. Although the Model primitives work
before the validation itself (thereby not affecting the val-
idation time) we perform a complexity analysis to detect
how costly they are. Thus the validation ensures the entire
document validity by only applying a set of structural and
referential tests on the elements affected by the user edi-
tions. This separation of the validation process in two dis-
tinct phases allows it to be made smoothly since its com-
plexity is scattered to different moments of the application
development. We also present a case study and illustrate how
our validator is integrated with the iTV authoring tool NCL
Composer.

In order to verify the performance of the proposedmethod,
comparative tests confronting standard and incremental vali-
dation have been carried out. We chose as factors the number
of elements in the document, the interval between subsequent
validations and the type of the validationmethod itself (incre-
mental or standard) resulting in a 23 experimental design. The
means, collectedwith a 95%confidence interval revealed that
incremental validation, as proposed and implemented in this
paper, can perform NCL document validation up to seven
times faster than the standard method, with negligible per-
formance penalty due to the use of validation steps. It was
also found that the type of validation and the number of ele-
ments in the document were the most prominent factors in
the experiment, accounting for more than two-thirds of the
validation time.

As future work, we intend to perform comparative tests
of our validator against other NCL validation tools such as
NCLValidator, which is probably themost used tool forNCL
validation since it already comes integrated with the NCL
Eclipse and Composer. It is interesting to check the memory
usage and average validation time of our tool when compared
to NCL Validator into a simulated environment with scarce
computational resources. Finally, we also want to perform a
qualitative evaluation of our tool with NCL programmers.

123

256 J Braz Comput Soc (2013) 19:235–256

References

1. Soares LFG, Barbosa SDJ (2009) Programando em NCL Progra-
mando em NCL 3.0: Desenvolvimento de Aplicações para o Mid-
dleware Ginga, TV Digital e Web. Elsevier, Rio de Janeiro

2. W3C (2002) XHTML™ 1.0 The Extensible HyperText Markup
Language, 2nd edn. http://www.w3.org/TR/xhtml1/. Accessed 27
March 2013

3. W3C (2008) Synchronized Multimedia Integration
Language (SMIL 3.0). http://www.w3.org/TR/2008/
REC-SMIL3-20081201/. Accessed 27 March 2013

4. Soares LFG, Rodrigues RF, de Resende Costa RM (2006) Nested
context model 3.0 part 6–NCL (nested context language) main
profile. Tech. rep., Departamento de Informtica da Pontifcia Uni-
versidade Catlica do Rio de Janeiro. http://bib-di.inf.puc-rio.br/
techreports/2006.htm

5. Petre M (1995) Why looking isn’t always seeing: readership skills
and graphical programming. Commun ACM 38(6):33–44. doi:10.
1145/203241.203251

6. BalminA,PapakonstantinouY,VianuV (2004) Incremental valida-
tion of xml documents. ACM Trans Database Syst 29(4):710–751.
doi:10.1145/1042046.1042050

7. Hess J, Ley B, Ogonowski C, Wan L, Wulf V (2011) Jumping
between devices and services: towards an integrated concept for
social tv. In: Proceedings of the 9th international interactive con-
ference on interactive television, ACM, New York, NY, USA,
EuroITV ’11, pp 11–20. doi:10.1145/2000119.2000122

8. de Resende Costa RM, Moreno MF, Rodrigues RF, Soares LFG,
(2006) Live editing of hypermedia documents. In: Proceedings of
the ACM symposium on Document engineering (DocEng ’06).
ACM, New York, pp 165–172. doi:10.1145/1166160.1166202

9. ITU–International Telecommunication Union (2009) Nested con-
text language (NCL) and Ginga-NCL for IPTV services

10. LuaEclipse (2008) An integrated development environment for
the lua programming language. http://luaeclipse.luaforge.net/.
Accessed 27 March 2013

