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Abstract Using the BSP/CGM model, with p processors,
where p � n, we present a parallel algorithm to com-
pute the transitive closure of a digraph D with n vertices
and m edges. Our algorithm uses log p + 1 communica-
tion rounds if the input is an acyclic directed graph labeled
using a linear extension. For general digraphs, the algorithm
requires p communication rounds in the worst case. In both
cases, O(M/p) local computation is performed per round,
where M is the amount of computation needed to compute
a sequential transitive closure of a digraph. The presented
algorithm can be implemented using any sequential algo-
rithm that computes the transitive closure of a digraph D.
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We have implemented the algorithm using theWarshall tran-
sitive closure algorithm on two Beowulf clusters using MPI.
The implementation results show its efficiency and scalabil-
ity. It also compares favorably with other parallel implemen-
tations. Theworst case (communication rounds) for a digraph
was derived through an artificially elaborated example. How-
ever, in all our test cases, the algorithm never requires more
than log p + 1 communication rounds and presents very
promising implementation results. The algorithm also can be
applied to any n × n matrix that represents a binary relation.
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1 Introduction

There are many problens where we need to answer reacha-
bility questions. That is, can one get from city A to city D in
one or more roads? The computation of the transitive closure
of a directed graph can solve the above problem and it is
fundamental to the solution of several other problems, such
as shortest path and ancestor relationship problems. Several
variants of the transitive closure problem exist [8].

The problem of computing the transitive closure of a
directed graph (digraph) was first considered in 1959 by Roy
[18]. Since then, a variety of sequential algorithms to solve
this problem have been proposed. The basic sequential solu-
tions usually employ the adjacency matrix of the digraph,
considered as a Boolean matrix. Using this approach, War-
shall [23] presented an O(n3) algorithm.

The best sequential algorithms that solve this problem
have O(mn) time complexity, where m and n are, respec-
tively, the number of edges and vertices of the digraph (Simon
[19] and Habib et al. [9]). It should be mentioned that the
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computation of transitive closures can be done asymptoti-
cally faster by matrix multiplication techniques

Parallel algorithms for this problem have been presented
for PRAM [11,13], for arrays, trees and meshes of trees [15],
for highly scalable multiprocessors [20,21], for BSP/CGM
[5,7,20], and for other architectures [2,8,12,14,16,17]. The
aproaches used by these algorithms include single and all
pairs shortest paths [8,12], breadth first search [5], matrix
multiplication and path decomposition [7]. Some of these
algorithms were implemented on hypercubes [12], cluster of
workstations [5,7] FPGAs [2] and GPGPUs [3,10,14].

In this paper, we present a parallel algorithm to com-
pute the transitive closure of a digraph using the BSP/CGM
model with p processors each with n2/p local memory. One
of the big issues when designing BSP/CGM algorithms is
the number of communication rounds. If the input graph is
an acyclic digraph with its vertices labeled with a so-called
linear extension our algorithm requires log p + 1 commu-
nication rounds and uses O(n3/p) local computation. For
general digraphs, the algorithm requires p rounds. The main
idea of the algorithm is the partitioning of the digraph into
p pieces and the construction of a local transitive closure
for each one of these pieces. These local transitive closures
can be obtained by any sequential transitive closure algo-
rithm. We have implemented the algorithm using the well-
known Warshall’s [23] transitive closure algorithm. Besides
the fact that it uses more local computation time than other
algorithms, it is very easy to deal with the communica-
tion between the processors in this algorithm. Without the
linear extension labeling, we can no longer guarantee the
bound of log p + 1 communication rounds and uses p com-
munication rounds in the worst case. Nevertheless, in our
experiments, all the test graphs required less than log p + 1
communication rounds.We also present a particularly elabo-
rated example where the algorithm uses more than O(log p)

communication rounds to solve the transitive closure prob-
lem. The algorithm was tested with two Beowulfs parallel
computers, each with 64 nodes, using the MPI library. The
obtained speedups indicate efficiency and scalability of the
algorithm. The execution times of our algorithm are better
than other parallel implementations such as [3,14,16,17].
Preliminary versions of the results (for acyclic graphs and
general digraphs) presented in this paper have appeared in
[4] and [1].

