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Abstract Many literature papers evaluate solutions in
wireless sensor networks by simulation experiments. How-
ever, little attention is given to the adequacy of the simulator
propagation models to the environment in which such solu-
tions are employed. This can lead to imprecise or inconsis-
tent results in relation to the real world. This paper presents
a methodology for adjusting the parameters of these models.
In particular, we present experimental results for rainforest
environments, which can be the goal of many sensor net-
works monitoring applications. The impact of the proposed
approach is shown by evaluating a localization solution. The
results show that this procedure is necessary for a higher
fidelity of simulation experiments.

Keywords Propagation · Experimentation · Simulation

1 Introduction

Many research efforts are being dedicated to the wireless
sensor networks (WSNs) [3] in the last few years. This is
due to their capacity to increase the way we interact with the
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world. In particular, many environmental monitoring appli-
cations are under study [7], and they are being employed in
environments with very distinct characteristics which affect
the wireless communication. Particularly, many researchers
in Brazil and all over the world are concerned about Amazon
rainforest monitoring for studies and preservation due to its
dimension and biodiversity.

In the initial phase of the WSN’s development many solu-
tions were proposed under conceptual aspects with strong use
of experimentation by simulation. These are solutions such
as protocols and algorithms for MAC [30], routing [4], local-
ization [9], and many others which depends on the wireless
communication and the channel characteristics. Obviously,
not all the scenario characteristics and premises considered
in these works are observed in practice, as shown by recent
work [13], and disparities between simulations and real plat-
forms become clear [11,25].

As a result, many papers have focused on the exper-
imentation of wireless radios within different scenarios
[5,6,21,34,41,43]. The main goal is to evaluate how the
signal strength and delivery ratio are affected by distance
and obstacles. However, simulation is still important for the
development of new solutions, because not always there
is an infrastructure favorable for practical experimentation,
besides the cost and time necessary for this. Thus, we
show a methodology to characterize the communication in
the Amazon rainforest, which is a very distinct environ-
ment from those studied in literature, based on practical
experiments.

The main contributions are described as follows. At first
we did practical experiments to measure the received power,
the link quality and delivery ratio by using two popular plat-
forms for WSN in the Amazon rainforest. This is an important
contribution itself, once we do not have similar results in the
literature. After that, by using the mean square error (MSE)
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minimization we estimated the parameters of the Shadow-
ing propagation model, which is very common in the exist-
ing simulation suites. Then, we used a localization system
simulation in NS-21 based on a multilateration algorithm to
compare the obtained results against default parameters nor-
mally used in simulations, and other parameters suggested
in the literature. We show that fine tuning these parame-
ters is necessary to represent what we can obtain in real
experiments.

The remainder of the paper is organized as follows. Some
theoretical fundamentals are introduced in Sect. 2. Section 3
presents the related work. In Sect. 4, we characterize the
rainforest scenario. Section 5 discusses realistic simulation.
Finally, our conclusions and future work are presented in
Sect. 6.

2 Background

2.1 Propagation models

The propagation models are traditionally used to predict the
average signal strength (power) received at a certain distance
of the transmitter, beyond intensity variability of signal in
areas near a particular position. The simplest but representa-
tive models are the Free Space and Shadowing. Both consider
that path loss, the amount of power lost for the medium, is
proportional to the distance between transmitter and receiver
to the power of N, i.e.,

PL(d) ∝ d N , (1)

where d is the distance and N is path loss exponent that
indicates the power decay rate with the distance. For the
Free Space model, N is 2, and for the Shadowing model,
N ranges from 1.5 to 6. The higher N is, the more severe is
the environment for communication.

The Free Space model is used only when there is a vision
path clearing between the transmitter and receiver. The Shad-
owing model is used when there are many obstacles for prop-
agation that is difficult to model into equations.

