
J Braz Comput Soc (2012) 18:271–282
DOI 10.1007/s13173-012-0077-3

W T I

Forgetting mechanisms for scalable collaborative filtering

João Vinagre · Alípio Mário Jorge

Received: 26 May 2011 / Accepted: 27 April 2012 / Published online: 17 May 2012
© The Brazilian Computer Society 2012

Abstract Collaborative filtering (CF) has been an impor-
tant subject of research in the past few years. Many achieve-
ments have been made in this field, however, many chal-
lenges still need to be faced, mainly related to scalability and
predictive ability. One important issue is how to deal with
old and potentially obsolete data in order to avoid unnec-
essary memory usage and processing time. Our proposal is
to use forgetting mechanisms. In this paper, we present and
evaluate the impact of two forgetting mechanisms—sliding
windows and fading factors—in user-based and item-based
CF algorithms with implicit binary ratings under a scenario
of abrupt change. Our results suggest that forgetting mecha-
nisms reduce time and space requirements, improving scala-
bility, while not significantly affecting the predictive ability
of the algorithms.

Keywords Collaborative filtering · Recommender
systems · Forgetting · Data streams

1 Introduction

Collaborative filtering (CF) has been successfully used in
a large number of applications, such as e-commerce web-

This is a revised and extended version of a previous paper that
appeared at WTI 2010 (III International Workshop on Web and Text
Intelligence) and has been recommended to JBCS.

J. Vinagre (�) · A.M. Jorge
DCC–FCUP, Universidade do Porto, Porto, Portugal
e-mail: joao.m.silva@inescporto.pt

A.M. Jorge
e-mail: amjorge@fc.up.pt

J. Vinagre · A.M. Jorge
LIAAD–INESC TEC, Porto, Portugal

sites [12] and on-line communities in a series of domains
[9, 19, 21]. However, some challenges are still offered.
Most of these systems deal with very large amounts of data
and frequently suffer from scalability problems. CF systems
should be able to efficiently process data on-line as it ar-
rives, in order to keep the system up-to-date. This poses two
problems:

– Scalability: as new users and items enter the system,
time and memory requirements increase. At some point,
the data processing rate may fall below the data arrival
rate.

– Accuracy: as new data elements add up, the weight of
each individual data element decreases. This causes the
system to become less and less sensitive to recent infor-
mation.

In order to overcome these problems, forgetting mecha-
nisms can be implemented. When forgetting older data, it is
possible to reduce processing time and memory usage and
maintain the system’s sensitivity to recent data.

In this work, we present two forgetting mechanisms: slid-
ing windows and fading factors. We look at user activity as
a data stream [6] in which data elements consist of individ-
ual user sessions, each containing a set of implicitly binary-
rated items—seen items. Then we implement and evaluate
forgetting mechanisms in nonincremental and incremental
versions of CF algorithms.

The remainder of this paper is organized as follows. Sec-
tion 2 refers to related work. In Sect. 3, we introduce the
forgetting approaches to CF. Section 4 describes the four al-
gorithms used in the experiments. Evaluation and results are
presented in Sect. 5. Conclusions and future work are pre-
sented in Sect. 6.

mailto:joao.m.silva@inescporto.pt
mailto:amjorge@fc.up.pt

272 J Braz Comput Soc (2012) 18:271–282

2 Related work

Collaborative filtering has been an active research field in
recent years, with many enriching advances. However, few
work has focused on the study of temporal effects in CF.
In [4] and [5], Ding et al. use time-weighted ratings to pre-
dict new ratings in an item-based CF algorithm. The authors
incorporate a time function in the rating prediction function,
thus giving more weight to recent ratings and less weight
to older ratings. In [16], Nasraoui et al. use their TECNO-
STREAMS [17] stream clustering algorithm to learn from
evolving usage data streams. Koren [10] addresses the prob-
lem of time-varying usage data using a model that is able to
separately deal with multiple changing concepts.

In the field of data stream processing [6], several methods
have been proposed to provide algorithms with mechanisms
able to deal with concept drifts. Most of these are based
on the idea of “forgetting” older data elements, whether by
using sliding windows or decay functions based on fading
factors. The FLORA system [22] tries to deal with con-
cept drifts by using an adaptive time window, controlled by
heuristics that track system performance. In [1], techniques
are proposed to maintain sequence-based windows—where
the number of data elements in the window is fixed—and
time-based windows—where data elements belong to a de-
termined time interval. Gradual forgetting is studied in [11],
where the author uses a recommender system to study the
proposed method in the context of drifting user preferences.

Incremental CF has been presented in [18], where a user-
based algorithm incrementally updates user similarities ev-
ery time new data is available. In [14] and [15], item-based
and user-based incremental algorithms that use implicit bi-
nary ratings are proposed and evaluated.

The algorithms proposed in this article are based on the
ones presented in [14] and [15]. We propose, implement, and
evaluate forgetting mechanisms in incremental and nonin-
cremental algorithms using binary usage data. Our research
suggests that forgetting mechanisms have the potential to
improve both the scalability and the predictive ability of
user-based and item-based CF.

3 Collaborative filtering with forgetting mechanisms

Neighborhood-based collaborative filtering works by calcu-
lating similarities between users—user-based—or items—
item-based. Users are similar if they share many preferred
items. Similarity between two items is determined by the
number of users that simultaneously share interest in both
items. This information is obtained by inspecting user ses-
sions. A user session s by user u contains a list of items i.
These session items are the ones for which u has given pos-
itive feedback during a well defined, usually short, period
in time. Based on this information, a similarity matrix S is
built, containing pairwise user or pairwise item similarities.