2 Notation, terminology and computational model

Let D = (V, A) be a digraph, with vertex set V and edge
set A, |V | = n and |A| = m. Let S ⊆ V . Denote by D(S)

the digraph formed exactly by the (directed) edges of D,
having at least one of its end points in S. If Q is a path in D
denote its length by |Q|. If D is acyclic, a linear extension

L of D is a sequence {v1, . . . , vn} of its vertices, such that
(vi , v j ) ∈ A ⇒ i < j .

The transitive closure of D is the digraph Dt , obtained
from D by adding an edge (vi , v j ), if there is a path from vi

to v j in D, for all vi , v j ∈ V .
In this paper, we use the BSP/CGM (Bulk Synchronous

Parallel/Coarse Grained Multicomputer) Model [6,22]. Let
N be the input size of the problem. A BSP/CGM computer
consists of a set of p processors P1, . . . , Pp with O(N/p)

local memory per processor and each processor is connected
by a router that can send/receive messages in a point-to-point
fashion. A BSP/CGM algorithm consists of alternating local
computation and global communication rounds separated by
a barrier synchronization. The term coarse grainedmeans the
size of the local memory is much larger than O(1). Dehne et
al. [6] define “much larger”’as N/p � p.

In a computing round, we usually use the best sequen-
tial algorithm in each processor to process its data locally.
We require that all information sent from a given processor
to another processor in one communication round be packed
into one longmessage, therebyminimizing themessage over-
head. Each processor pi sends/receives atmost O(N/p) data
in each communication round. In the BSP/CGM model, the
communication cost is modeled by the number of communi-
cation rounds, which we wish to minimize.

3 The parallel algorithm for transitive closure

Algorithm 1 below is a parallel algorithm [4] for constructing
the transitive closure of D, with n vertices and m edges,
using p processors, where 1 ≤ p ≤ n. It uses a sequential
algorithm to compute the transitive closure in each processor.

The following proposition asserts the correctness of the
algorithm.

Theorem 1 If the input digraph D is acyclic and labeled
with a linear extension L of D, Algorithm 1 computes the
transitive closure of D. Moreover, it requires at most 1 +
�log p	 iterations of Step 2.

Proof Denote by Di the digraph D at the end of the i-th
iteration of Step 2. Let D0 be the input digraph and Dt

i the
transitive closure of Di , i = 0, 1, . . .. Since Di (S j ) is a
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subgraph of Di , it follows that all edges of the transitive
closure Dt

i (S j ) of Di (S j ) also belong to Dt
i , and hence to Dt

0.
Consequently, in order to show that the algorithm correctly
computes the transitive closure Dt

0 of D0, it suffices to show
that every edge of Dt

0 is also an edge of some Dt
i (S j ).

With this purpose, let (v,w) ∈ A(Dt
0). We show that

(v,w) ∈ A(Dt
i (S j )), for some i, j . Because (v,w) is an

edge of Dt
0, D0 contains a path z1, . . . , z�, from v = z1 to

w = z�. For each k, 1 ≤ k ≤ �, denote by P(zk) the proces-
sor to which zk is assigned. Because the assignment of the
vertices to the processors obeys a linear extension order-
ing, it follows that P(z1), . . . , P(z�) is a non-decreasing
sequence. Therefore, vertices assigned to a same processor
are consecutive in the sequence. Consequently, after com-
pleting the first iteration of Step 2, we know that D1 contains
a v − w path Q1, formed solely by (a subset of) vertices of
z1, . . . , z�, assigned to distinct processors. Hence |Q1| ≤ p.
If |Q1| = 1 then (v,w) ∈ A(Dt

1(s j )), implying the correct-
ness of the algorithm. Otherwise, let z′

k−1, z′
k, z′

k+1 be three
consecutive vertices in Q. Let P(z′

k) = j . Consequently,
(z′

k−1, z′
k), (z

′
k, z′

k+1) ∈ A(D1(S j )). The latter means that
at the end of the second iteration of Step 2, (z′

k−1, z′
k+1) ∈

A(D2). Consequently, D2 contains a v −w path Q2, formed
by a subset of vertices of Q1 satisfying |Q2| = �|Q1|/2	.
By induction, it follows that |Q�log|Q1|+1	| = 1, that is,
(v,w) ∈ A(Dt

�log |Q1|+1	(S j )), as required. Moreover, no
more than 1 + �log p	 iterations of Step 2 are needed.