Other models take into account the effects of reflection,
diffraction, and scattering [33]. The Two-Ray Ground model
[19] deals with ground reflection, useful for predicting signal
strength over distances of several kilometers when transmit-
ter and receiver use towers of different heights. Diffraction
effect is treated by the Knife-edge Diffraction model [26,33]
in cases where there is a hill or mountain between transmit-
ter and receiver. The Radar Cross Section model [35] aims to
model the impact of the diffused reflections produced when
a radio wave impinges on a non-uniform surface like a build-
ing.

1 http://www.isi.edu/nsnam/ns/.

Some models are described for particular environments.
The outdoor models, like Okumura–Hata [22] and Walfisch
and Bertoni [39], are derived for urban areas usually asso-
ciated with cellular systems. Foliage or vegetation models
estimate the path loss due to propagation though trees and
foliage [36]. In this category we have Weissberger’s modified
exponential decay model [40], ITU Vegetation model [24],
COST235 model [2]. Generically, these models estimate the
additional loss L by the expression:

Lveg = α × f β × dγ , (2)

where f is the frequency, d is the depth of the foliage along
the line-of-sight path. Constants α, β, and γ are empirically
calculated in each model. In spite of these models considering
tree and foliage, they are not suitable for modeling propaga-
tion when small and low-power radios are employed inside
forests for short distances.

In this work, we use the Shadowing model to estimate
path loss and received power in the Amazon rainforest. Next,
we describe in detail this model and justify this choice. In
addition, we also provide the theory of the Free Space model,
once it may be used as base for many models including the
Shadowing model.

2.1.1 Free Space propagation model

The Free Space model is used to predict received signal
strength when the transmitter and receiver have a clear, unob-
structed line-of-sight path between them [33]. The received
power by a receiver antenna in dBm is given by [18]

Pr(d) = P0 − 20 log( f ) − 20 log(d) + 27.56, (3)

where P0 is the power at zero distance from the antenna, f is
the signal frequency in MHz and d is the distance (in meters)
from the antenna.

2.1.2 Shadowing propagation model

Propagation models like Free Space and Two-Ray Ground
predict the signal power received as deterministic functions
of distance. It represents the communication area as a perfect
sphere, however the behavior of a received signal propagation
is random and distributed log-normally around the mean. The
randomness of the signal behavior is caused by changes in
the environment that directly impact the signal power [33].

The Shadowing model is separated in two parts. The first
part provides the average of received powers at a certain dis-
tance. The second part, models the randomness of the signal
at this distance d.

The received or input power is calculated as

Pr(d) = Pt − PL(d). (4)
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where d is the distance between the receiver and the trans-
mitter in m and Pt is the transmission power in dBm. The
path loss, PL in dBm, at a distance d is calculated as [33]

PL(d) (dB) = PL(d0) + 10N log

(
d

d0

)
+ Xσ , (5)

where d0 is the nearby reference distance. PL(d0) is the aver-
age path loss for d0 or an assumption using the Free Space
model. N is the exponent of the path loss that indicates
the power decay rate with the distance. Xσ is a zero-mean
Gaussian distributed random variable with standard devia-
tion σ (in decibels).

Combining Eqs. 4 and 5, we have

Pr(d) = P0 − 10N log

(
d

d0

)
+ Xσ , (6)

where

P0 = Pt − PL(d0). (7)

The adoption of the Shadowing model in this work is moti-
vated by many reasons. First, it considers attenuation of the
signal due to distance, and interferences caused by obstacles
which are observed in the measurements. Second, the foliage
models are not suitable for communication with both trans-
mitter and receiver inside the forest. Variations of these mod-
els are adapted for plantation environments, but they consider
trees as measurable or countable objects. In the Amazon rain-
forest, the trees are very close to each other and there are many
other obstacles, such as: roots, branches, lianas, shrubs, and
to measure their depth is a difficult task. Third, the Shadow-
ing model is simple, easy, generic, and popular. Many envi-
ronments were characterized using this model [5,18,33,34]
allowing comparison and reuse. Last, the Shadowing model
is implemented by simulators like NS-2 and Castalia.2

3 Related work

Regarding wireless communication characterization, Zhao
and Govindan [43] carried out experiments investigating the
packet delivery in three different environments: an indoor
office building, a habitat with moderate foliage, and an
open parking lot. They showed that by varying the distance
between nodes, we can identify regions in which the com-
munication becomes unstable, the so-called “gray areas” or
“transitional region”. Although they are trying to characterize
wireless communication, they focused on packet delivery.