3.1 Sliding windows

Forgetting can be performed using a sequence-based slid-
ing window of size n that retains information about the n

most recent user sessions. One direct way to implement slid-
ing windows in a user-based or item-based CF system is
to rebuild the similarity matrix using data of a fixed size
sequence-based window holding the w latest sessions. Each
time a new session si is available, the window moves one
session forward discarding session si−n−1 and including si .
Then the new window is used as learning data to build a new
similarity matrix.

Nonincremental algorithms can be easily adapted to use
sliding windows, since they recalculate the whole similar-
ity matrix each time new session data is available. The ad-
ditional task is to move the window forward and use that
window to rebuild the matrix. It is important to note that
nonincremental algorithms process individual sessions sev-
eral times—as many as the length of the window—which is
not an ideal way to deal with data streams [6].

Traditional nonincremental algorithms use all of the past
data to recalculate S. This is strategy is hereby referred to as
a growing window approach, since the data window contin-
uously grows as it incorporates more sessions.

For incremental algorithms the adaptation is not so
simple because the similarity matrix is not rebuilt from
scratch [15, 18]. The similarity values corresponding to the
items in each new session are updated, while other values
are kept. In order to implement a sliding window approach
in incremental algorithms it is necessary, at each update, to
remove from the similarity matrix the information that was
added by the oldest session in the window. This requires
that every session is processed twice, and as in the nonin-
cremental case, memory is required to hold session data for
all sessions in the window.

One possible alternative to sequence-based windows is to
use time-based windows [1]. In this case sessions are times-
tamped so that the system knows which sessions it should
discard. This approach has the disadvantage to make the
window size variable, depending on the data rate. The num-
ber of sessions in the window increases for fast data rates
and decreases with slow rates. Large windows carry more
information but require more time and memory to be pro-
cessed. Small windows are easy to process but may contain
insufficient information.

3.2 Fading factors

Sliding windows provide an effective but abrupt way to for-
get older data. In many cases, however, past data is not
necessarily obsolete, and can contain valuable information
[6, 11]. Fading factors [8] provide a mechanism to gradu-
ally forget past data.

J Braz Comput Soc (2012) 18:271–282 273

Fig. 1 Session weights at 500th update with fading factors

Fading factors with incremental algorithms can be im-
plemented by multiplying the similarity matrix by a fac-
tor α < 1 before each update. In user-based algorithms, the
similarity matrix contains similarities measured between ev-
ery pair of users in the system. In item-based algorithms,
similarities are measured between every pair of items. In
both cases, the fading factor causes similarities to contin-
uously decrease through time unless they are reinforced by
recent session data. If the similarity reaches a lower thresh-
old value, it can be assumed to be zero. This method is sim-
ple to implement and requires a single scan of each session.

Figure 1 illustrates the session weight curve that is ob-
tained at session index 500 using different factors. We can
observe that the decay for recent sessions is higher than for
older sessions. Using forgetting curves with different shapes
requires a more complex approach. Because session history
is not kept, there is no way to know how to apply forget-
ting to each similarity value. Keeping ordered session data
in memory would allow us to use different decay curves,
however, it would also introduce complexity in the update
process. Each session would have to be processed at every
update until its weight is zero.

Fading factors can also be implemented in nonincremen-
tal algorithms if all considered sessions are kept in memory
in the same order by which they arrived. A function of the
session index can then be applied when rebuilding the simi-
larity matrix, giving less weight to older sessions. However,
this poses the same problem of using sliding windows: each
session is processed several times, which is undesirable.

4 Algorithms

All algorithms take binary usage data as input. This data
contains the set of items visited by each user, grouped in ses-
sions and ordered by the session end time. A session is con-
sidered to be the set of items visited or rated by a single user
in a certain time frame. For the purpose of this work, datasets
contain only anonymous users, so each session corresponds
to a unique user. Sessions containing a single item are re-
moved. Datasets are processed to build a similarity matrix

S that contains the similarities between all pairs of users—
in the user-based version—or items—in the item-based ver-
sion. Similarity between a pair of users (or items) is calcu-
lated using a simplified version of the cosine measure for
binary ratings [14, 15]. If U and V are the sets of items that
users u and v evaluated, then the user-based similarity be-
tween u and v is given by

sim(u, v) = #(U ∩ V)√
#U × √

#V
(1)

For the item-based version, if I and J are the sets of users
that evaluated items i or j , the similarity between i and j is
given by

sim(i, j) = #(I ∩ J)√
#I × √

#J
(2)

4.1 Sliding windows

The sliding window approach basically considers the n

most recent sessions to build the similarity matrix S. To
illustrate, consider a sequence of the first n user sessions
{s1, s2, . . . , sn}, each containing a set of items rated by one
user. First, S is built from data in sessions {s1, . . . , sn}.
Then, for each new session sa , the model is rebuilt with data
from sessions {sa−n, . . . , sa}, creating a window that slides
through data as it arrives.

Algorithm 1 (UBSW) is a classical user-based non-
incremental algorithm adapted for using sliding windows.
This algorithm takes in a sequence of user sessions L =
{s1, s2, . . .}. The first n sessions are used to build an initial
user vs. user similarity matrix S. Then, for each new user
session in L, S is recalculated using a new window consist-
ing of the latest n sessions. Item activation weights are then
calculated and the Nrecs items with the highest weights are
recommended.

