
J Braz Comput Soc (2013) 19:257–274
DOI 10.1007/s13173-012-0096-0

ORIGINAL PAPER

Scrum adoption and architectural extensions in developing
new service applications of large financial IT systems

Tuomas Ihme

Received: 7 February 2012 / Accepted: 3 December 2012 / Published online: 29 December 2012
© The Brazilian Computer Society 2012

Abstract The use of modern agile software development
methods in large organisations requires tailoring agile devel-
opment to the organisations’ needs. This study concentrated
on studying integrating software product line and agile appli-
cation development in the context of large and complex finan-
cial IT systems. The study was conducted by interviewing a
wide representation from the case organisation’s personnel
developing in-house software for the company’s own use.
The results indicate that the guidelines of the Scrum method
for agile project management are valid also for the studied
company type. However, each project in the studied company
should acknowledge the constraints set by other projects and
the complex technical infrastructure, data security issues and
system portfolio in the organisation’s product line platform.
In order to promote re-use and avoid risks, means and mech-
anisms are needed to coordinate and synchronise multiple
projects and their releases on business level, the project’s
compatibility with its constraints on system architecture level
and the direction of software architecture on project team
level.

Keywords Software product line · Agile software
development · Scrum · Software architecture ·
Qualitative study

1 Introduction

Experience from agile software development (ASD) in large
organisations and domains such as automobiles, telecommu-
nications, finance and medical devices shows the necessity

T. Ihme (B)
VTT Technical Research Centre of Finland,
P. O. Box 1100, 90571 Oulu, Finland
e-mail: Tuomas.Ihme@vtt.fi

of tailoring agile principles, methods and practices to
the project’s environment and organisational requirements
[1–10]. A real obstacle for the adoption of ASD is agile meth-
ods not generally guiding architecting large-scale systems
[11–13].

In large new product development organisations, the per-
spective has to be extended from individual release projects
of most agile methods to longer-term product evolution and
portfolio management and, when needed, to software prod-
uct line (SPL) development [8,14]. Northrop [15] defines
that “A software product line is a set of software-intensive
systems that share a common, managed feature set satisfy-
ing a particular market segment’s specific needs or mission
and that are developed from a common set of core assets in
a prescribed way.” SPL practices have been used in a wide
range of organisations and domains and the use has produced
significant organisational advantages such as better quality,
decreased cost, decreased labour needs, decreased time to
market, and ability to move into new markets faster [16].

ASD’s highest priority “is to satisfy the customer through
early and continuous delivery of valuable software” (agile
manifesto). The SPL approach’s goals include reducing
time to market, increasing productivity, improving quality,
enhancing agility and gaining cost effectiveness and effi-
ciency [8,17]. In addition to common goals, ASD and SPL
have complementary properties [18]. Even though comple-
mentary, these two approaches are relatively independent of
each other and have only a few conflicts [18]. The above
mentioned give motivation for considering combining SPL
engineering and ASD. However, combining may be diffi-
cult as the means of these approaches to achieve their goals
can be contradictory [19,20]. ASD and SPL approaches have
philosophical differences in design and change management
strategies [19,21]. SPL engineering aims to develop software
products using software platforms and mass customisation,

123

258 J Braz Comput Soc (2013) 19:257–274

whereas ASD focuses on delivering single products for the
customer [18]. Agile methods and particularly the fundamen-
tal eXtreme Programming (XP) process [22] does not explic-
itly support the development of artifacts for reuse [19,23].
Recently, there has been increased interest in exploring the
possibilities of the benefits of combining ASD and SPL
approaches [18–21,24–26].

The industrial case study of Petersen and Wohlin [27] indi-
cates that moving from a plan-driven to an incremental soft-
ware development approach with agile practices can provide
added value. A survey of 72 IBM software developers sug-
gests that agile developers consider software architectures as
important and supportive as agile values [28]. Architecture
plays a key role in SPL development [15]. Booch [29] argues
that “all good software-intensive architectures are agile” and
need to be socialised in the tribal memory of all stakehold-
ers. However, more empirical research concerning the com-
bination of agile and traditional methods is needed [30].
A general model of software architecture design reveals that
incremental or ongoing architectural evaluation and analysis
are important research topics [31]. The review of Dyba and
Dingsoyr [11] reveals that current empirical studies still lack
reports related to architectural design in ASD. Furthermore,
ASD in large projects and the co-existence of ASD and archi-
tecture [3] in different problem classes are among the most
burning research questions from practitioners [12].

The adoption of ASD in the banking sector can be nontriv-
ial [32–34]. This study concentrated on studying integrating
SPL and ASD approaches in the context of large financial
IT systems. Thus, this study aims at answering the following
research questions:

• RQ1: What type of challenges does a large financial IT
systems company encounter in its software development?

• RQ2: What type of steps should a large company in
the financial sector take while combining SPL and agile
approaches in their software development?

In this study, for example, we found that interviewed
architects, developers and decision makers recommended
the following first priority things towards ASD in their
organisation: removing organisational impediments to ASD,
prioritising products and projects, setting prioritised require-
ments and milestones for the projects, directing software
architecture development to support agile project realisation
and acknowledging limitations set by technical infrastruc-
ture. The results of this study propose first steps for the case
organisation for moving towards ASD. The proposed steps
are synthesised based on analysing the interviewees’ recom-
mendations, their positive qualities of old practices and the
limitations set by the organisation’s technical infrastructure.
The results of this study have implications on business, archi-
tecture and project team level management.

The study was conducted empirically by interviewing a
wide representation from the personnel and stakeholders of
complex software projects in a software development depart-
ment of a large financial company. The interviews covered
software development in a versatile manner, including busi-
ness people, software architects, technical writers, software
designers, test personnel, and other responsible managers
and decision-makers. The research utilised a semi-structured
thematic interview approach (see e.g. [35]). The interviews
were conducted in a qualitative manner, allowing the intervie-
wees to explain and clarify the cases and topics as entities. In
addition to the interviews, separate data gathering workshops
were organised for decision-makers and software engineer-
ing people and one feedback workshop for all interviewees
and participants. As a secondary data source, the researchers
also reviewed various project document examples.

The structure of the paper is as following. Section 2
provides an overview of related research on large financial
IT systems and on integrating SPL and ASD approaches.
Section 3 presents the research methodology and proce-
dure. The findings are presented and discussed in Section
4. Section 5 discusses research contributions and managerial
implications. Section 6 discusses the case study’s limitations.
Finally, Section 7 concludes the paper with final remarks.

2 Literature review

Large financial IT systems suffer from shortcomings and
agility challenges such as duplicated business functional-
ity across multiple sub- systems and tightly coupled parts
of the infrastructure [34]. A lesson is that interpreting agile
approaches in the specific organisational context of a large
financial enterprise remains challenging [10]. The systems
tend to include legacy subsystems and monolithic function-
ality which can be hard to decompose into small independent
pieces for agile software production [32,33,36]. Manage-
ment of large and mature banking-sector organisations sees
big risks in the big-bang adoption of agility. ASD methods do
not promote formal documentation that may be required for
regulatory, company policy and maintenance reasons within
the financial services community [37,38]. Augustine et al.
[36] have developed six practices (XP practices) for man-
aging large and mission-critical agile projects: small teams
(seven to nine members), guiding vision, simple rules, free
and open access to information, light management style and
adaptive leadership. The practices do not address reuse or
architecture.

Agile and SPL approaches promote collaboration [25].
Agile principles emphasise collaboration between customers
and developers (agile manifesto), whereas SPL approaches
expect collaboration between SPL asset builders and prod-
uct developers [25]. Poort et al. [39] have discovered how

123

J Braz Comput Soc (2013) 19:257–274 259

emotional and interpersonal relationship challenges such as
conflicts, trust and willingness to share knowledge signif-
icantly correlate with successful architectural knowledge-
sharing and project success. Agile principles even encour-
age changes in requirements. Variation points allow a SPL
to accept unanticipated changes, in addition to anticipated
changes in requirements [20,25]. The scope of a SPL defines
those entities and projects that are within the context of a
product line [15], whereas an agile project team works within
an implicit project scope defined by the customer, yet the
scope of each iteration cycle is explicit. Agile approaches
emphasise the importance of producing working software
early and frequently starting from the first iteration cycle
[40]. Product development teams in a SPL produce working
software early as well by assembling and configuring SPL
assets [25].

In spite of the obvious synergies between SPL and agile
approaches, their competing philosophies can make their
integration difficult [19,25]. During SPL’s product develop-
ment activity, design is proactive and upfront-oriented when
a product team creates product-specific solutions by spe-
cialising SPL assets, including a flexible, up-front designed
SPL architecture for a family of products [41]. In contrast,
ASD’s emerging software-development thinking includes
a repetitive emergent design process [42]. Thapparambil
[43] claims that “Refactoring is the primary method to
develop architecture in the agile world.” The refactoring
of complex systems and SPLs often leads to unexpected
evolution conflicts [7,44]. Software architecture is a key
factor in a SPL’s success [45], whereas the XP [22] and
Scrum [40] method books are known for paying very lit-
tle explicit attention to software architecture and call for the
non-consideration of architectural features that do not have
immediate interest for the current iteration [18–20,46,47].
The agile approaches weakly prescribe holistic system wide
analysis and design and the role of system-level architects
[9,48]. Multiple issues should be addressed for reconciling
apparent conflicts between ASD and architecture in a par-
ticular project or organisation [3]. How much architectural
activity is needed in the project’s context? What design deci-
sions are architecturally significant? When those significant
decisions should be made? Who owns architectural issues?
What methods and practices will be used to design soft-
ware architecture? How much of an explicit architectural
description and documentation is needed? How to find a
right balance between the costs of architecture and function-
ality?

