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Abstract The Extended Kalman Filter (EKF) is one of the
most efficient algorithms to address the problem of Simul-
taneous Localization And Mapping (SLAM) in the area of
autonomous mobile robots. The EKF simultaneously esti-
mates a model of the environment (map) and the position of
a robot based on sensor information. The EKF for SLAM is
usually implemented using floating-point data representation
demanding high computational processing power, mainly
when the processing is performed online during the envi-
ronment exploration. In this paper, we propose a method to
automatically estimate the bit-range of the EKF variables
to mitigate its implementation using only fixed-point repre-
sentation. In this method is presented a model to monitor
the algorithm stability, a procedure to compute the bit range
of each variable and a first effort to analyze the maximum
acceptable system error. The proposed system can be applied
to reduce the overall system cost and power consumption,
specially in SLAMapplications for embeddedmobile robots.

Keywords EKF-SLAM · Fixed-point ·Bit-range analysis ·
Embedded mobile robots

1 Introduction

The Extended Kalman Filter (EKF) [1] is one of the most
important algorithms in the area of mobile robotics for the

L. de Souza Rosa (B)
Institute of Mathematical and Computing Sciences,
The University of São Paulo, São Carlos, Brazil
e-mail: le.souza.rosa@gmail.com; leandrors@usp.br

V. Bonato
São Carlos School of Engineering,
The University of São Paulo, São Carlos, Brazil
e-mail: vbonato@icmc.usp.br

localization and mapping tasks due to its ability to deal with
noise and its high degree of accuracy [2]. Derived from
Bayesian filters [3], EKF has high computational complexity
and performs operations over a large volume of data. Apply-
ing such a solution in the development of embedded mobile
robots is highly desired, since it allows one to build intelli-
gent machines capable of acting autonomously in complex
environments.

Implementing this algorithm in a customized device is
usually desired when a typical solution of a general pur-
pose processor is unsatisfactory, such as when the robotic
system has limited cost, performance and power require-
ments. Developing an optimized processing system, such as
the one presented in Bonato et al. [4], where an EKF floating-
point based system on an FPGA (Field-Programmable Gate
Array) was implemented, is a feasible way to achieve the
requirements via specific customizations of software and
hardware. Customized system operating over fixed-point for-
mat is anotherway to obtain further optimizations for embed-
ded robotic applications.

There are different ways to convert algorithms from
floating-point to fixed-point format. Most solutions are com-
pletely automatic and orientated to DSP applications [5,6].
The main task in converting an algorithm is to estimate the
bit-range of each single variable in suchway to avoid an error
bigger than the one allowed by the algorithm without com-
promising the overall system accuracy, which can be caused
by underflows and overflows of variables.

Recent work has used fixed-point representation to imple-
ment the EKF algorithm to solve the SLAM problem. In
Moyers et al. [7], we have a fixed-point implementation, but
without bit length optimization, and in,Mingas et al. [8], there
exists another fixed-point implementation, with bit lengths of
all variables defined by physical constraints of a robot. In this
paper is the first work that presents an approach to estimate a
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particular bit length for each according to a maximum error
defined by the user. The main contributions of this paper are:

– a method to monitor the EKF error during the conversion
process;

– an optimized way to reduce the time needed for the con-
version process;

– the bit range of each EKF variable for a given maximum
error.

The paper is organized as follows. Section 2 briefly intro-
duces the EKF algorithm for SLAM along with a table
describing each of its variables. Section 3 presents the float-
ing to fixed-point conversion algorithm steps, which was
adapted from Roy and Banerjee [9]. The error analysis
method is demonstrated in Sect. 4 followed by Sect. 5, where
the conversion results are presented. Finally, Sect. 6 con-
cludes the paper.

2 Extended Kalman Filter

This section briefly describes the EKF algorithm and a com-
plete description, with the derivation of each equation, can
be found in [2]. The source code used as base in our work
can be founded in Newman [10].

2.1 EKF description

EKF is composed of two phases: prediction and update. In
the SLAM context, the prediction phase estimates the robot
position μ

(t)
v , at time t , based on a prior believed position

μ
(t−1)
v and on a movement control u(t), while the update

phase integrates robot sensor observations z(t) in order to
update amap of the robot environment and to, again, estimate
the robot position. These two steps are repeated for each EKF
iteration, where the data estimated at one iteration are used
as input to the next one.