IBSW (Algorithm 2) is an item-based version of the non-
incremental algorithm, also using sliding windows. This al-
gorithm is based on the item-based nonincremental algo-

Algorithm 1 UBSW
Input: L, Nrecs, n

Output: recommendation list

– Initialize S with window Win = {s1, . . . , sn}
– For each new session sa ∈ L, a > n (by user ua)

– Set Win = {sa−n, . . . , sa}
– (Re)calculate S using window Win

– Determine the activation weight Wi of each item i never seen
before by ua :

Wi =
∑

users in neighborhood of ua that evaluatedi S[ua, .]
∑

users in neighborhood of ua

(3)

– Recommend the Nrec items with the highest activation weight

274 J Braz Comput Soc (2012) 18:271–282

Algorithm 2 IBSW
Input: L, Nrecs, n

Output: recommendation list

– Initialize S using window Win = {s1, . . . , sn}
– For each new session sa ∈ L, a > n (by user ua)

– Set Win = {sa−n, . . . , sa}
– (Re)calculate S using window Win

– Determine the activation weight Wi of each item i never seen
before by ua :

Wi =
∑

items in neighborhood evaluated by ua
S[i, .]

∑
items in neighborhood S[i, .] (4)

– Recommend the Nrec items with the highest activation
weight

rithm in [15]. As with UBSW, the algorithm takes in a se-
quence of user sessions L and, for each new session, recal-
culates an item vs. item similarity matrix S using a window
with the latest n sessions. Then the item weights are calcu-
lated and recommendations are provided accordingly.

4.2 Fading factors

Whereas with sliding windows old data is abruptly forgot-
ten, the idea of fading factors is to slowly decrease the im-
portance of sessions as they grow old. This can be achieved
by manipulating the similarity matrix S. Incremental algo-
rithms using fading factors simply multiply S by a factor
α ≤ 1 before updating them with the active session data.
With α < 1, at each new session, older sessions become less
important. With α = 1, older data weight is maintained. To
incrementally update S we also maintain a frequency matrix
F with the number of items corated by each pair of users
(user-based) or the number of users that corated each pair of
items (item-based). The principal diagonal in F gives us the
number of items evaluated by each user—in the user-based
case—and the number of users that evaluated each item—
in the item-based case. The matrix F contains all necessary
data to calculate any similarity in S. The values in F are in-
cremented by 1 for every pair of items that are contained in
the same session (item-based), or for every pair of users that
have seen the same item (user-based). Then only the similar-
ities in S that are affected by changes in F are recalculated.

Forgetting is obtained by multiplying matrices S and F

by a fading factor α < 1. When using α = 1 no forgetting
occurs. It is important that both matrices S and F are multi-
plied by α. Because similarities in S are calculated directly
from values in F , forgetting must be reflected also in F .
Otherwise, every time rows and columns in S were updated,
no forgetting would occur for them. Also, if only F is mul-
tiplied by α, nonupdated rows and columns in S would not
be forgotten.

UBFF (Algorithm 3) is a modified version—using fading
factors—of the user-based incremental algorithm originally

Algorithm 3 UBFF
Input: L, Nrecs, α, n

Output: recommendation list

– Initialize D with sessions si ∈ L and weights set to 1:
D = {〈s1,1〉, . . . , 〈sn,1〉}
(WD denotes the weights in D)

– Initialize matrices S and F using {s1, . . . , sn} ⊂ L

– For each new session sa ∈ L, a > n (by user ua)
– Update D, S and F :

– Let Ia be the set of items in session sa
– Multiply all values in S and F and past session weights in

D by fading factor α:

S = αS, F = αF, WD = αWD (5)

– Add sa to D with weight set to 1: Da = 〈sa,1〉
– If ua is a new user, add a row and a column to F and to S

– Update the row/column of F corresponding to ua , using
the new D:

Fua,ux = Fua,ux + (
#(Ia ∩ Ix) × WDx

)
(6)

– Update the row/column of S corresponding to user ua :

Sua,. = Fua,.
√

Fua,ua × √
F.,.

(7)

– Determine the activation weight Wi of each item i never seen
before by ua (Eq. (3))

– Recommend the Nrec items with the highest activation weight
to ua

described in [15]. A cache matrix F maintains the number
of items covisited by every pair of users. Additionally, the
database D of user sessions and session weights needs to be
maintained. This database is required in the matrices update
step in order to reflect the forgetting of user sessions and in
the recommendation step to retrieve recommendable items
from the nearest neighbors. Each element 〈s,w〉 in D is a
pair containing session data s and session weight w. The
initial weight of each new session is set to 1. Session weights
are then multiplied by the fading factor α every time a new
session is processed. This way, sessions loose weight as they
grow older.

Values in F are calculated as the number of items simul-
taneously present in the active session and every other (past)
session. In order to reflect the forgetting of the older ses-
sions, this number needs to be multiplied by the weight of
the oldest of the two sessions at each cell in the active ses-
sion row/column in F . For example, let the first session s1 of
user u1 be composed of 2 items i and j . Also, let the tenth
session s10 (of user u10) be composed of the same two items
i and j . This would make Fu1,u10 = 2. However, at session
s10, previous session weights are already lower. Specifically,
the weight of s9 is WD9 = α, the weight of s8 is WD8 = α2,
the weight of s7 is WD7 = α3, and so on. The first session

J Braz Comput Soc (2012) 18:271–282 275

Algorithm 4 IBFF
Input: L, Nrecs, α, n

Output: recommendation list

– Initialize matrices S and F using sessions {s1, . . . , sn} ⊂ L

– For each new session sa ∈ L, a > n (by user ua)
– Determine the activation weight Wi of each item i never seen

before by ua (Eq. (4))
– Recommend the Nrec items with the highest activation weight

to ua

– Update S and F :
– Let Ia be the set of items in session sa
– Multiply all values in S and F by a fading factor α

S = αS, F = αF (8)

– For each new item, add a row and column to F and to S

– For each pair of items in (i, j) in Ia , update the correspond-
ing row/column in F :

Fi,j = Fi,j + 1 (9)

– For each item ia in Ia update the corresponding row (col-
umn) of S:

Sia,. = Fia,.
√

Fia,ia × √
F.,.