Zuniga and Krishnamachari [44] provided an extensive
study about the “transitional region”. They identified the
causes and derived expressions for its width and for the packet

2 http://castalia.npc.nicta.com.au.

delivery rate. For increasing realism in simulation experi-
ments, the authors recommend the characterization of the
interested environment.

The relationship between packet delivery and received sig-
nal strength indicator (RSSI) and link quality indicator (LQI)
was investigated by Srinivasan and Levis [37]. Their exper-
imental study showed that LQI actually is a better quality
indicator than RSSI for a wider signal degradation range.
However, the focus of this work was the RSSI itself, not
characterization or realistic simulation.

Seidel and Rappaport [34] and Andersen et al. [5] have
reported many contributions about propagation models,
specifically about the Shadowing model and derivatives. Both
have conducted a large number of experiments to model and
characterize the wireless communications channels in indoor
scenarios.

Some studies on propagation models for forest environ-
ments have been presented in the literature since the 1960s
until today [6,21,27,28,38]. Some of these studies focus on
medium and high frequencies (2–200 MHz) [38], others on
UWB (above 3.1 GHz) [6,28] and others only on theoretical
analysis [27,28]. Except for Tamir’s work [38], the idea is to
evaluate the impact of the forest on long-distance telecom-
munication systems (over 1 km) when transmitter or receiver
is outside of the forest. In this work, we evaluate the com-
munication for ZigBee radios inside the forest, operating in
2.4 GHz, for short distances.

In the context of WSN, Ndzi et al. [31] and Mestre et
al. [29] carried out experiments in plantations to evaluate
vegetation attenuation models (discussed in Sect. 2.1) for
precision agriculture.

Gay-Fernandez et al. [21] present a complete study for the
deployment of a WSN in a forest in Spain based on ZigBee,
including the propagation model analysis. They carried out
some propagation experiments and found parameters for dif-
ferent deployment situations. These parameters can be easily
adapted to the Shadowing parameters. However, the environ-
ment studied, even being a forest, presents features different
from the Amazon rainforest which, basically, is denser than
the Spanish forest. Thus, their parameters could not be used
in applications in our context. One of our main objectives in
this work is to characterize the communication in the Ama-
zon rainforest.

Zanca et al. [42] used IFX-Eye node to evaluate the per-
formance of localization algorithms in WSN for an indoor
environment. They featured the signal radio propagation by
the Shadowing model and carried out some practical local-
ization experiments. They revealed that some localization
algorithms achieve worse performance in real testbeds than
what predicted by the simulation analysis. Pham et al. [32]
also provided results for real deployments of TelosB motes
for validating and tuning the MAC protocol implemented in
the Castalia simulator. In this paper, we investigate the impact
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of the incorrect tuning of propagation parameters in the NS-2
simulator for actual applications.

4 Rainforest scenario characterization

In this section we present the used methodology to charac-
terize the Amazon rainforest scenario. First we carried out
practical experiments to assess the behavior of current wire-
less communication for actual applications. In the second part
of characterization, we used the measured received power to
estimate the parameters of the Shadowing propagation model
for this scenario.

4.1 Experimentation

This part extends our previous work [20] by presenting new
results and we tested another platform for comparison. In
the following, we show the experimental methodology and
results.