For this paper, we are considering the robot position com-
prising of two-dimensional planar coordinates (x, y) relative
to some external coordinate frame, alongwith its angular ori-
entation θ . Themap generated by the EKF-SLAMconsists of
a set of feature positions (μ(t)

f1
, μ

(t)
f2

, . . . , μ
(t)
fn
) detected from

the robot navigation environment by a sensor, where each
feature is represented in the same way by its (x, y) coordi-
nates. Thus the robot state size is three and the feature state
size is two; these parameters are represented in this paper by
r and s, respectively, for generalization. As these robot and
feature states are estimated, they have an associated covari-
ance matrix in order to represent their uncertainty, which
is represented by �(t) at time t . In the EKF algorithmthese

data are organized as in (1), where μ(t) is composed of the
estimated robot position and the feature set at time t .
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⎥⎥⎥⎥⎥⎥⎥⎦

(1)

The uncertainty cames from the odometry noise and the
observation noise simulated. If we consider a perfect odome-
try and observation, the matrix �(t) would have all elements
equal to zero forever (noise free), however, for real odometry
and observation the noise needs to be considered in order to
have a more robust system.

Table 1 describes the variables used in the prediction
and update EKF equations along with their dimensions.
Equations (2) and (3) are used to estimate the new robot posi-
tion given the belief vector μ

(t−1)
v and the covariance matrix

that correspond to the robot position �
(t−1)
vv and the current

motion control u(t). F (t) and G(t) are Jacobian matrices con-
taining derivatives of the prediction function α with respect
to the motion command variables at time t . Equation (4) esti-
mates the covariance between the robot and feature position
�v f given the corresponding covariance from time (t − 1)
and the matrix F (t).

After computing the prediction equations, the update step
starts by predicting the sensormeasurement through themea-
surement function equation (9) using the estimated robot
positionμ

(t)
v and the detected featureμ

(t−1)
f i . Then, Eqs. (10)

and (11) calculate the innovation related to the measurement
ν(t) and covariance S(t), respectively. ν(t) is the difference
between the real and the estimated sensor measurement and
S(t) is the new information added to the system covariance
given the currentmatrix H (t) and the covariance from the pre-
vious prediction phase. H (t) is a matrix that compounds two
Jacobian matrices H (t)

v and H (t)
f i from (8) which are deriv-

atives of the prediction function γ with respect to the esti-
mated robot position and the detected feature at time t . Then,
Eq. (12) computes the filter weight. Finally, Eqs. (5) and (6)
update all data that corresponds to the estimated map.

The integer and fraction bit-range estimated for each vari-
able presented in Table 1 is shown in Sect. 5, which can
be used as a reference for the development of a fixed-point
hardware architecture customized for the EKF algorithm.

Prediction:

μ(t)
v = α(μ(t−1)

v , u(t)) (2)

�(t)
vv = F (t)�(t−1)

vv F (t)T + G(t)QG(t)T (3)

�
(t)
v f = F (t)�

(t−1)
v f (4)
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Table 1 The description and dimension of the EKF symbols, where s
and r represent the feature and robot state size, v and f the robot and
feature position, i the feature number and n the total number of features

Sym. Dimension Description

μ (r + sn) × 1 Both robot and feature positions
μv r × 1 Elements of μ related to robot position
μ f sn × 1 Elements of μ related to feature position
�vv r × r Robot position covariance
�v f r × (sn) Cross robot-feature covariance
� f f (sn) × (sn) Cross feature-feature covariance
� (r + sn)× Cross robot-feature

(r + sn) and feature-feature covariance
α – Prediction function
γ – Measurement function
u r × 1 Robot motion command
F r × r Robot motion Jacobian
G r × r Robot motion noise Jacobian
Q r × r Permanent motion noise
Hv s × r Measurement Jacobian with respect to v