Successful SPLs are possible both in large and small
organisations and systems [20,15], whereas agile methods
are just one subset of the means to achieve and improve
agility in large-scale software product development e.g.
[5,9,14,49,50]. Conboy et al. [51] argue that the agile prin-
ciples and their method instantiations such as XP and Scrum

are largely naive to the concept of agility in information sys-
tems development. In large development organisations, some
amount of existing infrastructure will be necessary to min-
imise large scale refactoring and to help diverse teams build
features and components that integrate easily [13]. Flexible
software architecture and software platforms are among the
key factors of the level of agility in large-scale agile new
product development [14]. A hybrid project management
approach [52] with both traditional and agile practices may
be the most suitable for increasing adaptation and value gen-
eration [48] in large organisations and systems. Denne and
Clealad-Huang [53] describe an approach that helps agile and
traditional projects to determine which requirements should
be implemented first and which platform and architectural
elements are needed and when they are needed. They demon-
strate their approach using an example project for the con-
struction of a financial services portal.

Motorola’s tailored version of XP [8] comprises the devel-
opment of a coarse-grained baseline architecture that pro-
vides sufficient guidance to support the creation of SPL
assets. Most agile methods weakly support cross-team com-
munication problems. Nokia’s solution to this problem is to
minimise the need for the cross-team communication [8]
between agile and non-agile teams. Different teams usu-
ally have their own interfaces with the SPL asset team.
Thus the teams can decide which agile practices are suit-
able to their needs independently of each other. Lessons
learned applying the Software Engineering Institute’s (SEI)
SPL approach indicate that development processes can be
according to agile methods, but the used process must be
defined and followed [15,54]. Mohan et al. [55] have cre-
ated guidelines that help top management, project managers
and developers make SPL practices more agile. The guide-
lines are based on the SEI’s report of an industrial case study
[54]. The findings from the recent industrial case study of
Hanssen and Fægri [18] indicate that SPL engineering and
ASD can complement each other in a medium-sized software
company.

3 Research methodology and procedure

The research process is described in Fig. 1. ASD methods
were first studied by using existing literature as the key
source. The case company was selected as it represents the
large financial enterprises with scarce agile research. The
case company had challenges in their old software devel-
opment practices, hence attempted to seek improvements
through agile methods.

The case selected for this research is a software develop-
ment department of a large financial enterprise. The depart-
ment develops systems and applications for satisfying the
banking, investment, loan and insurance service needs of

123

260 J Braz Comput Soc (2013) 19:257–274

Analysis of
agility

literature

Analysis of
the case
company

&
Selecting

interviewees

Creating
interview
structure

 Interviews Analysis Conclusions

Fig. 1 The research process

the enterprise’s different private and corporate customers.
It uses SPL engineering for improving and maintaining the
effectiveness and efficiency of its product development activ-
ities that lean on the reuse of assets and technologies of a
complex SPL platform. The common nominator for devel-
opment projects lies in the SPL platform’s technical sys-
tem infrastructure, multi-channel architecture and common
reusable assets. In addition, the projects’ business function-
ality typically penetrates across multiple systems in the case
company’s system portfolio. Products and applications are
developed for the company’s own use, not for sale or licens-
ing. Software development is conducted mainly in-house
using the company’s own resources. Before, the depart-
ment has developed software following plan-driven software
development methods. Recently, they have carried out several
pilot projects for capturing experiences on agile development
methods.

The case company was examined in order to obtain an
understanding of the company’s operations. A kick off meet-
ing was organised in the beginning together with a wide
representation from the case company. This representation
included business managers, software architects, software
designers, test personnel, and other responsible managers.
Interview questions were formulated based on the obtained
understanding. The interview questions included common
questions to all the interviewees and also focused questions
for different specialist groups.

The prolonged involvement (a four-year period), triangu-
lation (multiple data sources, multiple researchers, different
data collection methods as well as interpretive, positivistic
and critical research perspectives), member checking (feed-
back from interviewed persons), and audit trail (interviews
were recorded and transcribed professionally) strategies [50]
were used to reduce the validity threats of the study in
terms of reactivity, researcher bias and respondent bias. The
study consisted of 21 interviews, including 33 specialists
from the case organisation’s different areas and manager-
ial levels. Table 1 shows a summary of the interviews. The
interviewees included decision-makers, business people and
software engineering people. Software engineering people
were managers, architects, lead designers, technical writ-
ers, software designers and testers. Seven of these inter-
view sessions concentrated on software architecture experts

purposely selected to maximise diversity on architectural
stakeholder concerns. The length of each interview was
1.5–2 h. The research utilised a semi-structured thematic
interview approach (see e.g. [35]). The interviews were con-
ducted informally, in a qualitative manner, allowing the inter-
viewees to explain and clarify the cases and topics as entities.
Interviews were recorded and transcribed resulting in some
20 to 30 pages for each interview. The researchers also took
notes during the interview sessions. In addition to the inter-
views, separate data gathering workshops were organised for
decision-makers and software engineering people (25 par-
ticipants) and one feedback workshop for all interviewees
and participants. Three managers were interviewed after sev-
eral pilots during a three-year period. As a secondary data
source, the researchers also reviewed various project docu-
ment examples. Therefore, this research represents the soft-
ware development activities in the case company in a versatile
manner.

Each interview session started with a brief interviewee
and researcher introductions. The introduction included the
name of the interviewee or interviewees, their organisations,
position, professional background, experience, and current
work focus. The information management and communica-
tion model [56] was utilised by the interviewees in each
interview session. The interviewees described their own
tasks by using the model, including work inputs and out-
puts, weak points, unnecessary elements, rewards, means
of communication, project’s internal and external personnel,
stakeholders, organisations, systems and documents used for
communication. The interviewees were also asked for their
opinions on the advantages, disadvantages, challenges and
risks relating to the old software process as well as short-term
and long-term needs and proposals for improving the process.
The interviewees were asked about their know-how of ASD
and their opinions on the potential possibilities, advantages
and disadvantages of agile practices, principles and thinking
in their work.

The source material was processed and further analysed
in order to make conclusions. The results were categorised
based on the case company’s software process, business func-
tions and software engineering. Software engineering was
divided into further categories. The results of the analysis
are presented in the next section.

123

J Braz Comput Soc (2013) 19:257–274 261

Table 1 A summary of
interviews

Aspect Comment

An interview instrument (10 pages) • Common questions to all the interviewees and
focused questions for different specialist groups

21 interviews
The length of each interview was 1.5–2 h

• 33 specialists from the case organisation’s different
areas at and the managerial levels
• Two researchers interviewed one or two subjects

•One subject was interviewed in each seven interview
session of architects
• The researchers also took notes during the interview
sessions

Recording interviews • Full recoding of interviews

Transcription of recordings • Using a professional transcription company

• Transcribed interview data in some 20 to 30 pages
for each interview

Identifying, classifying and storing
interesting quotes in tables

• Multiple researchers in quoting

Identifying specific results and
conclusions

• Feedback from subjects before final
results
• The experts of the company reviewed
final results
•All researchers participated in the writing
final results

4 Results and discussion

4.1 Current state analysis

4.1.1 Old practices described

Before transition steps towards agility, the case organisation
has followed a sequential waterfall style development process
in their software development, even though concept devel-
opment is iterative. Their old software development process
includes business pre-studies, idea crystallisation, concept
development, software code design and testing, and pilot-
ing and introduction. Formal review checkpoints are applied
between each development phase to assess obtained and
documented results. These checkpoints also act as decision
points for following phases.

The case organisation utilises SPL architectures that
are divided into six main sub-areas: business architecture,
information architecture, software architecture, integration
architecture, platform technology architecture, and security
architecture. Each of these sub-areas has a nominated archi-
tect team; however, a single architect can work for several
architect teams.

The studied SPL in the case organisation aims to ensure
that adequate solutions are available for projects, includ-
ing both infrastructure and technical architecture techniques.
A support system in the form of a database enables max-
imal utilisation of previously developed components, solu-
tions, coding instructions and system-level documents. The
case organisation obligates developers to utilise previously
developed solutions and sub-systems when creating new

products. This ensures production quality, user capacity, cost
efficiency, scalability, and information and network security.

The existing SPL architecture does not encourage radical
development ideas, but aims to utilise multi-channel archi-
tecture for applications enabling product creation for all tar-
get groups. Multi-channel architecture is seen as an adequate
basis for effective application development. This practice is
well established in the case organisation, even if it may not
be the most modern one.

Initial description of a system product concept is rooted
to project business goals described by the business unit. The
description of a system product includes depictions of all the
relevant interfaces and relevant sub-systems. The descrip-
tion is conducted by one or two lead designers who com-
municate and negotiate the technical aspects with numerous
architectural experts and other specialists responsible for
sub-systems.