(10)

s1 has weight WD1 = α9, so this must be reflected in the
cache matrix as Fu1,u10 = 2 × α9.

The incremental item-based algorithm with fading fac-
tors (IBFF—Algorithm 4) is based on the incremental item-
based algorithm in [15]. In order to incrementally update S

we also need save in memory the auxiliary cache matrix F

with the number of users that evaluate each pair of items.
The principal diagonal gives us the number of users that
evaluate each item. Forgetting is obtained the same way as
in UBFF, but in this case, the user session database is not
required.

One difference between UBFF and IBFF is that with
the first, recommendations are performed after updating the
model, while with the latter, recommendations are provided
before updating the model. With UBFF, the session belong-
ing to the active user needs to be processed before the rec-
ommendation step because similarities between the active
user and other users may not yet be present in S. With
IBFF, S already contains enough information to compute the
recommendations before performing the update. UBFF and
IBFF are the same algorithms used in previous work [15],
with only the changes that are strictly necessary to function
with fading factors. This allows us to make comparisons be-
tween past and present results.

5 Evaluation and results

In this section, we present results obtained in experiments
conducted to evaluate the impact of forgetting mechanisms

Table 1 Description of the datasets used

Dataset Domain Users Items Transactions

ART1 Artificial 800 5 3200

ART2 Artificial 2000 5 8000

ELEARN E-learning 509 295 2646

MUSIC Music website 785 3121 9128

in CF algorithms. Our main goal is to assess the potential of
forgetting mechanisms to improve scalability and predictive
ability. We also implement an evaluation methodology that
is able to deal with usage data streams. This approach allows
us to continuously monitor the behavior of the algorithms.

5.1 Datasets

Four datasets are used in the experiments. Table 1 describes
each dataset. Sessions with less than 2 items were removed.
In all datasets, every user performs exactly one session,
meaning that each session corresponds to a different unique
user.

Datasets ART1 and ART2 are synthesized datasets with
an abrupt change. Both ART1 and ART2 consist of identi-
cal sessions with 4 items. These sessions contain the items
{a, b, c, d} at the beginning and then the item d is replaced
by a new item e. This change occurs at session index 400 in
ART1 and session 500 in ART2.

ELEARN and MUSIC are natural datasets extracted from
web usage logs of an e-learning website (ELEARN) and lis-
tened tracks from a social network1 dedicated to nonmain-
stream music (MUSIC).

5.2 Evaluation methodology

In all experiments we have used the all-but-one protocol as
described in [3], but following a chronological ordering for
sessions. First, the dataset is split in a training set and a test
set. Sessions are not selected randomly to the training and
test sets, but rather according to their order. This means that
for a split of 0.2, for example, the training set is composed
of the first 20 % sessions and the test set is composed of the
remaining 80 %. For IBSW and UBSW, the training set is
considered to be the first window. For IBFF and UBFF, an
initial training set containing the first 10 % of sessions is
used to build the initial matrices S and F . This initial train-
ing set is required in order to avoid cold-start problems [20].
After splitting the dataset, an item is randomly hidden from
each session in the test set. Then recommendations made to
each user are evaluated as a hit if the hidden item is among
the recommended items.

1http://www.palcoprincipal.com.

http://www.palcoprincipal.com

276 J Braz Comput Soc (2012) 18:271–282

To evaluate recommendations, we use Precision and Re-
call, with the following definition:

Precision = # hits

recommended items
(11)

Recall = # hits

hidden items
(12)

One other possible measure, that combines Precision and
Recall, is the F1 measure:

F1 = 2 × Recall × Precision

Recall + Precision
(13)

Since one single item from each session is hidden, Recall
is either 1 (hit) or 0 (miss), and Precision is obtained divid-
ing Recall by the number of recommended items, which is
a predefined parameter (see Sect. 5.2.1). For this reason, we
present predictive ability using Recall only. Precision and/or
F1 scores can be easily calculated from Recall and the num-
ber of recommended items.

Recall is calculated sequentially for each user. At the end,
we obtain a sequence of hits and misses, and an overall av-
erage can be calculated. However, as this average may hide
different behaviors through time, we study the evolution of
Recall values through time for each experiment. A moving
average of Recall is used to obtain values and graphics that
illustrate how accuracy varies with time, as new sessions ar-
rive. It is important to use this approach because we want
to study how Recall evolves with and without implementing
forgetting mechanisms. In the Recall graphics, a moving av-
erage consisting of the arithmetic mean of the previous 40
Recall values (0 or 1) is used to draw the graphics. In prac-
tice, this represents the proportion of hits in the previous 40
recommendation requests.

Computational time spent building or updating the matri-
ces is provided for natural datasets ELEARN and MUSIC.
Time measurements allow us to empirically study the scala-
bility of algorithms using different datasets and parameters.