4.1.1 Test scenario

The experimentation was conducted in an underexplored
rainforest area in which a WSN could be deployed for envi-
ronmental monitoring. This scenario is defined by a small
area inside a preservation area, in which the terrain is flat
and we have several natural obstacles to signal propagation,
such as a wide variety of trees, bushes and leaves (Fig. 1a).
This is a typical dense rainforest with low human interven-
tion. We have experimented with sensor nodes positioned
on the ground (Fig. 1b). These nodes are deployed in an ad
hoc and unplanned fashion (dropped on the ground) or by
using autonomous mobile robots. Our previous work [20]
showed the case where the nodes were positioned on a base
1.25 m from the ground. The results were similar with those
we present here (in Sect. 4.1.4), but with a higher communi-
cation range.

4.1.2 Wireless sensor network platforms

We have chosen the Crossbow’s MicaZ [14] and Iris [15] as
the evaluation platforms (Fig. 2), for these belong to a popular
sensor platform series that have been used in several proto-
type applications. MicaZ and Iris represent a evolution com-
pared to the previous representative, the Mica2. The MicaZ
platform adopts the CC2420 radio [12] whereas Iris adopts
the RF230 radio [8] both compliant with the IEEE 802.15.4
(ZigBee) standard [23]. Table 1 shows the main parameters
provided by the manufacturer for both radios.

Both radios provide the RSSI and the LQI. The RSSI indi-
cates the received power at the RF pins of the radio of received
packets. The LQI indicates how good is the wireless link and
can be affected by spectrum interferences and high noise lev-

(a)

(b)

Fig. 1 Rainforest scenario. a Broad view of the scenario. b Node’s
placement detail

(a) (b)

Fig. 2 Evaluation platforms. a MicaZ Mote [14], b Iris Mote [15]

els. The received power and LQI will be used as metrics in
our experiments. Table 2 presents the manufacturer specifi-
cations for both radios. According to the data-sheet of the
Iris’s radio [8], the equation which converts RSSI to dBm is
only valid for values between 1 and 28. A value of 0 indicates
a received power less than −91 dBm.

According to IEEE 802.15.4 standard definitions [23], a
LQI measurement of a received packet should be an integer
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Table 1 Transceivers main parameters (data-sheet [8,12,15,14])

Parameter MicaZ Iris

Transceiver CC2420 RF230

Radio frequency (GHz) 2.4 2.4

Bandwidth (kbps) 250 250

RF power (dBm) −24 to 0 −17.2 to 3

Receiver sensitivity (dBm) −94 −101

Outdoor comm. range (m) 75–100 >300

Indoor comm. range (m) 20–30 >50

Table 2 RSSI specifications (data-sheet [8,12])

Parameter CC2420 RF230

Dynamic range (dB) 100 81

Resolution (dB) 1 3

Register length (bits) 8 5

Values rangea −60 to 40 0 to 28

Power convers. equ.b −45+ RSSI −91 + 3 (RSSI − 1)

a Values are registered in signed 2’s complement.
b Power in dBm.

value between 0 and 255. However, the CC2420 provides
only an average correlation value (also known as a chip cor-
relation indicator—CCI) of the eight first symbols of the
received packet which can be combined with the RSSI to
generate a LQI measurement by software. This correlation
value varies between 50 and 110. Normally, only the average
correlation value is used as LQI, and no additional process-
ing is done [1,37]. For RF230, LQI values varies between 0
and 255 and is highly associated to an expected packet error
rate (PER). A value of 255 indicates no frame error, whereas
low values represent many erroneous received frames.

4.1.3 Test procedure

In every test round, the source node sends 20 packets to the
sink node at a rate of 10 packets per s. We use the 20 trans-
mitted packets to compute the delivery ratio.3 The trans-
mission rate of 10 packets per s allows us to collect more
data in less experimentation time without congestion in the
network. By hardware limitations, we configured the output
transmission power on 0 dBm for MicaZ and 0.5 dBm for Iris
node. In addition, the sink node assesses the received power
(obtained from the RSSI) and LQI for every packet. These
three compose the set of metrics evaluated on the experiment.
For each platform, we vary the distance between source and
sink nodes, and in order to ensure the statistical relevance,
we perform 33 rounds for every different platform.