In addition to developing assigned system products,
projects also generate generic components that are available
for other projects. Architecture guidelines aim to ensure that
projects develop generic solutions and do not excessively
create project-specific or overlapping solutions.

A structural description document for a product includes
both functional and technical descriptions. This document
acts as a medium, but more importantly is developed through
different discussions and meetings. Based on the final
reviewed version of this document, a project steering group
decides on product realisation.

In order to avoid unwanted surprises, occasionally proof
of concept prototypes are constructed and performance tests
are carried out to confirm architecture functionality already

123

262 J Braz Comput Soc (2013) 19:257–274

during concept development. In some cases, proof of concept
prototypes are constructed even before actual requirements
definition.

4.1.2 Current challenges

The case company representatives experience the old ways
of working to contain many challenges, they also believe that
agility could rectify some of the old issues. Different person-
nel groups experience the need for agility in different ways.
Software designers believe that agile approach is beneficial,
while architecture designers see agility to also contain risks
and potentially challenging.

One of the main problems, highlighted by the intervie-
wees, is the serial development model, without iterative feed-
back, allowing results of development projects to become
obsolete, resulting in products not meeting expectations.
In addition, freezing specifications too early, without feed-
back, causes problems, especially if project implementa-
tion is delayed. These problems are seen to be partially
a result of weak communication and interaction between
those responsible for business and application development.
Project steering group is seen as the only true contact inter-
face the business people have with development projects.
Project steering meetings are the only times when the busi-
ness group is informed on development projects on face-to-
face basis, at other times; it is the documentation that acts
as the communication medium. This results in the business
group not having adequate understanding or visibility over
the progress of development, making it difficult to make
decisions in a timely manner. Developed applications may
include unnecessary features, or even worse, miss features
that are seen vital for business.

Software architects see the business goals in the docu-
mentations as unclear, lacking information and without ade-
quate requirements prioritisation. Once the business group
has accepted requirements specifications, the next time they
provide feedback is typically only after project realisation.
Persons defining features conduct their feature definitions
from the business perspective, resulting in software designers
having difficulties in understanding the features. Currently,
development ideas of software developers are not adequately
appreciated. Software designers would prefer the features to
be defined from the perspective of component-based archi-
tecture, which however is not adequately conducted.

The interviewees also experience problems in communi-
cation and interaction within the development organisation,
within different development phases and projects. Commu-
nication is strongly documentation-based, and it is seen very
difficult to confirm correct realisation, should the written
requirements be ambiguous. As the transition from a devel-
opment phase to another is governed by documentation, par-
allel development is minimal, potentially extending project

durations. The old ways of working are seen not to support
co-learning and distributing best practices. Also, division of
projects into smaller entities is governed by the organisational
structure resulting in further communication challenges.

Increasing expenses is as a challenge, seen to be caused
by inefficiency that is partially due to planning overly secure
schedules. Initial estimated schedules and expenses are rarely
reviewed after the beginning of a project. Projects are typi-
cally completed as planned, but with higher than expected
expenses. According to some of the interviewees, loose
schedules result in ineffective resource utilisation, increas-
ing expenses. According to some of the interviewees, the
indicators used to measure project success are not optimal as
they mainly concentrate on keeping to schedules and budget
instead of product success.

The case company’s system portfolio is a very complex
system of systems, making it virtually impossible for an
individual to perceive big enough entities. The interviewees
experience that there are not enough specialists who are
capable of this type of perception. In addition, architecture
designers experience the project diversity as a problem from
the perspective of making architectural guidelines. Software
designers are expected to produce other documentation, aside
software code, further explaining the code. However, require-
ments for this additional documentation are neither clear, nor
are its quality and necessity assessed.

4.1.3 Agility challenges

Experience from several pilot projects shows that the transi-
tion towards agility is not a single step, but a series of smaller
ones. There are still many technical and managerial agility
problems to solve. One pilot project typically solves some
agility difficulties and highlights several new open problems
for solving in successor pilots. Agile methods seem to be
more suitable for new product development projects than
maintenance projects. According to interviewed project man-
agers and software engineering people in their workshop,
organisation-wide agile transformation within the large case
organisation is hard. A high turnover of agile project team
members is a problem.

The very complex system nature of the studied com-
pany’s operational environment hinders the realisation of sin-
gle projects, including cost control and through times. New
projects are having to acknowledge dated infrastructure tech-
nology slowing down the introduction of new technological
solutions. Current monolithic application supply system is a
limiting factor, even a barrier for agility. Large distribution
versions of production systems are launched about two times
a year, making change implementation inflexible and slow.

The interviewed technical architects believe that realis-
ing business requirements should be possible to proceed in
an incremental manner. They prefer technical solutions to

123

J Braz Comput Soc (2013) 19:257–274 263

be taken to the supply system in smaller increments than
currently. In addition, testing required by the supply system
should be possible to conduct on these smaller increments.
According to interviewed testers, early agile pilot projects
showed one big problem: the current development environ-
ment does not allow developers to test bigger entities.

However, it is not desired to apply agility, including
numerous short iteration cycles, to all aspects. The com-
mon nominator for company projects lies in the technical
infrastructure, in multi-channel architecture, which is proven,
but inflexible. The interviewed infrastructure architect has an
opinion that infrastructure is not to be developed using agile
methods. The incrementality and iterativity are effective for
business requirements, but harmful for interfaces between
projects and technical infrastructure. These interfaces should
be known and fixed, and remain the same, not only during
a project, but also for the entire application life-cycle. On
the other hand, there have been needs to update the system
product concept and architectural guidelines during project
realisation.

According to interviewees, the rapid, annual or bi-annual,
change of technologies and application development models
causes risks as also the change process may be challeng-
ing to manage. Those responsible for business are feared to
demand, based on agility, quicker results than is actually pos-
sible, or may even ask for solutions that are not immediately
possible.

4.1.4 Agility proposals by architects, developers
and decision makers

The chief designer proposes starting from minimum
requirements and functionalities, and taking through smaller
increments. Prototypes could be used as the starting point.
As projects have been relatively small in the past the chief
designer does not see obstacles for agility. Agile working
method has the benefit of smart guys being able to use their
own know-how and creativity and actively influence project
realisation.

An infrastructure architect views any changes to business
requirements during projects as positive. Developing soft-
ware architecture ought to be directed to support business
agility within the framework defined by the infrastructure.

A data management architect sees an opportunity for
shorter throughput with the application of agile methods.
ASD is interlinked to project realisation, but does not help
the preceding phases requiring a lot of time and money. Also
the architectural guidelines ought to be made agile. The data
management architect understands agility as architects being
more involved in project realisation and taking a role in man-
aging changes.

Developers propose starting from removing organisational
impediments to ASD and communication and interaction

within the development organisation. Prioritising products,
projects and requirements at business level ought to be the
first step.

According to the decision makers, having the business
responsibility, the aim is to realise the most profitable solu-
tions and the business group and application development
must cooperate efficiently. Managing resources is challeng-
ing when there are several simultaneous projects. Projects
must be prioritised and be divided into milestones. Project
teams are given authority and development responsibility
resulting in better commitment.

4.2 New solution

The new solution is synthesised based on the positive qual-
ities of the old practices, analysing the interviewees’ rec-
ommendations, and the limitations set by the organisation’s
technical infrastructure. The solution’s project management
guidelines have their main origins in the Scrum literature
because Scrum has demonstrated to be linearly scalable
to support multiple project teams and platform companies
where architecture is of critical importance [57]. ASD prac-
tices such as shared ownership, responsibility, knowledge
and skills as well as direct and open communication make
many things in development projects more transparent. The
goal is to enable realising the most lucrative solutions swiftly
and cost efficiently. For achieving the goal, the aim is to
increase the agility of the development process and the vis-
ibility and transparency of requirements, design constraints
and the rationale behind design decisions.

The key aspects the new solution was expected to address:

• prioritising products and applications
• prioritising projects and setting milestones for them
• acknowledging limitations set by technical infrastructure
• tailoring processes project specifically
• prioritising project requirements
• the visibility of the actual achievements of agile project

teams
• making decisions timely
• interacting between application development and busi-

ness
• interacting effectively within application development

organisation
• increasing involvement of architects in project realisation
• increasing responsibility for development teams
• rotating staff between release concept planning and

development

This paper’s focus is on how requirements and architec-
tural issues permeate the concept planning and project real-
isation phases. A data flow diagram (DFD) is used in Figs.
2 and 3 to illustrate the phases. An activity is represented as

123

264 J Braz Comput Soc (2013) 19:257–274

Product line platform

Business goals

Release Manager
Concept planning team

System inspection group

Product line
architects

Business team

Proof-of-concept
 prototypes

System
structure

description

Pre-studies

Long-term
release

roadmaps

Requirements
change requests

Short-term
release

roadmaps

Project
proposals

Architectural
guidelines

System
structure
design

Software
architecture

design

Agile research
projects

Feature analysis
Release Backlog

- MCFSs
- feature descriptions

Identifying and
prioritising minimum

customer feature sets
(MFCSs)

Project planning

Reusable
components and

solutions

Coding
conventions

Reusable system
structure

descriptions

Fig. 2 New release concept planning activities

a circle. A flow is represented by an arrow. Flows are used
to describe the movement of information from one part of
the system to another part. Stores represent data and infor-
mation at rest. The notation for a store is two parallel lines.
A terminator represented as a rectangle. Terminators are used
to describe external entities with which the system communi-
cates.
A special actor symbol is used to describe key roles during
a development phase.