11. Eclipse JDT (2001) Eclipse java development tools (jdt). http://
www.eclipse.org/jdt/. Accessed 27 March 2013

12. Eclipse (2001) The eclipse foundation open source community
website. http://www.eclipse.org/. Accessed 27 March 2013

13. Eclipse CDT (2002) Eclipse cdt (c/c++ development tooling).
http://www.eclipse.org/cdt/. Accessed 27 March 2013

14. W3C (2004) XML Schema Part 1: Structures Second Edi-
tion. http://www.w3.org/TR/xmlschema11-1/.Accessed 26March
2013

15. Shivadas A (2004) Intelligent correction and validation tool for
xml. University of Kansas, Dissertation

16. Kostoulas MG, Matsa M, Mendelsohn N, Perkins E, Heifets A,
Mercaldi M (2006) Xml screamer: an integrated approach to high
performance xml parsing, validation and deserialization. In: Pro-
ceedings of the 15th international conference onWorldWideWeb,
ACM, New York, WWW ’06, pp 93–102,. doi:10.1145/1135777.
1135796

17. Apache (1999)Apache xerces. http://xerces.apache.org/. Accessed
27 March 2013

18. Yang CC, Yang YZ (2003) Smilauthor: An authoring system
for smil-based multimedia presentations. Multimedia Tools Appl
21(3):243–260. doi:10.1023/A:1025770817293

19. Bouyakoub S, Belkhir A (2011) Smil builder: An incremental
authoring tool for smil documents. ACM Trans Multimedia Com-
put Commun Appl 7(1):2:1–2:30. doi:10.1145/1870121.1870123

20. Azevedo RGA, Soares Neto CdS, Teixeira MM, Santos RCM,
Gomes TA (2011) Textual authoring of interactive digital tv appli-
cations. In: Proceddings of the 9th international interactive con-
ference on Interactive television, ACM, New York, EuroITV ’11,
pp 235–244. doi:10.1145/2000119.2000169

21. Lima BS, Azevedo RGA, Moreno MF, Soares LFG (2010) Com-
poser 3: Ambiente de autoria extensível, adaptável e multi-
plataforma. In: II Workshop de TV Digital Interativa, WTVDI
(WebMedia’10)

22. LAWS (2009) Ncl validator. http://laws.deinf.ufma.br/
nclvalidator/. Accessed 27 March 2013

23. W3C (1998) Document object model (dom) level 1 specification.
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/.
Accessed 27 March 2013

24. dos Santos JAF (2012) Multimedia and hypermedia document val-
idation and verification using a model-driven approach. Universi-
dade Federal Fluminense, Dissertation

25. Honorato GdSC, Barbosa SDJ (2010) Ncl-inspector: towards
improving ncl code. In: Proceedings of the 2010 ACM Sympo-
sium on Applied Computing, ACM, New York, NY, USA, SAC
’10, pp 1946–1947. doi:10.1145/1774088.1774500

26. Sun B, YuanX, KangH, HuangX, GuanY (2010) Incremental val-
idation of xml document based on simplified xml element sequence
pattern. In: Proceedings of the 2010 SeventhWeb Information Sys-
tems andApplicationsConference, IEEEComputer Society,Wash-
ington, DC, USA, WISA ’10, pp 110–114. doi:10.1109/WISA.
2010.28

27. Thao C, Munson EV (2010) Using versioned tree data structure,
change detection and node identity for three-way xml merging. In:
Proceedings of the 10th ACM symposium on Document engineer-
ing, ACM, New York, NY, USA, DocEng ’10, pp 77–86. doi:10.
1145/1860559.1860578

28. Bouyakoub S, Belkhir A (2008) H-smil-net: A hierarchical petri
net model for smil documents. In: Proceedings of the Tenth Inter-
national Conference on ComputerModeling and Simulation, IEEE
Computer Society, Washington, DC, UKSIM ’08, pp 106–111.
doi:10.1109/UKSIM.2008.54