3 The percentage of packets received regarding the total packets sent
by the source node.

Fig. 3 Delivery ratio variation according to the distance between nodes

4.1.4 Experimental results

Figure 3a presents the relationship between the delivery ratio
and the distance between source and sink nodes. We show
all 33 values for each distance. Complementarily, we plot the
average delivery ratio for every distance. For MicaZ nodes,
the largest distance we could reach was only 6 m with about
30 % of delivery ratio (average). Iris nodes could reach 13.5 m
with a high level of delivery ratio which can be explained by
the “transitional region”, discussed in Sect. 3. In this region,
the communication becomes unstable due to the low signal-
to-noise ratio (SNR) and presence of obstacles in such a con-
figuration that contributes to the signal instead of degrading
it. This phenomena is also observed at 10 m. Indeed, this
region ranges from 7 to 13.5 m. Further than 13.5 m, no
communication was observed.

Iris nodes reach larger distances than MicaZ because of
the higher radio sensibility level (presented in Table 1). For
Iris node, significant obstacle4 produced local attenuations
at 1.80 and 2.25 m.

For both platforms, we observe a great variation on the
delivery ratio when the nodes’ distance was closer to the
maximum distance we had attained, just like we observed
in our previous work [20] and also reported by the literature
[37,43] (discussed in Sect. 3).

Figure 4a presents the received power values when we
increase the distance between source and sink nodes. Once
more, we show all 33 values for each scenario and the average
values as well. Confirming the theory presented in Sect. 2.1.2,
the received power decreases with the distance until it reaches
the radio sensibility (presented in Table 1).

4 This obstacle is clearly seen in Fig. 1b, and is very common on the
rainforest.
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(a)

(b)

Fig. 4 Received power variation. a Received power variation accord-
ing to the distance between nodes. b Relationship between received
power and delivery ratio

For Iris node, all the received power averages for distances
greater than 7 m were −94 dBm. This saturation occurred
because, at these distances, all the RSSI readings were zero
indicating a received power lower than −91 dBm, according
to the radio’s data-sheet [8]. In fact, we do not know the
actual value for these distances, therefore, we plot on the
graph the value −94 dBm which is the power calculated by
the equation described in Table 2 when RSSI = 0. For many
applications, such as localization systems, received power
measurements are very important and are usually calculated
using RSSI readings. Actually, using the Iris Mote, we only
have relevant RSSI measurements (in range 1–28) when the
distance is up to 6 m in the Amazon rainforest environment.
For further distances we only have a “poor signal” indication.

In addition, the delivery ratio is used by many routing
algorithms as estimation of link quality for choosing routes.

(a)

(b)

Fig. 5 LQI variation. a LQI variation according to the distance
between nodes. b Relationship between LQI and delivery ratio

In order to allow the comparison of the received power with
the link quality, Fig.4b correlates the received power val-
ues with the delivery ratio. We observe that when the signal
strength is greater than a threshold (−90 dBm for MicaZ and
−94 dBm for Iris—or a RSSI indication of zero) we probably
will have high delivery ratios. However, for smaller values,
the received power quickly decreases and presents great vari-
ations. This fact is also observed in other scenarios reported
in different papers, such as Srinivasan and Levis [37] dis-
cussed in Sect. 3. Thus, we can conclude that RSSI may be
used in all cases as a simple threshold for the link quality.

By respecting the same format used to assess the received
power, Fig. 5a shows the LQI variation. As discussed in
Sect. 4.1.2, LQI for MicaZ varies between 50 and 110,
whereas for Iris, the values are between 0 and 255—following
the IEEE 802.15.4 standard specifications. As expected, LQI
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behavior is similar to the RSSI, i.e., it decreases according to
the distance between nodes. Once again, we observed great
variations in the LQI when the distance was close to the max-
imum distance.