4.2.1 Acknowledging business goals in the new solution

The case organisation’s business pre-studies should include
long-term planning and goal setting in relation to, for exam-
ple, business, technologies, end-users’ needs, products and
applications (see the Business goals terminator in Fig. 2).
A long-term roadmap should identify and prioritise long-
term requirements, select requirements for long-term releases
of an application and schedule these releases. Based on
the long-term roadmap, the business team will identify and
prioritise short-term requirements, select requirements for
short-term releases and schedule these releases. The devel-
opment of a complex product or application may comprise
of several successive releases.

4.2.2 Release concept planning in the new solution

Release concept planning should provide background infor-
mation and rationale for decisions on successful release

development projects. A DFD in Fig. 2 illustrates the new
release concept planning activities.

4.2.3 Release backlog

Initial customer features for release backlog are to be cre-
ated based on information in release roadmaps. Customer
features could also come from the business team or directly
from the release manager. Feature proposals and change
requirements may also come from lead designers, project
managers and SPL architects. A release manager will create
a feature description document for each feature including ini-
tial requirements. Concept planning team members describe
each feature’s implementation, workload estimate and rela-
tionships between the feature and architectural parts of the
system.

The business team and the release manager will identify,
prioritise and select minimum customer feature sets (MCFSs,
also known as user stories) for the release and determine
MCFS sequencing. A MCFS is the smallest set of functional,
non-functional and architectural features that delivers a sub-
set of the requirements returning some value, enabling feed-
back from the business team. A MCFS is released as one
independent entity.

4.2.4 Agile research projects

Separate agile research projects will be carried out in order
to explore larger issues for building release backlogs. The

123

J Braz Comput Soc (2013) 19:257–274 265

The Sprint of Team 1..*

Product line platform
Business goals

System
structure

description
Requirements

change requests

Short-term
release

roadmaps

Team’s
Sprint

Backlog

Architectural
guidelines

Updating
system

structure

Architectural
design and
refactoring

Feature
analysis

Release Backlog
- MCFSs
- feature descrptions
- features of Sprints

Updating
MFCSs

Team’s
Sprint

planning

Team’s
Sprint

Daily meeting
Implementation
Sprint Review

Project’s Sprint
Release

Team’s Sprint
release

Project’s
Sprint

integration,
testing,

inspection,
audit

Software
architecture
description

Sprint
preplanning

Business team

Release Manager
ScrumMaster
Project teams

Team architects
Architecture support group
System inspection group

Reusable
components and

solutions

Coding
conventions

Setting up

Fig. 3 New release development activities

business team will provide feedback on user interface ideas
and core functionality of releases. Research projects will
conduct feasibility studies on integrating existing SPL solu-
tions and complex features. Proof-of-concept prototypes,
produced by research projects, proactively address changes
before they actually occur. Research projects have separate
research backlogs. The tasks of research projects may include
tackling surprises and, consequently, controlling and direct-
ing their progress is difficult. Therefore, research projects
sprints are shorter, often two weeks, than the sprints of appli-
cation projects. The steering groups of research projects
should meet after each sprint. Every research project sprint
does not necessarily deliver new executable business func-
tionalities.

4.2.5 Architectural guidelines

A concept planning team should include one or more
lead designers that create the system structure description
document based on information from the release backlog,
existing system structure descriptions and person-to-person
discussions with numerous architectural experts and other
specialists responsible for sub-systems and other projects.
The document specifies interfaces between releases and
information systems and the technical infrastructure. It also
describes alternatives, possibilities, limitations and boundary
conditions set by SPL platform for agile development and
changes in the release. Important system structure elements
are identified as system architecture features for the release
backlog. The system structure description document partic-
ularly focuses on the overall architecture and key interfaces
that are anticipated to be stable during projects.

The concept planning team should include software archi-
tects from information architecture and software architecture
sub-areas. The architects create architectural guideline docu-
ment and identify the important parts of the software architec-
ture design as architectural features for the release backlog.
The architectural guidelines define and recognise indepen-
dent modules and architectures for releases, utilising either
existing or potentially new solutions. Architectural guideline
document includes recommendations for release sprints for
forming project teams and for planning content and sched-
ules. To minimise cross-team and cross-project communica-
tion problems, the document defines their roles and identifies
interfaces for different software components. For example,
user interface can often be clearly separated from the rest of
the system, and the development of user interfaces requires
special skills, tools and SPL artefacts.

4.2.6 Project planning

A large release backlog should be implemented by several
projects that produce sub-releases for the entire release. Suc-
cessive projects are preferred over concurrent projects due to
the complexity of dependencies between concurrent projects.
One project may produce one or more sub-releases that can
be considered project management milestones. A minimum
criterion to start agile release development is that the content
of the release backlog, architectural descriptions and project
plan are ready for the first sprint.

4.2.7 Agile release development in the new solution

Figure 3 illustrates new release development activities. This
DFD diagram depicts how new revised business goals are
addressed during software production.

123

266 J Braz Comput Soc (2013) 19:257–274

Trials with minimal functionality (the Setting up activ-
ity in Fig. 3) are needed for setting up technical devel-
opment environment and for making sure that everything
is ready for release implementation. Trials may include
minimal functionality with communication paths between
the main system architectural components being exercised
for finding a skeletal system for building up the sys-
tem incrementally. The trials do not necessarily address
only the highest priority backlog items but rather they
may be selected based on the structure of the applica-
tion and key interfaces between teams, releases, infrastruc-
ture, reusable components, external systems and other
projects.

MCFSs guide sprint iterations particularly from the busi-
ness viewpoint. Release manager / business team may recon-
sider the release backlog before each sprint (see the Updating
MFCSs and Feature analysis activities in Fig. 3). Chang-
ing release backlog items can cause compulsory modifi-
cation needs in the system structure description document
(the Updating system structure activity in Fig. 3). These
modifications could be carried out by team architects and
the architecture support group under the control of the sys-
tem inspection group. Sprint schedules should be kept fixed
whenever possible.

Internal structure of a release and relevant documentation
in the software architecture description document can evolve
iteratively, sprint by sprint, along with new high priority items
in the release backlog (the Architectural design and refactor-
ing activity in Fig. 3). In addition, architectural solutions
of previous sprints may require refactoring when new and
large features are included. Also, refactoring often has side-
effects outside an individual team’s focus area. Team archi-
tects should be responsible for architectural modifying and
designing more detailed architectural solutions for sprints.
The architecture support group should support architectural
design and refactoring activities.

Sprint pre-planning sessions (the Sprint preplanning activ-
ity in Fig. 3) are needed to evaluate whether high priority
release backlog items include enough information for mov-
ing them from the preliminary state to a ready state. Features
in the ready state can be inserted into following sprint back-
logs. The release manager, ScrumMaster, team architects and
other team representatives usually participate in sprint pre-
planning sessions. There can also be other experts who have
experience with high priority items in release backlogs. The
release manager should have the responsibility on refining the
information. Should the development involve more than one
team, the pre-planned release backlog items are to be divided
among the teams. This may require further refining the
backlog items and synchronising the work between teams.
The identified preceding dependencies between MCFSs and
architectural features help dividing the development work
among multiple teams.

Team’s sprint planning (the Team’s Sprint planning activ-
ity in Fig. 3) can focus on selecting ready state features
to be implemented during the next sprint. The exact scope
of each sprint will be fixed in the beginning of the sprint.
Project teams continuously re-factor code without planned
architectural tasks (the Team’s Sprint implementation activ-
ity in Fig. 3). They are obligated to consult the architectural
design and refactoring activity when encountering problems
while adopting system structure descriptions, software archi-
tecture descriptions and architectural guidelines. Individual
teams are not at liberty to modify architecture design in the
system structure description document and clearly identi-
fied architectures and interfaces in the software architecture
description document, because those modifications tend to
have side-effects on the whole system, the work of other
teams or other projects.

According to the continuous integration practice, project
teams frequently integrate their work to identify conflicts
between developers quickly. Each integration is verified by
an automated build and tests to detect integration errors as
quickly as possible. Integration testing validates software
architecture. In the case of several project teams and large
systems, continuous integration requires multiple integration
environments and multiple builds done in a sequence.

During the inspection activities at the end of each sprint,
project teams prepare for the sprint audit (the Sprint integra-
tion, testing, inspection, audit activity in Fig. 3). They check
the status of their own implementation. They carry out pre-
tests to ensure the presentation of their results to the release
manager. The sprint audit activity validates the results of the
finished sprint assuring that the requirements and needs of the
business team are met. During the sprint audit, project teams
present their results to the release manager, or if releasing
MCFSs, to other business team members

4.2.8 Inspection, verification, validation and acceptance
in the new solution

Release managers should accept feature descriptions before
taking them into the release backlog. The business team
accepts or rejects the release backlog and the project plan
and decides whether to start the agile implementation of the
release. During implementation, the business team accepts
changes in release-level strategies and priorities. The release
manager accepts changes in individual features in the release
backlog.