We now analyze the complexity of the algorithm. Basi-
cally, the algorithm consists of at most 1 + �log p	 parallel
computations of a sequential transitive closure algorithm.We
employ a sequential algorithmwhose complexity is the prod-
uct of the number of vertices and edges of the digraph [9,19].
Consider a worst case example, where D consists of a single
path. Then Dt is a complete acyclic digraph. In this case, each
processor j may compute the transitive closure Dt (S j ) of a
digraph D(S j ), where |V (D(S j ))| = n and |A(Dt (S j ))| =
(n/p)(n − n/p) = O(n2/p). Since at most 1 + �log p	
iterations are required, the overall complexity is O(

n3 log p
p ).

Finally, observe that each processor handles at most
O(n2/p) directed edges. Therefore, the algorithm fits into
the BSP/CGM model.

If the vertices of the digraph D are not labeled with a lin-
ear extension, the bound of log p+1 communication rounds,
however, is no longer valid. In fact, there exist cases where
more than log p + 1 communication rounds are required.
For instance, consider p = 4 and a graph that is the fol-
lowing linear list of n = 16 vertices (each labeled with two
digits): 11 → 31 → 41 → 21 → 32 → 12 → 42 →
33 → 22 → 43 → 13 → 23 → 34 → 14 → 24 → 44.
Assume that each vertex labeled with digits i j is stored in
processor i . It can be shown that Algorithm 3 will need
more than log 4+1 = 3 communication rounds. The above is

an elaborated example. In practice, however, this algorithm
behaves efficiently, as shown in our experiments.

Corollary 1 For a general digraph, Algorithm 1 computes
correctly the transitive closure of the input digraph. More-
over, it requires at most O(p) communication rounds.

4 An implementation of the transitive closure
BSP/CGM algorithm

Consider a digraph D = (V, E) where |V (D)| = n
and |E(D)| = m. Let us apply Warshall’s algorithm to this
digraph. Let the vertices be 1, 2, . . . , n. The input to the algo-
rithm is an n × n Boolean adjacency matrix M of D, that is,
the entry Mi, j is 1 if there is a directed edge from vertex i to
vertex j and 0 otherwise. Warshall’s algorithm consists of a
simple nested loop that transforms the input matrix M into
the output matrix. The main idea is that if entries Mi,k and
Mk, j are both 1, then we should set Mi, j to 1. This following
describes this method. The complexity is O(n3), as already
mentioned.

Algorithm3 is an implementation ofAlgorithm1by incor-
porating aparallelizedversionofWarshall’sAlgorithm.First,
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Fig. 1 Matrix M partitioned into p horizontal and p vertical stripes

partition and store the rows and columns of the adjacency
matrix M in the p processors as follows.Divide the adjacency
matrix M into p horizontal and p vertical stripes. Assume for
simplicity that n/p is an integer, that is, n divides p exactly.
Each horizontal stripe has thus n/p rows. Likewise each ver-
tical stripe hasn/p columns.This is shown inFig. 1.Consider
processors numbered as 1, 2, . . . , p. Then processor q stores
the horizontal stripe q and the vertical stripe q. Notice that
each adjacency matrix entry is thus stored in two processors.

Observe the following property of the way the matrix M
is stored in the processors. Both M[i, k] and M[k, j] for any
k are always stored in a same processor (see Fig. 1). This
makes the test indicated at line 5 of the algorithm very easy
to perform. If both M[i, k] and M[k, j] are equal to 1 then
M[i, j]must also be made equal to 1. In this case, the update
of M[i, j] may be done immediately if it is also stored in
processor q. Otherwise, the update will be done in the next
communication round.