Comparing LQI variation with delivery ratio and received
power variation, we observe that, for Iris nodes, the LQI is
more related to the delivery ratio than received power (Figs. 3,
5a). But, for MicaZ, LQI is more related to the received power
(Figs. 4a, 5a). Figure 5b supports this observation. Although
the delivery ratio also presents great variation, for Iris nodes,
this indicator is more representative than the received power,
since such a variation is smoother for the LQI. For MicaZ
nodes, we have a more abrupt variation with the decay of
the indication around the value 75. As a link quality indica-
tion, the LQI should be highly correlated with the delivery
ratio instead of the received power. Thus, we can conclude
that Iris’s LQI, although still far from ideal, is better than
MicaZ’s. Moreover, the usage only of the average correla-
tion value (CCI) as LQI is not recommended, requiring addi-
tional calculation as suggests the manufacturer of MicaZ’s
radio.

All these experiments reinforce the difficulty of using
received power and LQI to represent the link quality and
distance estimation. These factors are relevant as they have
been considered by solutions for data routing and node local-
ization that usually adopt imprecise theoretical values.

4.2 Shadowing model parameters estimation

After practical experiments, we had a database with collected
pairs of average of received power and distance (pi , di ).
Using this database, we estimated the parameters of the
Shadowing propagation model (described in Sect. 2.1.2) for
MicaZ and Iris nodes. Normally, the N coefficient from Eq. 6
varies between 1.5 and 6 and can be obtained by minimizing
the MSE described as follows

MSE(N ) = 1

k

k∑
i=1

[pi − p̂i ]2 (8)

where pi is a received power measured for a given distance
di . p̂i represents the estimated received power using a prop-
agation model. For the Shadowing model, p̂i can be written
as

p̂i = P0 − 10N log

(
di

d0

)
. (9)

Note that Eq. 9 differs from Eq. 6 by the term Xσ

which does not appear in Eq. 9. It means that we only con-
sider the deterministic part of the Shadowing model to esti-
mate the received power. d0 was the shortest distance in
the propagation experiment. P0 was the average measured
power at d0.

According to Rappaport [33], the standard deviation σ

from Eq. 6 can be calculated using the minimum mean square
error (MMSE) found by:

σ = √
MMSE. (10)

The estimated parameters were compared in Table 3 with
parameters for others environments. The first set of parame-
ters are the default values used in NS-2 [17]. The NS-2 is one
of the most used simulators in WSNs for scale scenarios. Sets
2 and 3 represent the parameters for a Spanish forest with
two different configurations [21]. Finally, the last two sets
represent the estimated values in our practical experiments
for MicaZ and Iris nodes. We have also added the MSE for
MicaZ’s and Iris’ collected measurements of each set.

We can notice that the MSE of sets for MicaZ and Iris were
close compared to the others sets. The sets 1, 2 and 3 were at
least ten times greater than the Amazon Forest’s sets for the
collected data. Acceptable set of parameters (those with low
MSE) generally has both N and P0 parameters approximate
to the actual values for the same d0. This can be observed
on the first four sets, where we had the same value of d0 but
an unbalance on the N and P0 parameters. For sets 4 and 5,
the d0 was different, but the others parameters were correctly
balanced.

Figure 6 presents the collected pairs (pi , di ) for both plat-
forms. Complementarily, we plot the mean curves (discard-
ing the random term Xσ from Eq. 2.1.2) for the Shadowing
propagation model using the sets of parameters from Table 3.
For Iris node, the values greater than 6 m were not considered
for the regression and MSE calculation.