The system inspection group should inspect and verify
that the structure of the developed software conforms to the
infrastructure of the SPL platform. The group also accepts
the system structure description document at the end of
the concept planning phase. The group evaluates, verifies
and accepts all changes in the system structure description
document during the release development phase. Common

123

J Braz Comput Soc (2013) 19:257–274 267

interfaces between project teams are reviewed in joint meet-
ings by all the involved teams. Team architects inspects
changes in architectural guidelines and software architec-
ture description document by the end of each sprint. Project
teams inspect their own work during sprint inspection activ-
ities. The release manager accepts the results of the sprints.

During the delivery phase, the system inspection group
accepts the system structure description document. The
architecture support group reviews and accepts the soft-
ware architecture description document. The business team
accepts the delivered release as a whole.

4.3 Old solutions and potential new solutions provided
by agility

Tables 2, 3, and 4 summarise previous chapters and compares
the old and proposed new solutions from three different per-
spectives of business, general, and software. Table 2 presents
old and new solutions at business level.

Table 3 presents old and new solutions at general level.
Table 4 presents old and new solutions at software pro-

duction level.

4.4 A summary of Scrum extensions

Scrum is an iterative and incremental framework to create
or evolve long-lived applications or products either for the
market or for internal use within an organisation [58]. Scrum
is a move from a project-centric development model towards
a continuous development model. There is no traditional
project with the beginning and end dates or no traditional
project manager. Scrum offers guidelines for agile project
management but it does not explicitly address engineering
practices.

Scrum can also be used for one-time initiatives or true
projects [58]. Most of the case department’s software devel-
opment initiatives are relatively small, true projects. The
projects’ business functionality typically penetrates across
multiple systems in the case company’s system portfolio
including banking, investment, loan and insurance services.
Project team members are experts from all needed service
sectors. This results in a high turnover of project team mem-
bers. There is no sufficient work for a dedicated long-lived
team after a completed application due to the project diver-
sity. The common nominator for development projects lies
in the SPL platform’s technical system infrastructure, multi-
channel architecture and common reusable assets. The plat-
form is stable from the viewpoint of application development.
The result of each project is a part of the large distribution
versions of production systems that are launched about two
times a year. Applications are developed for the company’s
own use.

Release planning is described in several Scrum descrip-
tions, although Scrum does not require release planning or
long-term product strategies [58,59]. Our solution briefly
describes how the business team’s long-term and short term
planning should support ASD (see Sect. 4.2.1 Acknowledg-
ing business goals in the new solution).

Scrum includes a preparation phase [57] or Pregame [60]
for developing a plan and product backlog for a product or
a project. The preparation phase corresponds to the release
concept planning phase in the new solution of this paper
(see Fig. 2). The activities of Pregame and this study’s release
concept planning include some iterations and intermediate
checkpoints. Pregame’s planning step corresponds to the
release backlog and project planning activities in this study’s
solution. Many items of Pregame’s architecture step corre-
spond to the architectural guidelines activity in this study’s
solution (see Sect. 4.2.5 Architectural guidelines).

This study’s release backlog corresponds to Scrum’s
release backlog [57]. Whereas initial customer features for
this study’s release backlog are created based on informa-
tion in release roadmaps, Scum’s release backlog items are
selected from the product backlog for the current release.
Schwaber [61] identifies the staging process for defining non-
functional requirements for scaling a project. For scaling a
project to use multiple teams, Schwaber and Beedle [40,61]
recommend to add into the product backlog non-functional
requirements for creating business architecture, system archi-
tecture, a more detailed product and technical architecture,
infrastructures and development environments to support
multi-team development. In our model, the non-functional
features in the release backlog are needed not only for scal-
ing the project to support multiple teams but also for spec-
ifying the boundaries and interfaces between the results of
the project and the whole system and other projects. The
concept planning team describes each feature’s implementa-
tion and relationships between the feature and architectural
guidelines. Requirements should be grouped from the busi-
ness perspective (see Sect. 4.2.3 Release backlog).

According to the Scrum primer [58], the product back-
log may include also research work. In our model, research
work will be done in separate research projects (see Sect.
4.2.4 Agile research projects). The main reason for this deci-
sion is that the tasks of research projects are expected to often
bring surprises. Shorter sprints are needed for controlling and
directing the progress of the tasks in these projects. Scrum has
been used to build Internet applications and financial applica-
tions on handheld and web devices [57]. However, an empir-
ical study [62] in 10 US companies indicates that a hybrid
mix of agile (such as XP and Scrum) and plan-driven meth-
ods these might be most appropriate for Internet software.
The critical requirements of the case company’s applications
such as security, scalability, and robustness are challenging
issues in the high-speed development of Internet software

123

268 J Braz Comput Soc (2013) 19:257–274

Table 2 Business level issues Old solution New solution

The business group describes short-term
business goals and defines fixed
business goals for separate development
projects. The project business goals are
not changed during development

Based on prioritised long-term roadmaps, the
business team identifies and prioritises short-term
requirements, selects the requirements for
short-term releases and schedules these releases.
Implementation can start once the content of the
release backlog is ready for the first sprint

The business group is informed
only through project steering
group meetings

The release manager represents the business team in
face-to-face meetings during release concept
planning and development phases

Business value is seen only at the
very end of the project, all at once

A large release backlog may be implemented by
several projects that produce sub-releases for the
entire release.
One project may produce one or more sub-releases
that can be considered project management
milestones

The business group aims to
complete and freeze
specifications before go/no-go
decisions on proceeding to
software code design and testing

Release manager/ business team may reconsider the
release backlog before each sprint

Business goals in documentations
are unclear, lacking information
and without adequate
requirements prioritisation

Initial customer features for release backlog are
created based on information in release roadmaps.
Release manager creates a feature description
document for each feature including initial
requirements.
Concept planning team members describe
requirements implementation and relationships
between features and the system. Workload is
estimated

After accepting requirements prior
to software design and testing,
business group provides feedback
only after project realisation

Minimum customer feature set (MCFS) to guide
sprint iterations from business viewpoint.
After each sprint, project teams present their
results to release manager and business team

[62]. In our solution, separate agile research projects will be
carried out in order to explore Internet user interface ideas
for building release backlogs and for getting early feedback
from the business team.

According to Schwaber [60], Pregame’s planning step
includes verification of management approval and funding.
In our model, the business team makes go/no-go investment
decisions on proceeding to software code design and testing
based on the project proposals produced by the project plan-
ning activity in the end of the release concept planning phase
(Fig. 2).

According to Schwaber and Beedle [40,61], one team
works via as many sprints as required for scaling the project’s
infrastructure and architecture. Non-functional requirements
should be mixed with business functionality, because busi-
ness functionality must be demonstrated at the end of every
sprint. The Setting up activity in Fig. 3 addresses the imple-
mentation of the non-functional features in the release back-
log that are needed to scale the project to support multiple
teams and to find a skeletal system for building up the system
incrementally.

According to Scrum [57,61], means and mechanisms are
needed to coordinate and synchronise multiple Scrum teams
and their efforts. Most reported coordination examples are
from the cases where teams are isolated or distributed across
geographies [57]. In our case, project teams work in the same
city block. In this study, the architectural design and refac-
toring activity is used to coordinate and control the direction
of the project architecture (see Fig. 3). The project sprint
integration, testing, inspection and audit practices are used
to create the release of the project’s sprint from the sprint
releases of the project teams. In addition, the system inspec-
tion and architecture support groups coordinate the project’s
compatibility with and effects on the SPL platform’s tech-
nical system infrastructure, on common reusable assets and
information architecture and on other related projects. The
business team coordinates and synchronises multiple projects
and their releases.

One lesser known Scrum’s guideline is that five to ten per
cent of each sprint should be devoted to refining the product
backlog [58]. Scrum does not tell how to do this but focused
workshops are often used for this work [58]. In our solution,

123

J Braz Comput Soc (2013) 19:257–274 269

Table 3 General issues
Old solution New solution

Communication and interaction are strongly
documentation based also within the
development organisation

Rotating staff between SPL platform and release
concept planning and between release concept
planning and development phases increases
willingness to share knowledge and reduces
conflicts

The old ways of working do not support
co-learning and distributing best practices

The communicative roles of release manager,
ScrumMaster and team architects. The system
inspection group and the architecture support
group

Projects do not have chief designer level expertise The role of team architect

Project management is based on the conventional
specification-planning-execution-control cycle

Project management emphasises adaptation and
value generation

Description of a system product includes all the
relevant interfaces and relevant sub-systems

System structure document describes also
alternatives, possibilities, limitations and
boundary conditions set by SPL platform for
ASD

Important system structure elements are
identified as system architecture features for the
release backlog

Architecture guidelines aim to ensure that
projects develop generic solutions, not
project-specific or overlapping solutions

Architectural guidelines document includes
recommendations for release sprints for
forming project teams and for planning content
and schedules

To minimise cross-team and cross-project
communication problems, the document
defines their roles and identifies interfaces for
different software components

The guidelines define and recognise independent
modules and architectures for releases, utilising
either existing or potentially new solutions

Documentation is expected to be perfect and
changing it is considered as a matter of
authority

ASD embraces changing requirements

Those preparing architectural guidelines do not
enforce them. Realisation may differ from
guidelines

Project teams consult all team architects when
encountering problems while adopting system
structure, software architecture descriptions
and architectural guidelines

release backlog items are refined in sprint preplanning ses-
sions (the Sprint preplanning activity in Fig. 3).