Reaction to sudden changes in data, using natural datasets
ELEARN and MUSIC, is studied introducing artificial
changes in these datasets. For the purpose of our experi-
ments, we randomly chose 50 % of the existing items and
change their names from a certain session onwards, causing
a sudden drift. The algorithms are then evaluated using these
modified datasets. These new datasets keep all the charac-
teristics of a natural dataset, only with a drift of 50 % of the
items.

5.2.1 Evaluation parameters

The following parameters must be set to conduct the tests:

– k: the maximum number of neighbors (users or items) to
consider in S when computing recommendations;

– Nrec: the number of items to recommend at each recom-
mendation request;

– wp: the window size in percentage of total sessions in the
dataset (for IBSW and UBSW);

– α: the fading factor. In IBFF and UBFF, S and F are mul-
tiplied by this factor before updating with new data.

In the experiments with synthesized datasets (ART1 and
ART2), values k = 2 and Nrec = 1 are used. These low
values are chosen because synthesized datasets have a low
number (4) of items. With all other datasets values k = 5
and Nrec = 5 are used. These values are chosen taking into
account results obtained in [13] and the computational re-
sources required to run the experiments.

For the incremental algorithms, four values of α are
tested. Values close to 1 are chosen so that the forgetting
is not too abrupt. The nonforgetting factor α = 1 is used as
reference to measure and compare the impact of forgetting
with different factors.

To study the impact of forgetting, we compare UBSW
and IBSW, which use sliding windows, with their non-
forgetting versions that use growing windows. These are
called UBGW and IBGW. With growing windows, at each
session si , all past sessions {s1, . . . , si−1} are used to build S.
For UBGW and IBGW, wp is the percentage of sessions
used to build the initial matrix S.

Implementation and hardware details All algorithms were
implemented using R version 2.11.0 with the package spam
version 0.21–0 to handle sparse matrices. The hardware used
in the experiments was a machine with a dual 2.67 GHz core
processor and 2Gb of RAM, running the Ubuntu 8.04 Linux
OS.

5.3 Experiments with synthesized datasets

It is possible to observe in Fig. 2 that, on the synthesized
datasets, the algorithms with forgetting mechanisms tend to
recover faster from abrupt changes than nonforgetting algo-
rithms. As older data is forgotten, the initial conditions are
not considered, providing a faster adaptation to new situa-
tions. Results for IBFF in Fig. 2(b) illustrate the behavior
of the algorithm using different fading factors: recovery is
faster for lower values of α and slower for higher values of
α. Without forgetting, none of the algorithms recover com-
pletely until the end of the test. For α = 0.97, Recall = 1 is
recovered about 400 sessions after the change. For α = 0.98
the recovery occurs after 600 sessions, and for α = 0.99,
almost 1500 sessions are necessary to recover. Without for-
getting (α = 1), recovery does not happen during the 2,000
sessions in the dataset.

J Braz Comput Soc (2012) 18:271–282 277

Fig. 2 Predictive ability of IBSW and IBFF with ART2. A moving average (n = 40) is used to smoothen the lines. For IBSW, wp represents the
percentage of sessions used as learning data. The vertical dashed line indicates the point where change occurs

5.4 Experiments with quasinatural datasets

5.4.1 Nonincremental with sliding windows

Figure 3 illustrates the recall levels obtained with UBSW
and UBGW. UBSW responds better than UBGW immedi-
ately after the change with the ELEARN dataset. With the
MUSIC dataset, UBGW almost always outperforms UBSW,
although differences between results by both algorithms are
small.

With IBSW and IBGW, shown in Fig. 4, the experiments
with the ELEARN dataset show a better recovery from
change with IBSW. This only happens right after change oc-
curs. Then, shortly after session 200, IBGW recovers and
remains better than IBSW. At the end of the experiment,
IBSW drops rapidly to values close to 0.4, while IBGW
holds on to values around 0.7.

5.4.2 Incremental with fading factors

Figure 5 shows the reaction of UBFF to change. With the
ELEARN dataset, there is a better reaction of the algorithm
with lower fading factor. The best results are obtained with
α = 0.97, from session 200 to around session 450. The
second best results are achieved with α = 0.98. Analyz-
ing the lines in Fig. 5(a), from session 200—where change
is introduced—to around session 350, Recall is generally
higher for lower fading factors. In that interval, the lower
recall values are obtained with α = 1 (without forgetting).

With the MUSIC dataset (Fig. 5(b)) results are very sim-
ilar for all 4 fading factors. UBFF with α = 1 seems to have
a slightly better performance most of the time.

With the item-based version (IBFF), shown in Fig. 6,
recall is generally lower with α < 1 than with α = 1, al-
though it is possible to see a better response to change with
the ELEARN dataset with α = 0.98 and α = 0.99 between
sessions 200 and 350. With the MUSIC dataset, the highest
recall is obtained without forgetting (α = 1).

Fig. 3 Comparison between recall of UBSW and UBGW with
w = 0.2 and 50 % drift. A moving average (n = 40) is used to
smoothen the lines. The vertical dashed line marks the point where
changes are introduced

5.5 Update time

All evaluated algorithms typically will have to deal with
large datasets. Similarity matrices need to store similar-
ity values between every pair of users—in the user-based
case—or between every pair of items—in the item-based

278 J Braz Comput Soc (2012) 18:271–282

Fig. 4 Comparison between recall of IBSW and IBGW with wp = 0.2
and 50 % drift. A moving average (n = 40) is used to smoothen the
lines. The vertical dashed line marks the point where changes are in-
troduced

case. In the case of matrix rebuild time—for IBSW and
UBSW—the similarity matrix S is rebuilt from scratch every
time a new session is available. With IBFF and UBFF val-
ues in matrices S and F are selectively updated. In any case,
these matrices are typically very large and tend to grow very
fast as new users and items enter the system. In this section,
we study the scalability of the algorithms by measuring the
time needed to rebuild or update the similarity matrix.