5 Experimental results of Algorithm 3

We implemented Algorithm 3 on two Beowulf clusters clus-
ter of 64 nodes. The first one (B1) consisting of low cost
microcomputers with 256MB RAM, 256MB swap memory,
CPU Intel Pentium III 448.956 MHz, 512KB cache. The
nodes are connected through a 100 Mb fast-Ethernet switch.
The second one (B2) consisting of 256 processors (64 nodes
with 4×2.2 GHz Opteron Cores) with 8 GB RAM per node.
All nodes are interconnected via a Foundry SuperX switch
using Gigabit ethernet. Our code is written in standard ANSI
C using the MPI library.

The test inputs consist of randomly generated digraphs
where there is a 20% probability of having an edge between
two vertices.We tested graphswith n = 480, 512, 960, 1,024,
1,920, 2,048, 4,096 and 6,144 vertices. In all the tests the
number of communication rounds required were less than
log p.

(a)

(b)

Fig. 2 Execution times for various input sizes—B1

The times obtained for different problem sizes are shown
in Figs. 2 and 3, while the corresponding speedups are shown
in Fig. 4. Notice the speedup curve (B1) for the input size of
1,920×1,920. It presents two ascending parts with different
slopes. The first ascending part of the speedup can be seen
to be superlinear. This is due to the memory swap overhead
which is more severe for the sequential case (p = 1) which
has to store the entire n × n input matrix. On the other hand,
the parallel cases deal with input matrices of smaller size
n/p × n/p.

Using only one processor of Bewoulf B1 and the input
size of 1,920×1,920 our implementation takes 1,614.60 s
to compute the transitive closure, while Bewoulf B2 takes
70.95 s for the input size 2,048 ×2,048. As Fig. 4 shows, in
both Bewoulfs the algorithm is scalable.

For comparison purposes, we have used the Bewoulf B1
since it uses a configuration that is similar to the other
implementations [16,17]. Our implementation (Bewoulf B1)
also considers input matrices that include the same input
sizes used in [16,17], namely, 480 × 480, 960 × 960, and
1,920×1,920.

The results presented by Pagourtzis [16,17]were obtained
on a cluster Hewlett Packard 720 with 20 nodes. The nodes
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(a)

(b)

Fig. 3 Execution times for various input sizes—B2

were connected through a 10 MB Ethernet switch, and they
used the PVM library (version 3.4.6.). They present tables
and charts where the algoritms were executed with 36 work-
processes (more than one process in each node).

Our implementation results using Beowulf B1 achie-
ved better execution times. In particular we observe the
1,920×1,920 case where our implementation obtains very
substantial speedups. We observe that in our tests we have
used the MPI library with just one process in each node and
our nodes were connected with a faster network.

We also consideredmatriceswith equivalent sizes as those
used in [3,14] (Beowulf B2). Our implementation results are
competitive.

6 Conclusion

We have described a parallel algorithm for computing the
transitive closure of a digraph, using p processors. Algo-
rithm 1 is suitable for the BSP/CGM model. It employs at
most 1+ �log p	 iterations of a sequential transitive closure
algorithm if the vertices of the digraph are labeled using a
linear extension. For general digraphs, the algorithm requires
p communication rounds in the worst case.

(a)

(b)

Fig. 4 Speedups for various input sizes

Using the algorithm ofWarshall to compute the local tran-
sitive closures we implemented the algorithm with MPI on
Bewoulfs. It can also be viewed as a parallelized version of
Warshall’s algorithm. In fact, any other sequential transitive
closure algorithm could be applied.

Although in theory for general digraphs the algorithm no
longer guarantees the O(log p) bound on the number of com-
munication rounds, all the graphs we tested used at most
log p+1 communication rounds. The implementation results
are very promising and show the efficiency and scalability
of the proposed modified algorithm, and compare favorably
with other parallel implementations.
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