According to Schwaber and Beedle [40], Scrum’s team
is constrained only by the issues that have been set prior to
the start of a sprint, e.g., the product backlog items the team
has selected and organisations standards and conventions.
The team is also responsible for using and conforming to
any existing architectures and other issues that have been set
prior to the start of a sprint. In our model, individual project
teams are constrained by selected release backlog items, the
system structure and software architecture descriptions, cod-
ing conventions and architectural guidelines with reuse rec-
ommendations (Fig. 3).

There are three primary roles in Scrum: Product Owner,
ScrumMaster and Team [57]. This study’s release manager
corresponds to Scrum’s Product Owner. The release manager
servers as a proxy for the business team of the case company.
The release manager accepts changes in individual features
in the release backlog. This study’s ScrumMaster (a certified

ScrumMaster) correspond s to Scum’s ScrumMaster. This
study’s project team differs from Scrum’s team in that indi-
vidual teams are required to consult all team architects when
encountering problems while adopting system structure, soft-
ware architecture descriptions and architectural guidelines.
Those problems tend to have side-effects on the whole sys-
tem, the work of other teams or other projects. Otherwise the
sprints of each project team follow the Scrum framework’s
[57] roles, ceremonies and artefacts (The Sprint of Team 1..*
activity in Fig. 3).

In addition to the three roles of Scrum, Scrum and CMMI
(capability maturity model integration) Level 5 recommends
that the team is likely to include the roles and expertise such
as domain experts, system engineers, software engineers,
architects, programmers, analysts, QA experts, testers and
UI designers [57]. It has been reported that, in the context
of large products, architects in production Scrum teams have
weekly assembled in an architecture group for controlling
the direction of the project architecture [57]. After scaling

123

270 J Braz Comput Soc (2013) 19:257–274

Table 4 Software production
issues Old solution New solution

Sequential waterfall style development process in
software code design and testing phases

Incremental and iterative development process in
software code design and testing phases

In order to avoid surprises, proof of concept
prototypes are occasionally constructed and
performance tests are carried out to confirm
architecture functionality already during
concept development

Proof of concept prototypes are developed in
separate agile research projects

Feasibility studies are conducted on integrating
existing SPL solutions and complex features in
the release backlog

Technical infrastructure is common nominator
for projects

Separate architecture support groups can be
established to support project realisation,
should significant issues require

Architecture support group and system
inspection group are formed to carry out
compulsory modification needs

Project team architects are responsible for
architectural modifying and designing more
detailed architectural solutions for sprints

Individual project teams are not allowed to
modify architecture design

Designers find it difficult to understand
requirements documents as they have been
prepared from business perspective

Trials with minimal functionality
Feature analysis during release development
Sprint preplanning sessions preparing workload
estimates and pre-planned and clear features for
implementation

Designers concentrate on their tasks without a
view to surroundings

System product concept and architectural
guidelines are frozen for designers

Architectural communication between project
teams, team architects, architecture support
group and system inspection group

Designers are expected to maintain an application
log, its quality is, however, not controlled

Architecture support group reviews and accepts
the software architecture description document

Development projects encounter challenges
relating to costs, project division,
communication, and interaction

To avoid communication problems, split
development is favoured wherever possible
using prioritised roadmaps. A large release
backlog may be split into several projects.
Each project can also be split into several
sub-projects

a project to use multiple teams, each new team includes a
member of the original team, who serves as an expert on the
project’s infrastructure and architecture [61]. In our model,
one or more concept planning team members become project
team architects and serve as experts on the project’s sys-
tem and software architecture. The project team architects in
the architectural design and refactoring activity are responsi-
ble for architectural modifying and designing more detailed
architectural solutions for sprints.

Scrum includes continual inspection in Scrum sprints [57].
The product owner accepts the results of the sprints [57]. In
addition to these, our model includes additional roles and
responsibilities in the inspection, verification, validation and
acceptance of the results of the sprints and related documen-
tation (see Sect. 4.2.8 Inspection, verification, validation and
acceptance in the new solution).

5 Research contributions and managerial implications

Managers who wish to start utilising ASD, but who have
realised the direct use of these methods as unfeasible,

may benefit of the results of this study. Especially compa-
nies developing solutions to be integrated into complex IT
products can utilise the results. The transition towards agility
is not a single step, but a series of smaller ones. This study
provides an example on potential actions required to improve
the match between business goals and the results of devel-
opment projects. In addition, the cost efficiency of product
development can be improved through increased flexibility
during the development.

The results of this study have implications on business
level responsibilities. Business teams are responsible for the
visibility and transparency of requirements. They are respon-
sible for creating prioritised long-term roadmaps, identi-
fying and prioritising short-term requirements, selecting
requirements for short-term releases and scheduling releases.
Prioritised initial customer features for release backlog are
created based on information in release roadmaps. The busi-
ness team is responsible for subdividing the implementa-
tion of a large release backlog into several projects that
produce sub-releases for the entire release. The business team
is responsible for appointing a business-oriented release man-
ager for each project. The business team is responsible for

123

J Braz Comput Soc (2013) 19:257–274 271

specifying minimum customer feature sets to guide the mile-
stones and sprint iterations from business viewpoint. The
release manager and the business team have better than one
iteration’s accuracy of information about the progress and
status of projects. Therefore, the business team is able and
responsible for redirecting projects after each iteration cycle,
if deemed necessary.

The results of this study have implications on architecture
level management. Architects are responsible for the visi-
bility and transparency of design constraints and the ratio-
nale behind design decisions. System level design decisions
are architecturally very significant and should be explicitly
documented during all project phases. Many reuse decisions
are architecturally significant and are documented and com-
municated via architectural guidelines. These architecturally
significant decisions should be made early and mainly before
implementation. However, the results of this study indicate
that these definitions should not be frozen, but changed dur-
ing development according to gained understanding. The sys-
tem inspection group owns system level architectural issues.
Software architects from information architecture own reuse
issues. Team architects are responsible for the internal struc-
ture of releases and relevant architectural documentation.
This study highlights the role of staff rotation as when spec-
ifications are neither stable nor perfect, the tacit knowledge
and understanding of personnel becomes the key.

This study points out how ScrumMaster and team archi-
tects should have a more communicative role to ensure ade-
quate links between project team, business team, architecture
support group, system inspection group, designers, and such
to assure that work is conducted efficiently and any problems
are addressed openly and swiftly.

6 Limitations

The limitations of this study include, the study concen-
trating on a single case and including no more than 33
interviewees and three workshops, somewhat weakening
the generaliseability of the results. Participants especially
decision-makers and interviewed software architecture
experts were experienced and had worked for a long time (6–
20 years) with the plan-driven and platform-oriented product-
line architecture approach of the case company. On the other
hand, their experience of agile approaches was limited to
some agile pilot projects. All interviewees were aware of
the gained experience of the pilots. The “big picture” pre-
sentation manner of the findings is expected to promote the
transferability of the results. Further research is needed on the
experience of the use of the developed process framework.

No significant discrepancy was found in the opinions
of the participants about challenges and solutions in com-
bining the SPL and ASD cultures in their projects. Par-

ticipants were purposely selected to maximize diversity of
stakeholder concerns and, partially therefore, many of the
opinions were complementary to each other. The interview
instrument’s information management and communication
model of the interviewees was found a useful countermea-
sure to reduce architecture-related misconception and mis-
understanding threats to validity of the study.

Tian and Cooper [19] argue that an established agile
method is not a suitable choice in a financial product line
application due to the security critical nature of this appli-
cation. ASD methods do not promote formal documentation
that may be required within the financial services community
[37,38]. These reflect the results of this study that the direct
use of the basic and well-known practices of agile methods
is unfeasible in the context of the case organisation. Cao and
Ramesh [36] argue that formal requirement specifications
can benefit from frequent reprioritisation of requirements.
This is in line with the results of this study.

The results of this study also show that the transition
towards agility in the case organisation is not a single step, but
a series of smaller ones. This reflects the findings of Lycett
et al. [33] that management of large and mature organisa-
tions sees big risks in the big-bang adoption of agility. Sev-
eral industrial experiences (e.g., [2,24,63,64]) indicate that
a small group of experts in a research project or an explo-
ration phase before agile production is often needed to pre-
pare key requirement and architecture issues to ensure that
a project is in a situation where agile methods are feasible.
This is in line with the results from early agile pilot projects
in the case organisation. Therefore, the results of this study
emphasise release concept planning before agile production.
Tyree and Akerman [34] believe that architecture decisions
are the missing link between traditional and agile archi-
tecture documentation in the context of large financial IT
systems. This is in line with the results of this study that
emphasise rationale for decisions on successful release devel-
opment projects.