5.5.1 Nonincremental with sliding windows

Nonincremental algorithms need to recalculate the whole
similarity matrix S every time a new session occurs. Fig-
ure 7 illustrates the time required to rebuild the matrix as
the ELEARN dataset is processed. Comparing the sliding
window algorithms with their growing window versions, it
is clear that both user-based and item-based versions us-
ing growing windows (UBGW and IBGW) time to recal-
culate S grows super-linearly with the number of sessions.
The sliding window versions tend to maintain time. Com-
paring the user-based algorithms with the item-based ones,
the first have a more stable record than the latter. This hap-
pens because with user-based algorithms, S has exactly the

Fig. 5 Recall of UBFF with 50 % drift. A moving average (n = 40)

is used to smoothen the lines. The vertical dashed line marks the point
where changes are introduced

same number of rows and columns as the number of sessions
in the window. With item-based algorithms, the number of
items in the window is not fixed—with sliding window—nor
it grows one by one—with growing windows—since the or-
der of appearance of new items is not sequential. This leads
to memory allocation and garbage collection processes to
run frequently, causing extra time consumption in some it-
erations.

Figure 8 shows the time to rebuild S with the MUSIC
dataset. As with the ELEARN dataset, growing window al-
gorithms take increasingly more time to rebuild S while
the sliding window algorithms tend to maintain the time
required to rebuild S. However, two main differences be-
tween ELEARN and MUSIC are clear. First, the differ-
ence between item-based and user-based algorithms is much
higher with MUSIC. Second, the item-based versions take
longer than the user-based versions with MUSIC, which is
the opposite behavior of ELEARN. This happens because
the number of items in MUSIC (3121) is much higher than
the number of users (785), leading to much larger matrices
when using item-based algorithms. The item-based matrices
are large enough to cause memory swapping, as the avail-
able RAM is not enough to store them. This causes very
high fluctuations (Fig. 8(b)).

J Braz Comput Soc (2012) 18:271–282 279

Fig. 6 Recall of IBFF with 50 % drift. A moving average (n = 40) is
used to smoothen the lines. The vertical dashed line marks the point
where changes are introduced

5.5.2 Incremental with fading factors

Incremental CF algorithms, instead of rebuilding the entire
similarity matrix, only update the similarity values that can
potentially change with a specific session. As shown in [15],
this has a considerably lower complexity than a complete
rebuild. By looking at the time scales in Figs. 9 (UBFF)
and 10—IBFF, and comparing them with those of nonin-
cremental algorithms (Figs. 7 and 8), we can verify that in-
cremental algorithms—UBFF and IBFF—update times are
much shorter than rebuild times by UBSW/UBGW and
IBSW/IBGW.

Analyzing UBFF update times in Fig. 9, it is clear that
time increases as more data is available. Additionally, there
seem to be very little differences between runs with different
fading factors, including α = 1 (no forgetting). With IBFF
(Fig. 10), results are also very similar between different fad-
ing factors.

Looking at the combination between user-based/item-
based and the ELEARN/MUSIC datasets, we observe that
with the ELEARN dataset, IBFF performs better than UBFF,
while with the MUSIC dataset the opposite occurs. This is
an effect similar to the one observed with nonincremental al-

Fig. 7 Matrix rebuild time with nonincremental algorithms (ELEARN
dataset). A moving average (n = 40) is used to smoothen the lines

gorithms, and again is caused by the proportion of the num-
ber of items and users in the datasets.

5.6 Update times with Netflix data

When using fading factors, the matrices S and F become
sparser as similarities and cooccurrence frequencies are for-
gotten. The algorithms actually take advantage of this spar-
sity to optimize the data structures where S and F are stored,
leading to a better scalability. This is not visible in ELEARN
and MUSIC because these datasets are not large enough to
completely forget similarities and frequencies. However, us-
ing a longer dataset it is possible to observe that fading fac-
tors improve scalability. To verify this, we calculate update
times of IBFF with a dataset consisting of 5,000 sessions
sampled the well-known Netflix Prize [2] dataset.

Because this dataset holds ratings given by users to
movies within a discrete scale of 1 (worse) to 5 (better), we
eliminated all ratings below 4, retaining only ratings of 4
or 5. This ensures that only positive ratings are considered.
Then we organized the dataset in sessions. Because times-
tamps in the dataset only contain the date (not the time), we
consider one session to be the list of rated items by one user
in the same day. We then sampled 5,000 random sessions
from the whole data, maintaining the chronological order.

280 J Braz Comput Soc (2012) 18:271–282

Fig. 8 Matrix rebuild time with nonincremental algorithms (MUSIC
dataset). A moving average (n = 40) is used to smoothen the lines

Figure 11 depicts the update times of IBFF with this sam-
ple. It is possible to observe that with α = 1 time grows ap-
proximately linearly with the number of analysed sessions.
With α < 1, the time spent updating S and F shows a sim-
ilar behavior until around session 1600, and then it starts
to deviate downward from the nonforgetting configuration.
Furthermore, there seems to be a relation between values
of α and time gains—lower values require less time. The
downsize of this experiment was the overall poor accuracy
of the algorithm, with an average recall of 0.021 with α = 1
and 0.01 with α = 0.99. We believe this is caused by the
removal of information (ratings <4) and low representative-
ness of the sample.