Although there is the difference of values in Table 3
between sets 4 and 5, the curves in Fig. 6 for these sets are
roughly similar which can be verified by the low MSE val-
ues. This indicates that the parameters are describing the
environment instead of motes. If we keep the same basic

Fig. 6 Average received power versus distance and regression lines
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Table 3 Shadowing model
parameters for some
environments

Set Environment N σ (dBm) d0 (m) P0 (dBm) MSEMicaZ MSEIris

1 NS-2 default 2.0 4.0 1.0 −40.2 1,254 1,214

2 Spanish forest 1 2.55 7.29 1.0 −55.9 297 346

3 Spanish forest 2 3.43 6.04 1.0 −43.4 667 874

4 Amazon rainforest M 2.14 1.86 1.0 −75.2 3 32

5 Amazon rainforest I 3.21 5.23 0.1 −40.4 14 27

characteristics (frequency and transmission power), we will
have similar results for the environment. Besides, the model
focuses on path loss (according to Eq. 5) allowing even the
representation of different transmission powers. Actually, the
unique parameter related to the device is σ , once a particular
radio could use better components that are more immune to
variations/noise. Further, designers of the radio can also pro-
vide extra hardware to deal with this problem decreasing the
sigma parameter. We also can see that the mean curves for the
sets 1, 2 and 3 are far from the curves for our regression lines.
This is in agreement with the high values of MSE showed in
Table 3. Clearly, we can observe that sets 1, 2 and 3 do not
represent the characteristics of the Amazon rainforest.

4.3 Tuning propagation model parameters

In this section we provide the procedure for characterizing
new environments and for adjusting the propagation model
parameters in the NS-2 simulation tool. The goal is to find
parameters for a given environment even though we do not
understand all the details of its behavior. In other words, our
concern is about the statistical behavior of the communica-
tion/channel, not the particularities of the forest. The steps
are:

1 Signal strength experimentation First, we need to col-
lect RSSI readings in the region varying the transmitter–
receiver distance (see Sect. 4.1.3). The more readings
you collect, the more accurate and statistically relevant
will be your results. We suggest at least 30 samples per
distance. A good idea is to find the maximum commu-
nication range, and then, take as many as possible mea-
surements within this range. It is important to take note
of the transmission power Pt .

2 Parameter estimation By using the steps described in
Section 4.2, we estimate the Shadowing propagation
model parameters N and σ . We need to consider the
transmission power Pt used in the experimentation.

3 Simulator parameter adjusting In the NS-2 simulator, we
set the earlier found shadowing propagation model para-
meters N , σ , and d0 in the TCL configuration file.5 The
parameter d0 is the shortest distance between transmitter
and receiver in the signal strength experiment.

5 http://www.isi.edu/nsnam/ns/doc/node221.html.

5 Localization experiments

Many solutions for wireless communication are proposed
in the literature and validated in simulation tools consider-
ing erroneous or unrealistic assumptions. In this section, we
show the impact of the incorrect tuning of the propagation
parameters in a simulation tool. In the following, we describe
the experiment.

After estimating the propagation model parameters, we
carried out two experiments, both based on a localization
application: (1) a practical experiment; and (2) a simula-
tion experiment. This application was chosen due to its rele-
vance in monitoring and event detection systems using WSNs
[9,10]. Hereafter, we use only the Iris platform in our analy-
sis.

The practical experiment was implemented based on the
localization system for indoor environment proposed by
BluePass [16]. Four fixed nodes were placed at the corners of
a square area of 4 × 4 m2 in the Amazon rainforest. Another
node, called mobile node, was placed inside this square area.
Periodically, the fixed nodes send data to mobile node. The
mobile node gets the RSSI values and stores the received
power in a list. For every new received packet, we calculate
a new average of input powers. So, we estimate the distances
between fixed nodes and mobile node, using the following
equation:

d̂i = 10[P0+10N log(d0)−pi ]/(10N ), (11)

where d̂i is the estimated distance from mobile node to a fixed
node i . P0, N and d0 are the Shadowing propagation model
parameters. pi is the current average received power related
to a packets received from fixed node i . Using these distances
we estimate the mobile node position, called ppos, using
multilateration. For every new received packet, we reestimate

Fig. 7 Experimental results
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(a)

(b)

Fig. 8 Localization error versus number of packets. a Practical
experiment—εp, b simulation experiment—εs

ppos. We repeated this experiment for several mobile node
positions and for every set of parameters from Table 3.