The proposed first steps of this study for moving towards
ASD include no concrete proposals for more agile system
testing, validation and releasing practices. This is in line
with several industrial companies that, after more than 5-year
experience in tailoring agile methods, still use and do not see
big problems in using company-specific less agile system
testing, validation and releasing practices (e.g., [24,50]).

Brown’s case study focused on a broad view of agility at a
large bank [10]. The focus of this research was on small
in-house software development projects (few agile teams
with fewer than ten members) for the company’s own use
thus excluding maintenance projects and the use of sub-
contractors. This study focused on improving the product
development activity [15] of the case organisation’s SPL.
From these viewpoints, this study is similar to the case of Ali
Babar et al. [24]. The key findings of the two studies have

123

272 J Braz Comput Soc (2013) 19:257–274

many similarities such as the exploration phase before agile
production although their case organisations and domains
were very different.

Augustine et al. [36] have developed practices for manag-
ing large and mission-critical agile (XP practices) projects.
Their financial service case project included more than 120
members. The article includes only one remark about archi-
tecture: “developers struggled with simple design in light
of the large legacy code base.” In contrast to the article, the
results of this study emphasise acknowledging limitations set
by the case organisation’s complex dated technical infrastruc-
ture and multi-channel architecture. The case organisation’s
IT system has similar shortcomings and agility challenges as
many other large financial IT systems: business functionality
across multiple sub-systems and tightly coupled parts of the
infrastructure [34].

Despite the above and potentially other limitations, the
findings from this study are expected to increase the under-
standing of combining complex product line architectures
and ASD within the context of large financial IT systems.

7 Conclusions

ASD is an important development method for improving
software development. However, experiences from ASD
especially in large organisations highlight the need of extend-
ing and tailoring ASD to organisational requirements. This
study concentrated on studying the adoption and architectural
extensions of the Scum method in developing new service
applications of large financial IT systems. The study was con-
ducted by interviewing a wide representation from the per-
sonnel and stakeholders of software projects and analysing
the potential of using agile methods for improving software
development.

The interviewees highlighted the old serial development
model, without iterative feedback, allowing results of devel-
opment projects to become obsolete and products failing to
meet expectations. Inefficiency caused by planning overly
secure schedules is seen to increase expenses. In addition,
the old ways of working are seen not to support co-learning
and distributing best practices. Communication is strongly
documentation based, with weak interaction, making it very
difficult to confirm correct realisation, should the written
requirements be ambiguous.

Scrum does not require release planning. In the solution
of this study, the business team should coordinate and syn-
chronise multiple projects and their releases via a prioritised
long-term roadmap and short-term release plans. In Scrum,
the product owner develops a plan and backlog for a project.
In the studied case, the result of each project is a part of
a large distribution release. Each project should acknowl-

edge the constraints set by other projects and the com-
plex infrastructure, multi-channel architecture, data security
issues and system portfolio in the organisation’s SPL plat-
form. In the case of this very complex system portfolio, it
is virtually impossible for an individual to perceive large
enough entities. Therefore, lead designers are needed to col-
lect the constraints from the release backlog, existing system
structure descriptions and person-to-person discussions with
numerous architectural experts and other specialists respon-
sible for sub-systems and other projects. In order to minimise
risks and promote reuse, system, software architecture and
reuse guidelines documents are still seen of vital importance
for specifying the constraints. In addition, research work will
be done in separate agile research projects.

Scrum offers guidelines for coordinating and synchro-
nising multiple and distributes teams. Project teams in the
case company work in the same city block. In the solu-
tion of this study, team architects collaborate in coordinating
and controlling the direction of the project architecture. The
system inspection and architecture support groups coordi-
nate the project’s compatibility with and effects on the SPL
platform’s technical system infrastructure, common reusable
assets, information architecture and other related projects.

Projects’ business functionality typically penetrates across
multiple systems in the case company’s system portfolio
including banking, investment, loan and insurance services.
Project team members are experts from all needed service
sectors. This often results in a high turnover of project team
members. There is no sufficient work for a dedicated long-
lived team after a completed application due to the project
diversity. Therefore, it seems to be difficult to achieve all
Scrum’s aims for a continuous development model and ded-
icated long-lived teams in the context of large financial IT
systems.

Using agile methods in the case company would enable
better match between developed products and business
requirements. The results of this study propose steps for a
large IT systems company for moving towards ASD start-
ing by developing new service applications using Scrum.
The results of this study have implications on business,
architecture and project team level management. Many impli-
cations relate to the visibility and transparency of require-
ments, design constraints and the rationale behind design
decisions.

In addition to the addressed limitations of this study, rec-
ommended future research could include more testing the
proposed actions towards agility. Also, a follow-up study
after an adequate period, would be interesting to check how
the transition towards agility has progressed.

Acknowledgments This research has been carried out within the
EVOLVE ITEA2 and Varies Artemis projects funded by the National
Technology Agency of Finland (Tekes) and VTT. Many sincere thanks

123

J Braz Comput Soc (2013) 19:257–274 273

are due to all the fellow researchers in the case project. The author
would also like to thank Dr. Pekka Belt, Dr. Matti Mottonen and Dr.
Janne Harkonen for their support in writing this article.

References

1. Bowers J, May J, Melander E, Baarman M, Ayoob A (2002)
Tailoring XP for large system mission critical software devel-
opment. In: Wells D, Williams L (eds) Extreme programming
and agile methods—XP/Agile Universe 2002. Springer, Berlin,
pp 269–301.

2. Kähkönen T (2005) Life cycle model for a software process
improvement project deploying an agile method. In: Andersin H,
Niemi E, Hirvonen V (eds) The proceedings of the international
conference on agility, ICAM 2005, 27 June 2005. Helsinki Univer-
sity of Technology, Otaniemi, Finland, pp 225–232

3. Abrahamsson P, Babar MA, Kruchten P (2010) Agility and archi-
tecture: can they coexist? IEEE Softw 27(2):16–22. doi:10.1109/
MS.2010.36

4. Kruchten P (2007) Voyage in the agile memeplex: agility, agilese,
agilitis, agilology. ACM Queue 5(5):38–44

5. Vanhanen J, Jartti J, Kähkönen T (2003) Practical experiences of
agility in the Telecom industry. In: Mearchesi M, Succi G (eds) The
proceedings of extreme programming and agile processes in soft-
ware engineering, XP 2003, 25 May 2003, Genova, Italy. Springer,
Berlin, pp 279–287

6. Evans I (2006) Agile delivery at British Telecom. Methods Tools
14(2):19–26

7. Karlsson E-A, Andersson L-G (2000) XP and large distributed soft-
ware projects. In: Succi G, Marchesi M (eds) Extreme program-
ming examined: selected papers from the XP 2000 Conference.
Addison-Wesley, New York, pp 119–134

8. Lindvall M, Muthig D, Dagnino A, Wallin C, Stupperich M, Kiefer
D, May J, Kähkönen T (2004) Agile software development in large
organizations. IEEE Comput 37(12):26–34

9. McMahon P (2006) Lessons learned using agile methods on large
defense contracts. CrossTalk 19(5):25–30

10. Brown A (2011) A case study in agile-at-scale delivery. In: Sillitti
A, Hazzan O, Bache E, Albaladejo X (eds) The proceedings of
the12th international conference on agile software development,
XP 2011, 10 May 2011, Spain. Springer, Berlin, pp 266–281

11. Dyba T, Dingsoyr T (2008) Empirical studies of agile soft-
ware development: a systematic review. Inf Softw Technol
50(9–10):833–859

12. Freudenberg S, Sharp H (2010) The top 10 burning research ques-
tions from practitioners. IEEE Softw 27(5):8–9

13. Leffingwell D (2011) Agile software requirements: lean require-
ments practices for teams, programs, and the enterprise. Addison-
Wesley, Upper Saddle River

14. Kettunen P, Laanti M (2008) Combining agile software projects
and large-scale organizational agility. Softw Process Improv Pract
13(2):183–193

15. Northrop L (2002) SEI’s software product line tenets. IEEE Softw
19(4):32–40

16. van der Linden FJ, Schmid K, Rommes E (2007) Software product
lines in action. Springer, Berlin

17. Clements P, Jones L, McGregor J, Northrop L (2006) Getting there
from here: a roadmap for software product line adoption. Commun
ACM 49(12):33–36

18. Hanssen G, Fægri T (2008) Process fusion: an industrial case study
on agile software product line engineering. J Syst Softw 81(6):
843–854

19. Carbon R, Lindvall M, Muthig D, Costa P (2006) Integrating prod-
uct line engineering and agile methods: flexible design up-front

vs. incremental design. In: The proceedings of the 1st interna-
tional workshop on agile product line engineering, 21 August 2006,
Baltimore, MD USA, pp 1–8

20. Tian K, Cooper K (2006) Agile and software product line meth-
ods: are they so different. In: The proceedings of the 1st interna-
tional workshop on agile product line engineering, 21 August 2006,
Baltimore. Maryland, USA, pp 1–8