H f i s × s Measurement Jacobian with respect to fi
H s × (r + sn) Compounded measurement Jacobian
R s × s Permanent measurement noise
W (r + sn) × s Filter gain
ν s × 1 Mean innovation
z s × 1 Sensor measurement
zpred s × 1 Sensor measurement prediction
S s × s Covariance innovation
Z1 s × (s(i − 1)) Zero matrix
Z2 s × (s(n − i)) Zero matrix

Update:

μ(t) = μ̄(t) + W (t)ν(t) (5)

�(t) = �̄(t) − W (t)S(t)W (t)T (6)

where:

μ̄(t) =
[

μ
(t)
v

μ
(t−1)
f

]
, �̄(t) =

[
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�
(t)T
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]
(7)

H (t) =
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H (t)
v Z1 H (t)

f i Z2

]
(8)

z(t)
pred = γ (μ(t)

v , μ
(t−1)
f i ) (9)

ν(t) = z(t) − z(t)
pred (10)

S(t) = H (t)�̄(t)H (t)T + R (11)

W (t) = �̄(t)H (t)T S(t)−1
(12)
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⎤
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3 Conversion algorithm

In this section, we present the conversion algorithm adapted
from Roy and Banerjee [9] to estimate the bit-range of each
fixed-point EKF variable. The algorithm is divided in eight
steps. Thefirst two conversion steps,Levelization and Scalar-
ization, are used tomodify the algorithm source code tomake
the processmore systematic so as to obtain better results. The
third step, Computation of Ranges of Variables, computes
the maximum values of each algorithm variable. Then, the
fourth step, Evaluate Integer Variables, figures out the vari-
ables of the source code that are integers, followed by the
fifth and sixth steps, where the source code is converted to
fixed-point representation and the integer range of the fixed
point representation of each variable is evaluated, respec-
tively. Finally, the last two steps, Coarse Optimization and
Fine Optimization, optimize the final bit-range of each vari-
able.

Comparing this with the conversion algorithm given in
Roy and Banerjee [9], the Computation of Ranges of Vari-
ables and Fine Optimization were modified, and, the step
Evaluate Integer Variables, was added, keeping the other
steps as they were.

As input to this conversion procedure, we used a floating-
point code of the EKF algorithm implemented in Matlab,
adapted fromNewman [10]. The use ofMatlab code is appro-
priated, since it provides a set of facilities needed by the con-
version algorithm.The following subsection starts presenting
an introduction to the terms adopted by the conversion pro-
cedure. Then, the next subsections describe each conversion
step presented along with examples.

3.1 Introduction and nomenclature

The conversion algorithm basically uses the objects ‘quan-
tizer()’ and ‘quantize()’ from the Filter Design Analysis
(FDA) toolbox available in the MATLAB [11]. Here, we
will use m for the integer and p for the fractional length
of any variable. The ‘quantizer()’ function is a constructor
to ‘quantize’ objects which allocates the bit-widths and the
information about the representation, as if the representation
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is signed or unsigned, the kind of rounding and the overflow
treatment. Furthermore, the ‘quantize()’ applies the ‘quan-
tize’ object in a number, and gives as a return the value of
the number represented by an integer data type defined by
the ‘quantize’.

The error measure is defined as the difference, in per-
centual, between the result of the floating-point and the fixed-
point execution, and can bewritten as (17), where outdatafloat
and outdatafixed are the output of the floating-point and fixed-
point filter versions, respectively.

E = norm(outdatafloat − outdatafixed) × 100

norm(outdatafloat)
(17)

Once the simulated noise is fixed, this error measures the
impact of the conversionbetweenfloatingpoint tofixedpoint.
As seen in Sect. 3.6, the error due to conversion is incorpo-
rated by the covariance matrix, and then, propagated to all
variables.

For all cases, n is the number of variables that the algo-
rithm to be converted has after the Scalarization step. As each
variable has a different number of bits lengths, we represent
m, p and q as vectors, of n positions, representing the integer-
width, the fractional width and ‘quantizers’, respectively, for
each variable.

3.2 Levelization

The first step of conversion expands each complex code state-
ment to simple statements containing only one-operation
each. As an example, we present the code fragment 3.1 from
our codewhere the complex statement is commented on (line
1) and the following statements are its levelization (lines 2
to 4). To perform such a transformation it was necessary to
add temporary variables to the code (variables ‘temp1’ and
‘temp2’).