5.7 Discussion

5.7.1 Predictive ability

Using the ELEARN dataset, forgetting mechanisms provide
clear improvements in recall immediately after a sudden
drift, except with IBFF, where slight improvements are only
obtained with high fading factors (slow forgetting). How-
ever, the same is not observable in any case with the MUSIC
dataset. With this dataset, immediately after the occurrence
of a drift, improvements are not observed, but relative degra-
dation is also not present. This contradicts results obtained

Fig. 9 Matrix update time with UBFF. A moving average (n = 40) is
used to smoothen the lines

with synthesized datasets that suggest a better capability to
adapt to sudden drifts. A number of factors can influence
the behavior of the algorithms, namely the presence of nat-
ural drifts and the natural variability of the datasets. This
motivates further research to understand how dataset inher-
ent features such as natural variability and the occurrence
of sudden and gradual drifts relate to forgetting parameters
such as window length and fading factor values.

5.7.2 Update time

With nonincremental algorithms (UBSW/UBGW and
IBSW/IBGW), the first observation is that the sliding win-
dow algorithms tend to maintain an approximately constant
time to rebuild the matrix, while with growing window al-
gorithms time increases throughout the experiment. This is
a natural consequence of the use of fixed length windows.
The number of sessions to process, in the case of UBSW and
IBSW, is fixed, which leads to approximately constant time.
Gains in scalability are the most evident motivation for the
use of sliding windows.

Also, with nonincremental algorithms, it is noticeable
that time is steadier with the user-based versions than with
the item-based versions. One explanation for this is that both
datasets have a sequential unique session per user, which

J Braz Comput Soc (2012) 18:271–282 281

Fig. 10 Matrix update time with IBFF. A moving average (n = 40) is
used to smoothen the lines

Fig. 11 Matrix update time with IBFF and data sampled from Netflix.
A moving average (n = 40) is used to smoothen the lines

means that every window has the same number of users.
However, the number of items can vary considerably within
each new window. As a consequence, the item-based algo-
rithms are more prone to fluctuations in the time required to
rebuild S.

Time with the use of fading factors in incremental al-
gorithms seems to be unaffected with ELEARN and MU-
SIC, but using a longer dataset, it becomes more evident

that fading factors also have the potential to improve scal-
ability. With fading factors, older similarity values tend to
zero, but it takes a large amount of sessions for similari-
ties to actually become zero. The package spam optimizes
sparse matrix storage by storing only values greater than
2.220446 × 10−16 [7]. For example, with α = 0.97, a simi-
larity value of 0.5, if never updated by recent data, only gets
completely “forgotten” (i.e., becomes zero) after 1,170 ses-
sions, which is more than the number of sessions in both
ELEARN and MUSIC.

User-based algorithms produce smaller matrices when
the number of users is lower than the number of items and
larger matrices when the number of users exceeds the num-
ber of items. Time to rebuild and/or update these matrices
is directly affected by the amount of data to process. This
explains why user-based algorithms perform better with the
MUSIC dataset, while item-based algorithms have better re-
sults with ELEARN.

6 Conclusions

We have implemented and evaluated the impact of forget-
ting mechanisms in nonincremental and incremental collab-
orative filtering algorithms. Our results suggest that non-
incremental algorithms that use sliding windows, when
compared to their nonforgetting versions using a grow-
ing window, reduce computational requirements while not
negatively affecting—and in some situations improving—
predictive ability. Results also suggest that incremental al-
gorithms benefit from the use of fading factors, although
the fading factor approach has more subtle improvements
in time requirements. It is also confirmed that incremen-
tal algorithms are more scalable than non-incremental algo-
rithms.

This work studies the impact of forgetting mechanisms
in an abrupt change scenario. Our experimental results were
limited with respect to gradual drifts, either due to the data
sets we have used or due to limitations of our approach. In
the future, we intend to further evaluate forgetting mecha-
nisms under both abrupt and gradual drifts. This will require
researching how forgetting mechanisms relate to dataset in-
trinsic characteristics. A better understanding of datasets
will allow the implementation of algorithms that are able to
automatically adjust forgetting parameters to different situ-
ations. This will allow the implementation of dynamic for-
getting, only when useful. We are also working on the im-
plementation of the algorithms to allow larger scale exper-
iments and the use of fading factors more sporadically—
every k sessions.

Acknowledgements We are mostly grateful to the Ubbin Labs
company for their enthusiastic collaboration and enriching feedback.
This work has been partially supported by QREN AdI Palco3.0/3121

282 J Braz Comput Soc (2012) 18:271–282

PONORTE and by the ERDF—European Regional Development Fund
through the COMPETE Programme (operational programme for com-
petitiveness) and by National Funds through the FCT—Fundação para
a Ciência e a Tecnologia (Portuguese Foundation for Science and Tech-
nology) within project «FCOMP-01-0124-FEDER-022701».