21. McGregor J (2008) Mix and match. J Object Technol 7(6):7–13
22. Beck K, Andres C (2004) Extreme programming explained:

embrace change, 2nd edn. Addison Wesley Longman, Inc.,
Reading

23. Turk D, France R, Rumpe B (2005) Assumptions underlying agile
software-development processes. J Database Manage 16(4):62–87

24. Ali Babar M, Ihme T, Pikkarainen M (2009) An industrial case of
exploiting product line architectures in agile software development.
In: The proceedings of the 13th international software product line
conference, 24 August 2009, San Francisco. CA, USA. ACM, New
York, pp 171–179

25. McGregor J (2008) Agile software product lines, deconstructed.
J Object Technol 7(8):7–19

26. Noor M, Rabiser R, Grünbacher P (2008) Agile product line plan-
ning: a collaborative approach and a case study. J Syst Softw
81(6):868–882

27. Petersen K, Wohlin C (2010) The effect of moving from a plan-
driven to an incremental software development approach with agile
practices: an industrial case study. Empirical Softw Eng 15(3):
654–693. doi:10.1007/s10664-010-9136-6

28. Falessi D, Cantone G, Sarcia’ SA, Calavaro G, Subiaco P, D’Amore
C (2010) Peaceful coexistence: agile developer perspectives on
software architecture. IEEE Softw 27(2):23–25

29. Booch G (2010) An architectural oxymoron. IEEE Softw 27(5):96
30. Hansson C, Dittrich Y, Gustafsson B, Zarnak S (2006) How

agile are industrial software development practices? J Syst Softw
79(9):1295–1311

31. Hofmeister C, Kruchten P, Nord R, Obbink H, Ran A, America
P (2007) A general model of software architecture design derived
from five industrial approaches. J Syst Softw 80(1):106–126

32. Christou I, Ponis S, Palaiologou E (2010) Using the agile unified
process in banking. IEEE Softw 27(3):72–79

33. Lycett M, Macredie RD, Patel C, Paul RJ (2003) Migrating
agile methods to standardized development practice. Computer
46(6):79–85

34. Tyree J, Akerman A (2005) Architecture decisions: demystifying
architecture. IEEE Softw 22(2):19–27

35. Merton R, Fiske M, Kendall P (1990) The focused interview: a
manual of problems and procedures, 2nd edn. The Free Press,
New York

36. Augustine S, Payne B, Sencindiver F, Woodcock S (2005) Agile
project management: steering from the edges. Commun ACM
48(12):85–89

37. Cao L, Ramesh B (2008) Agile requirements engineering practices:
an empirical study. IEEE Softw 25(1):60–67

38. Coram M, Bohner S (2005) The impact of agile methods on
software project management. In: Proceedings of the 12th IEEE
international conference and workshops on the engineering of
computer-based systems (ECBS’05). IEEE, pp 393–370

39. Poort E, Pramono A, Perdeck M, Clerc V, van Vliet H (2009) Suc-
cessful architectural knowledge sharing: beware of emotions. In:
Mirandola R, Gorton I, Hofmeister C (eds) The proceedings of
the 5th international conference on the quality of software archi-
tectures, QoSA 2009, 24 June 2009. East Stroudsburg, PA, USA,
Springer, Berlin, pp 130–145

40. Schwaber K, Beedle M (2002) Agile software development with
Scrum. Prentice-Hall, Upper Saddle River

41. Krueger C (2002) Eliminating the adoption barrier. IEEE Softw
19(4):29–31

123

http://dx.doi.org/10.1109/MS.2010.36
http://dx.doi.org/10.1109/MS.2010.36
http://dx.doi.org/10.1007/s10664-010-9136-6

274 J Braz Comput Soc (2013) 19:257–274

42. Nerur S, Balijepally V (2007) Theoretical reflections on agile
development methodologies. Commun ACM 50(6):79–83

43. Thapparambil P (2005) Agile architecture: pattern or oxymoron?
Agile Times 6(1):43–48

44. Mens T, Tourwe T (2004) A survey of software refactoring. IEEE
Trans Softw Eng 30(2):126–139

45. McGregor J, Northrop L, Jarrad S, Pohl K (2002) Initiating soft-
ware product lines. IEEE Softw 19(4):24–27

46. Sharifloo A, Saffarian A, Shams F (2008) Embedding architectural
practices into Extreme Programming. In: The Proceedings of 19th
Australian conference on software engineering, 25 March 2008,
Perth. Western Australia, IEEE, pp 310–319

47. Holcombe M, Thomson C (2008) Seven years of XP–50 cus-
tomers, 100 projects and 500 programmers–lessons learnt and ideas
for improvement. In: Abrahamsson P, Baskerville R, Conboy K,
Fitzgerald B, Morgan L, Wang X (eds) The Proceedings of the 9th
international conference on agile processes and eXtreme program-
ming in software engineering, 10 (June 2008) Limeric. Ireland.
Springer, Berlin, pp 104–113

48. Boehm B (2006) Some future trends and implications for systems
and software engineering processes. Syst Eng 9(1):1–19

49. Fraser S, Rising L, Ambler S, Cockburn A, Eckstein J, Hussman D,
Miller R, Striebeck M, Thomas D (2006) A fishbowl with piranhas:
coalescence, convergence or divergence? In: The proceedings of
dynamic languages symposium in companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, 22 (October 2006) Portland, Oregon.
USA. ACM, New York, pp 937–939

50. Karlström D, Runeson P (2006) Integrating agile software devel-
opment into stage-gate managed product development. Empiric
Softw Eng 11(2):203–225. doi:10.1007/s10664-006-6402-8

51. Conboy K, Fitzgerald B, Golden W (2005) Agility in information
systems development: a three-tiered framework. In: Baskerville R,
Mathiassen L, Pries-Heje J, DeGross J (eds) Business agility and
information technology diffusion. Springer, New York, pp 35–49

52. Fernandez DJ, Fernandez JD (2008) Agile project management–
agilism versus traditional approaches. J Comput Inf Syst 49(2):
10–17

53. Denne M, Cleland-Huang J (2004) Software by numbers: low-risk,
high-return development. Prentice Hall, Upper Saddle River

54. Clements P, Northrop L (2002) Salion, Inc.: a software product line
case study, CMU/SEI-2002-TR-038. Software Engineering Insti-
tute, Carnegie Mellon University, Pittsburgh.

55. Mohan K, Ramesh B, Sugumaran V (2010) Integrating soft-
ware product line engineering and agile development. IEEE Softw
27(3):48–55

56. IEEE (1998) Standard for information technology–software life-
cycle processes, IEEE-Std-12207. IEEE, New York

57. Sutherland J, Schwaber K (2007) The Scrum papers: nuts, bolts,
and origins of an agile process. http://www.scrumalliance.org.
Accessed 7 September 2012

58. Deemer P, Benefield G, Larman C, Vodde B (2010) The Scrum
primer. http://www.scrumalliance.org. Accessed 7 September 2012

59. Paulk M, Davis N, Maccherone L (2011) On empirical research into
Scrum. http://www.cs.cmu.edu/~mcp/agile/oersa.pdf. Accessed
14 June 2011

60. Schwaber K (1995) SCRUM development process. In: The Pro-
ceedings of tenth annual conference on object-oriented pro-
gramming systems, languages, and applications (OOPSLA’95),
workshop on business object design and implementation,
15 October 1995, Austin. Texas, USA, pp 117–134

61. Schwaber K (2004) Agile project management with Scrum.
Microsoft Press, Redmond

62. Baskerville R, Ramesh B, Levine L, Pries-Heje J (2006) High-
speed software development practices: what works, what doesn’t.
IT Professional 8(4):29–36

63. Drobka J, Noftz D, Rekha R (2004) Piloting XP on four mission-
critical projects. IEEE Softw 21(6):70–75

64. Kruchten P (2004) Scaling down large projects to meet the
agile sweet spot. IBM. http://www-128.ibm.com/developerworks/
rational/library/content/RationalEdge/aug04/5558.html.
Accessed 30 October 2009

123

http://dx.doi.org/10.1007/s10664-006-6402-8
http://www.scrumalliance.org
http://www.scrumalliance.org
http://www.cs.cmu.edu/~mcp/agile/oersa.pdf
http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/aug04/5558.html
http://www-128.ibm.com/developerworks/rational/library/content/RationalEdge/aug04/5558.html

	Scrum adoption and architectural extensions in developing new service applications of large financial IT systems
	Abstract
	1 Introduction
	2 Literature review
	3 Research methodology and procedure
	4 Results and discussion
	4.1 Current state analysis
	4.1.1 Old practices described
	4.1.2 Current challenges
	4.1.3 Agility challenges
	4.1.4 Agility proposals by architects, developers and decision makers

	4.2 New solution
	4.2.1 Acknowledging business goals in the new solution
	4.2.2 Release concept planning in the new solution
	4.2.3 Release backlog
	4.2.4 Agile research projects
	4.2.5 Architectural guidelines
	4.2.6 Project planning
	4.2.7 Agile release development in the new solution
	4.2.8 Inspection, verification, validation and acceptance in the new solution

	4.3 Old solutions and potential new solutions provided by agility
	4.4 A summary of Scrum extensions

	5 Research contributions and managerial implications
	6 Limitations
	7 Conclusions
	Acknowledgments
	References