3.3 Scalarization

This step converts the vectorized MATLAB statements for
scalar ones using FOR loops. The code fragment 3.2 exem-
plify the scalarization step.

3.4 Computation of ranges of variables

This is the core step for calculating the m values (integer
width). First, it is necessary to take the maximum and min-
imum values of the algorithm’s inputs and then propagate
them to the forward direction calculating the maximum and
minimum values for each variable. To exemplify this step
we are going to use a generic algorithm; the code fragment
3.3 shows an example and Table 2 demonstrates the result of
propagation for this code.

As stated in Table 2, there is a problem regarding the divi-
sion by zero. When it happens, it is necessary to consider a
tiny number, say a unit, for the variables with the zero divi-
sion problem, making the roll back calculation of maximum
e minimum values. To finish, we must ensure that the entries
are within the limits obtained.

Another problem can occur when the algorithm to be con-
verted stays running in FOR loops with feedbacks (some
output values are used as entry values in the next loop); in
that case, themaximumorminimumvalues of somevariables
may grow to infinity. This is the case for our EKF algorithm,

Table 2 Maximum and Minimum values propagated for the code
fragment 3.3

Variable a b x y z Output

Maximum 100 5 500 Error/Inf Error/Inf Error/Inf

Minimum 0 0 0 0 0 1

When a division by zero occurs we get ±∞ (Inf), which is treated as
an error
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leading to a situation where the maximum and minimum
values need to be estimated instead of being calculated. To
perform such an estimate, we can simply define a training
set and evaluate these values while executing the algorithm
over this training set. The code fragment 3.4 demonstrates
how to calculate the maximum value for a matrix variable.
Note that using the absolute value of each variable we don’t
have to care about the minimum values of the variables.

The code fragment 3.5 exemplifies the usage of ‘max()’
function from code fragment 3.4, where maximums is a
vector that stores the maximum values for each variable.

The problem of this procedure is that we cannot guarantee
any overflows during the executions for the cases that do not
belong to the training set. For this situation, we need to use
a larger training set.

3.5 Evaluate integer variables

The reasoning of this step is to figure out which variables
of the algorithm to be converted represent integers values,
which usually appear as counters or indices variables. The
step described in Sect. 3.8 gives a unique value for all p,
including the integer variables, and the step described in 3.9
have to reduce the p values of the integer variables to zero,
whatmay takes a long time. Since the integer variables should
be converted too, we can save time in step 3.9 if we know
which variable represents integer numbers by simply setting
zero to the p values of integer variables.

The idea is to define a n × 1 boolean vector, say D, where
each index corresponds to a variable of the algorithm to be
converted after the step 3.3. In this vector, 0 means that the
correspondent variable is not an integer, and 1 means that the
variable is an integer.

To evaluate which variables are integer we should know
exactly which operations (statements, functions and meth-
ods) return integer values given their entries.

Table 3 Classification of some comum operations in MATLAB since
their return values

AIR Linear FR

Length() + /

Size() – rand()

Numel() ∗ sqrt()

Ceil() ∧x(x ≥ 0) ∧x(x < 0)

Floor() det() norm()

Zeros() inv()

Ones() sin()

Eye() cos()

tan()

We define the class “absolute integer return” (AIR) as the
class of all operations that returns integers given any kind of
entries, and we define the class “linear” as the class of all
operations that, given integer values for all entries, returns
integer values, finally, we define the class “float return” (FR)
as the class of operations that is impossible to guarantee if
the return is integer or non-integer values given any kind of
entry.

In most cases, the classification is based on basic mathe-
matical operations. For example, since addition, subtraction,
and multiplication are linear operations and division is a FR
operation, we can say that the operation yx (raise a number,
y, to the power x) is linear if x ≥ 0, but the operation is FR
if x < 0. Table 3 shows some common operations used in
MATLAB and in our EKF-SLAM algorithm.

The Algorithm 3.1 shows the steps that should be applied
in the straight forward data flow direction, for what ensures
that all values in D receive the proper values, different than
NaN (not a number inMATLAB). It is also important, before
applying the Algorithm 3.1 in the main code, to apply it in
the functions used in the main code to define which kind of
function it is (AIR, linear, FR).
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3.6 Generation of fixed-point MATLAB code

This step converts the algorithm by replacing each arithmetic
and assignment operation with a quantized computation as
shown in code fragment 3.6.