29. Peterson JL (1981) Petri net theory and the modeling of systems.
Prentice Hall PTR, Upper Saddle River

30. Yang CC (2000) Detection of the time conflicts for smil-based
multimedia presentation. In: In Proc. of 2000 computer sympo-
sium (ICS-2000)-Workshop on Computer Networks, Internet, and
Multimedia, pp 57–63

31. Soares LFG, Rodrigues RF (2005) Nested context model 3.0 part
1–NCM core. Tech. rep., Pontifícia Universidade Católica do Rio
de Janeiro-Puc-Rio. http://bib-di.inf.puc-rio.br/techreports/2005.
htm

32. Neto CdS Soares, Soares LFG, de Souza CS (2010) The Nested
Context Language reuse features. J Braz Comput Soc 16:229–245.
doi:10.1007/s13173-010-0017-z

33. Cerqueira Neto JR, Santos RCM, Soares Neto CS, Teixeira MM
(2011) Método de validação estrutural e contextual de documentos
ncl. In: Proceedings of the 17th Brazilian symposium on multime-
dia systems, WebMedia ’11

34. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns:
elements of reusable object-oriented software. Addison-Wesley
Longman Publishing Co., Inc., Boston

35. Davis M, Phillips A (2009) Tags for identifying languages. http://
www.hjp.at/doc/rfc/rfc5646.html. Accessed 27 March 2013

123

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://www.w3.org/TR/2008/REC-SMIL3-20081201/
http://bib-di.inf.puc-rio.br/techreports/2006.htm
http://bib-di.inf.puc-rio.br/techreports/2006.htm
http://dx.doi.org/10.1145/203241.203251
http://dx.doi.org/10.1145/203241.203251
http://dx.doi.org/10.1145/1042046.1042050
http://dx.doi.org/10.1145/2000119.2000122
http://dx.doi.org/10.1145/1166160.1166202
http://luaeclipse.luaforge.net/
http://www.eclipse.org/jdt/
http://www.eclipse.org/jdt/
http://www.eclipse.org/
http://www.eclipse.org/cdt/
http://www.w3.org/TR/xmlschema11-1/
http://dx.doi.org/10.1145/1135777.1135796
http://dx.doi.org/10.1145/1135777.1135796
http://xerces.apache.org/
http://dx.doi.org/10.1023/A:1025770817293
http://dx.doi.org/10.1145/1870121.1870123
http://dx.doi.org/10.1145/2000119.2000169
http://laws.deinf.ufma.br/nclvalidator/
http://laws.deinf.ufma.br/nclvalidator/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://dx.doi.org/10.1145/1774088.1774500
http://dx.doi.org/10.1109/WISA.2010.28
http://dx.doi.org/10.1109/WISA.2010.28
http://dx.doi.org/10.1145/1860559.1860578
http://dx.doi.org/10.1145/1860559.1860578
http://dx.doi.org/10.1109/UKSIM.2008.54
http://bib-di.inf.puc-rio.br/techreports/2005.htm
http://bib-di.inf.puc-rio.br/techreports/2005.htm
http://dx.doi.org/10.1007/s13173-010-0017-z
http://www.hjp.at/doc/rfc/rfc5646.html
http://www.hjp.at/doc/rfc/rfc5646.html

	Incremental validation of NCL hypermedia documents
	Abstract
	1 Introduction
	2 Related work
	2.1 Source code validation in authoring tools
	2.2 XML incremental validation

	3 NCL validation
	3.1 NCL validation metalanguage
	3.2 NCL incremental validation

	4 Implementation
	4.1 Model
	4.1.1 Complexity analysis of Model's primitives

	4.2 Validation
	4.3 Interpreter
	4.4 Message
	4.5 Case study

	5 Integration with IDE composer
	6 Incremental versus standard validation
	6.1 Experimental design
	6.2 Results
	6.3 Discussion

	7 Conclusion
	References