The simulation experiment was conducted in a NS-2 sim-
ulator. We configured the simulator with the same area, nodes
position and other characteristics as we did in the practical
experiment. We did the following changes with the NS-2
code:

• Setting of the P0 parameter on the Shadowing model.
• Calculation of the Shadowing model power, at a certain

distance, according to Eq. 6 in dBm.
• Implementation of the Iris rules for reading RSSI/

received power values.

The estimated mobile node position in the simulation
experiment was called spos. Thus, we calculate the local-

Fig. 9 Simulation precision error—εsp versus number of packets

ization error ε according to the following equation:

ε = dist (mpos, epos), (12)

where mpos is the mobile node position and epos is the
estimated position which can be a ppos or spos. The function
dist (·) is the Euclidean distance between two points. Figure 7
summarizes the results. εp indicates the localization error in
practical experiment and εs the error in simulation. εsp will
be introduced later.

Figure 8 presents average localization error for practical
and simulation experiment when we increase the number of
packets used to calculate the average power. These graphs
compare the error for the parameters from Table 3, excluding
the NS-2 default parameters that presented errors in order of
kilometers. From this point on, the set of parameters 5 will
be referred to as estimated parameters, and the sets 2 and 3
as literature parameters.

In the practical experiment, our estimated parameters pre-
sented the smallest error, less than 2 m whereas the others
were around 35 m. We observe a stability of the error values
and this is important because some localization systems try
to reduce the errors accumulating and averaging readings.
Figure 8a shows that this procedure do not increase signifi-
cantly the method precision.

In the simulation experiment, we had a different behavior
for the literature parameters. The maximum error measured
was lower than 5 m and this was reduced to a level lower
than 0.5 m. This difference occurred because in practical
experiments we had actual power readings whereas, in the
simulation, we had artificial readings based on the Shadow-
ing propagation model. So, for each received packet, the dis-
tance was estimated (by Eq. 11) using the same parameters
used to create the artificial readings (by Eq. 6). Basically, in
simulation, the errors come only from the Xσ term.
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We can consider a good simulator when its results are near
to the practical results. Thus, to evaluate the simulation preci-
sion we should analyze the error between the estimated node
position in simulation and estimated position in a practical
experiment. This error will be called simulation precision
error— εsp (showed in Fig. 7) and can be calculated as

εsp = dist (spos, ppos). (13)

Figure 9 shows the εsp when we increase the number of
packets. We observe a low error in the experiments with the
estimated parameters indicating that estimations in simula-
tion were near to estimations in practical experiments. This
is an indication that we have a realistic simulation using the
estimated parameters. The errors for the literature parame-
ters were almost ten times greater than the length of one side
of the square region used in the experiment.

6 Conclusion

This work presented experimental data for rainforest wire-
less communication, and the adequacy of the parameters of
the Shadowing propagation model common in simulation
suites. This adequacy was achieved from the measurements
of received powers and a regression by using the minimiza-
tion of the MSE technique. Default parameters, some found
in literature and the new ones, were compared in simulations
by considering a localization solution. The results showed the
importance of proper environment characterization to obtain
accurate results in relation to the real world.

All the described procedures can be very expensive to do
every time we need a new development. However, the data
and parameters achieved in this paper can be easily included
in different simulators when a similar environment is the
goal.

As future work we intend to evaluate at the simulation level
the influence of the rainforest propagation model on several
wireless protocols. The goal is to study their feasibility under
the approximated conditions of these real scenarios, which
is very much worse than the conditions these solutions were
originally evaluated. Also, we plan to perform similar exper-
imentation in flooded forest regions, which are very common
in the rainforest.
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