At this point, we see that, in each statement, we have asso-
ciated an error due to the conversion from floating-point to
fixed-point. The EKF equations 2 to 6 show that these errors
are incorporated by the � matrix and propagated to all other
variables. Although these errors are incorporated with the
system noise, if we fix the simulated odometry and observa-
tion noises, the conversion will generate an error measured
by Eq. 17.

When generating the fixed-point MATLAB code for
matrix multiplications we see that scalarizations results in
a non-levelizated statement (as showed in code fragment 3.2
line 7). At first sight, we would have to re-apply the leveliza-
tion step in this statement before the conversion to fixed-point
code, however, with the following Observations 1 and 2 we
can see that this “re-levelization” is irrelevant and can be
skipped. In this way, the converted code for matrix multipli-
cations is exemplified by the code fragment 3.7.
Observation 1 0 = quantize(q, 0) ever!

Observation 2 If we have two variables a and b, and a
‘quantizer’ q, and apply the ‘quantize()’ method over one
variable, say a, it will get your value modified, call it as qa.
In this way, to add qa with b is different than to add b with
a, and as consequence, apply the ‘quantize()’ method over
a+b and qa+b will lead us to different results.

However, if one of the variables were already quantized
with q, the method ‘quantize()’ will present linear behavior.
Say that qa = quantize(q, a) and qb = quantize(q, b), the
Fig. 1 shows this behavior.

Fig. 1 Example of ‘quantize()’ method’s pseudo-linearity in MAT-
LAB

3.7 Fixed integral range

With the maximums vector defined, we can calculate the m
values simply by using the log2 operation. The code fragment
3.8 shows the procedure where we used +2 bits to compen-
sate the floor() round and to represent the sign bit.

3.8 Coarse optimization

This step estimates a value for every p. The Algorithm 3.2
used is exactly the same presented by Roy and Banerjee [9]
and it is resumed in Algorithm 3.2.

3.9 Fine optimization

Given the p by the step in Sect. 3.8, this step estimates
the optimized value for each p by analyzing and reducing
the p value for each variable. The Algorithm 3.3 resumes
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Fig. 2 The figures show two
generic PDF where we can see
that, given a probability, we can
find a plane that intercepts the
PDF forming an ellipse

the algorithm presented in Roy and Banerjee [9] and adds
one more step in it. The first step in Algorithm 3.3 uses the
vector D to set zero to the p values corresponding to inte-
ger variables, the following steps correspond to the algorithm
given by Roy and Banerjee [9] resumed. Setting zero to some
p values might impact significantly the Fine Optimization
step, as can be seen in Sect. 5.

4 Analysis of the covariance matrix

The covariance matrix � encompasses the errors generated
by the system noise and by the conversion from floating to
fixedpoint. The larger is thematrix elements, the greater is the
errors in the measures [1]. Each pair of elements of μ, which
represents the feature and the robot locations, is associated
to elements of �. These � elements define an ellipse in a
two-dimensional space representing the area where the real
feature should be located, given a fixed probability as shown
in Fig. 2.

The conversion algorithm tries to define values for p such
that the error, using a training set, remains lower than the
error Emax given in step 3.2. If the chosen error is small, the
p values will be bigger than necessary, on the other hand, if
the chosen error is big, the system might diverge.

To define a better Emax value, we can analyze the covari-
ance matrices since they incorporate the conversion errors.
To compare the covariance matrices is easier than to define
a metric that aggregate the information about the covariance
ellipses in one curve, and then, compare two curves instead of
a couple ofmatrices entries. Our idea is to observe the lengths
of the semi-axis of the ellipses [12] by simply averaging the
size of the semi-axis of each ellipse.

In this way, if any ellipse gets a large covariance com-
ponent in one direction and a small component in another
direction, ourmeasurewill have a considerable increase. This
sensibility could not be reached if we would have considered
other metrics, like area, this would not be interesting since
the uncertainty about the feature position is actually high.

The ellipses axis are directly associated with elements of
the main diagonal of the covariance matrix. This association
is not linear, which means it has no direct meaning. Figure
3 represents a generic covariance ellipse of matrix (18) in
x × y plane, the σuu and σvv are the values of the semi-axis
of the ellipse.

� =
[

σ 2
xx σ 2

xy
σ 2

xy σ 2
yy

]
(18)

We can obtain the real values of the semi-axis of the
ellipses, by the general law of covariances propagation [13],
using the Eqs. 19 and 20.

tan 2α = 2σ 2
xy

σ 2
xx − σ 2

yy
(19)

{
σ 2

uu = σ 2
xx cos

2 α + σ 2
yy sin

2 α − 2σ 2
xy sin α cosα

σ 2
vv = σ 2

xx sin
2 α + σ 2

yy cos
2 α + 2σ 2

xy sin α cosα
(20)

To exemplify the analysis, Fig. 4 shows some steps of an
execution of our EKF-SLAM algorithm, and Fig. 5 shows
the elements of � referents to the vehicle, and the size of
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Fig. 3 Example of covariance ellipse representation in the plane x × y
(Figure adapted from [10])

the semi-axis of vehicles covariance ellipse by the execution
time (Fig. 5a, b, respectively). In Fig. 5, we can see the values
of the main diagonal (of matrix �) elements for each feature

and their average in time (Fig. 5c, d, respectively). Here, we
can see that the values do not have a physical meaning, so, it
is not a proper way for comparison (the values reach values
near 300, which is bigger than the map dimension). Figure 5
also shows the values of the semi-axis of each diagonal and
their average in time (Fig. 5e, f, respectively), where we can
see that the covariance axis became stable between 2 and 3
units, for such configurations.

After the conversion is done, we are able to decrease p val-
ues and make another evaluation like the one shown in Fig. 5
and compare them to decide if the Emax chosen fits well.
In our tests we decided to decrease one bit of each variable
between comparisons to increase the error. Figure 6 shows
the evaluations obtained. Observing the graphics in Fig. 6 a
new error is chosen and the conversion algorithm is applied
again to find new suitable values for m and p.

5 Preliminary results

In this section we present the main results of this work. The
first one is the algorithm, which was adapted from Roy and

Fig. 4 Execution sequence for “full range” test in a two dimensional environment
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Fig. 5 Covariance ellipses behavior for “full range” test

Banerjee [9] to convert the EKF-SLAM; the second one is
the time that the conversion takes to finish; and the third one
is the bit range for each of the EKF-SLAM variables. We
used a simple configuration with a small training set in order
to make the conversion faster. Real applications may need a
bigger training set in order to have a better tuning for the bit
range of the EKF variables.

5.1 Processing time

The error is calculated taking themaximumerror between the
execution of the floating-point code and the fixed-point code
over the entire training set. Given x elements in the training
set, for each error calculation the fixed-code and the floating-
code are executed x times. If we say that the fixed-code takes
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Fig. 6 Graphics of the average
of the semi-axis sizes of the
floating-point implementation,
of the fixed-point
implementation with
Emax = 0.01 % and for the same
fixed point implementation with
j bits reduced
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tfixed and the floating tfloat seconds, we have, approximately
terror = x(tfixed + tfloat) seconds for calculating the error.

The maximums values are calculated once running once
the floating-code over the training set, so we can say that
tmaximums ≈ xtfloat. We are going do disregard the time for
calculating the p values because it is faster than the error
calculation. Since the coarse optimization performs a binary
search between [0, 32] we have tcoarse = 3terror log2 32 ≈
15terror.

The tmaximuns have no meaning in the original algorithm
presented by Roy and Banerjee [9], the terror can be very dif-
ferent in the original and in the modified conversions, which
depends on the training set size. However, tcoarse ≈ 15terror
in both implementations.

Supposing that the coarse optimization gave a p0 value for
p, that we have ni integer variables found in step (Sect. 3.5),
(0 ≤ ni ≤ n), and thatwehave thefinal values of p. Then, the
number of bits reduced in the fine optimization step is np0 −∑n

i=1 p[i]. For each bit reduced, the algorithm calculates the
error n times, so, in the original algorithm we have to

fine =
n(np0−∑n

i=1 p[i])to
error. In themodifiedversionwehave that

ni variables have their p values set to zero instead of leaving
it decreased to zero by the conversion algorithm. This saves
p0.ni to be reduced, therefore, in the modified algorithm we
have tm

fine = n(p0(n − ni ) − ∑n
i=1 p[i])tm

error (here, “
o” and

“m” indicate the times referents to the original and modified
algorithm, respectively).

Wecall bymodified algorithm the algorithmwith theEval-
uate Integer Variables step (Sect. 3.5). It is worth noticing
that the time saved by adding this step varies from algorithm
to algorithm to be converted, themore integer variables,more
time will be saved. Furthermore, since we had modified the
original algorithm, it is impossible to compare the estimative
time with it.

In our EKF-SLAM conversion we adopted n = 107, ni =
17, p0 = 25 and

∑n
i=1 p[i] = 481, which gave us to

fine =
234758to

error and tm
fine = 189283tm

error meaning that the usage
of step 3.5 saved 19.37 % of the execution time of our fine
optimization step.

5.2 Bit-range obtained

As mentioned in Sect. 4, the chosen Emax might not be the
best value at first try. However, in order to evaluate our con-
version algorithm Emax = 0.01%was chosen. Based on this
error, the bit range of the variables was reduced interaction
after interaction generating, as a result the graphics shown in
Fig. 6. These graphics show the average size of the ellipses
semi-axis of the float implementation, of the fixed implemen-
tation and of the fixed implementation when we reduced j
bits from each value of p, which has different values in each
position.

Table 4 The dimension, m0, p0 given by the conversion with
Emax = 0.01 % and m f , p f for Enew

max = 1.0 % of the EKF sym-
bols obtained, where s and r represent the feature and robot state size,
v and f the robot and feature position, i the feature number and n the
total number of features

Sym. m0 p0 m f p f

μ 12 22 12 22
μv 2 25 2 25
μ f 12 25 12 25
�vv 16 25 16 25
�v f 16 25 16 25
� f f 18 25 18 25
� 13 24 13 24
α – – – –
γ – – – –
u 2 25 2 25
F 5 25 5 25
G 5 25 5 25
Q 5 25 5 19
Hv 6 23 6 19
H f i 6 25 6 19
H 6 25 6 19
R 15 25 15 19
W 10 24 10 19
ν 11 25 11 19
z 12 25 12 19
zpred 12 25 12 19
S 15 25 15 19
Z1 – – – –
Z2 – – – –

In Fig. 6, we can see that the shape of the curve changes
when j = 5.When j = 10, we already can see several differ-
ences, and when j = 12 the fixed implementation diverges.
To choose a better Emax, say Enew

max, we can compare the
graphics from Fig. 6. Since j = 2 gave us a small differ-
ence when comparing with the float graphic, and its error
was 1.17 %, we choose as new error Enew

max = 1.00 %.
Table 4 shows the bit ranges of themain variables obtained

for our EKF-SLAM implementation that were presented in
Table 1. In Table 4 the m0 and p0 are the resulting bits for
Emax = 0.01% and them f and p f are the values for Enew

max =
1.0 %. In Table 4, α and γ do not have m and p values
associated because they are functions, and neither the zeros
matrices Z1 and Z2 have, because they are not variables.

6 Conclusion

The paper has presented a method to convert the EKF algo-
rithm from floating-point to fixed-point representation. The
method demonstrates away tomeasure the EKF computation
error, which is crucial for guiding the conversion process. As
a final result, a table is presented demonstrating the integer
and fractional bit range needed for each EKF variable.

The EKF algorithm is widely used in mobile robotics
to solve the problem of navigation and localization. The
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fixed-point version presented in this paper might have a
significant impact on embedded mobile robotic applica-
tions, since the hardware complexity needed to operate over
fixed-point data is simpler and faster than any floating-point
processing unit. As a consequence, the computation systems
can be very optimized in relation to energy consumption,
performance, and cost.

Finally, the case study presented in this paper is an EKF
for SLAM problem in a two-dimensional planar coordinate
system. However, the proposed method can be applied to
higher dimensions, since the conversion algorithm and the
error measure procedure are independent of the dimensions
of the environment representation.
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