References

1. Babcock B, Datar M, Motwani R (2002) Sampling from a moving
window over streaming data. In: SODA ’02: proceedings of the
thirteenth annual ACM-SIAM symposium on discrete algorithms,
6–8 January, 2002, San Francisco, CA, USA. ACM/SIAM, New
York, pp 633–634

2. Bennet J, Lanning S (2007) The neflix prize. In: KDD cup and
workshop. www.netflixprize.com

3. Breese JS, Heckerman D, Kadie CM (1998) Empirical analysis
of predictive algorithms for collaborative filtering. In: Cooper GF,
Moral S (eds) UAI ’98: proceedings of the fourteenth conference
on uncertainty in artificial intelligence, 24–26 July, 1998, Univer-
sity of Wisconsin Business School, Madison, Wisconsin, USA.
Morgan Kaufmann, San Mateo, pp 43–52

4. Ding Y, Li X (2005) Time weight collaborative filtering. In: Her-
zog O, Schek HJ, Fuhr N, Chowdhury A, Teiken W (eds) CIKM.
ACM, New York, pp 485–492

5. Ding Y, Li X, Orlowska ME (2006) Recency-based collaborative
filtering. In: Dobbie G, Bailey J (eds) ADC. CRPIT, vol 49. Aus-
tralian Comput Soc, pp 99–107

6. Domingos P, Hulten G (2001) Catching up with the data: research
issues in mining data streams. In: DMKD ’01: workshop on re-
search issues in data mining and knowledge discovery

7. Furrer R, Sain SR (2010) spam: A sparse matrix R package with
emphasis on mcmc methods for Gaussian Markov random fields.
J Stat Softw 36(10):1–25. http://www.jstatsoft.org/v36/i10/

8. Gama J, Sebastião R, Rodrigues PP (2009) Issues in evaluation of
stream learning algorithms. In: JFE IV, Fogelman-Soulié F, Flach
PA, Zaki MJ (eds) Proceedings of the 15th ACM SIGKDD in-
ternational conference on knowledge discovery and data mining,
Paris, France, June 28–July 1, 2009. ACM, New York, pp 329–
338

9. Hill WC, Stead L, Rosenstein M, Furnas GW (1995) Recommend-
ing and evaluating choices in a virtual community of use. In: CHI
95 conference proceedings, Denver, Colorado, 7–11 May, 1995,
pp 194–201

10. Koren Y (2009) Collaborative filtering with temporal dynamics.
In: IV JFE, Fogelman-Soulié F, Flach PA, Zaki MJ (eds) KDD.
ACM, New York, pp 447–456

11. Koychev I (2000) Gradual forgetting for adaptation to concept
drift. In: Proceedings of ECAI 2000 workshop current issues in
spatio-temporal reasoning, pp 101–106

12. Linden G, Smith B, York J (2003) Amazon.com recommenda-
tions: item-to-item collaborative filtering. IEEE Internet Comput
7(1):76–80

13. Miranda C (2008) Filtragem colaborativa incremental para re-
comendações automáticas na web. Master’s thesis, Faculdade de
Economia da Universidade do Porto

14. Miranda C, Jorge AM (2008) Incremental collaborative filtering
for binary ratings. In: Web intelligence. IEEE Press, New York,
pp 389–392

15. Miranda C, Jorge AM (2009) Item-based and user-based incre-
mental collaborative filtering for web recommendations. In: Lopes
LS, Lau N, Mariano P, Rocha LM (eds) Proceedings, progress in
artificial intelligence, 14th Portuguese conference on artificial in-
telligence, EPIA 2009, Aveiro, Portugal, 12–15 October, 2009.
Lecture notes in computer science, vol 5816. Springer, Berlin,
pp 673–684

16. Nasraoui O, Cerwinske J, Rojas C, González FA (2007) Perfor-
mance of recommendation systems in dynamic streaming environ-
ments. In: Proceedings of the seventh SIAM international confer-
ence on data mining, 26–28 April, 2007, Minneapolis, Minnesota,
USA. SIAM, Philadelphia

17. Nasraoui O, Uribe CC, Coronel CR, González FA (2003) Tecno-
streams: tracking evolving clusters in noisy data streams with a
scalable immune system learning model. In: Proceedings of the
3rd IEEE international conference on data mining (ICDM 2003),
19–22 December 2003, Melbourne, Florida, USA. IEEE Comput
Soc, Los Alamitos, pp 235–242

18. Papagelis M, Rousidis I, Plexousakis D, Theoharopoulos E (2005)
Incremental collaborative filtering for highly-scalable recommen-
dation algorithms. In: Hacid MS, Murray NV, Ras ZW, Tsumoto
S (eds) Proceedings, foundations of intelligent systems, 15th in-
ternational symposium, ISMIS 2005, Saratoga Springs, NY, USA,
May 25–28, 2005. Lecture notes in computer science, vol 3488.
Springer, Berlin, pp 553–561

19. Resnick P, Iacovou N, Suchak M, Bergstrom P, Riedl J (1994)
Grouplens: an open architecture for collaborative filtering of net-
news. In: CSCW ’94, proceedings of the conference on computer
supported cooperative work, 22–26 October, 1994, Chapel Hill,
NC, USA, pp 175–186

20. Schein AI, Popescul A, Ungar LH, Pennock DM (2002) Methods
and metrics for cold-start recommendations. In: SIGIR 2002: pro-
ceedings of the 25th annual international ACM SIGIR conference
on research and development in information retrieval, 11–15 Au-
gust, 2002 Tampere, Finland. ACM, New York, pp 253–260

21. Shardanand U, Maes P (1995) Social information filtering: algo-
rithms for automating “word of mouth”. In: CHI 95 conference
proceedings, Denver, Colorado, 7–11 May, 1995. ACM/Addison-
Wesley, Reading, pp 210–217

22. Widmer G, Kubat M (1996) Learning in the presence of concept
drift and hidden contexts. Mach Learn 23(1):69–101

http://www.netflixprize.com
http://www.jstatsoft.org/v36/i10/

	Forgetting mechanisms for scalable collaborative filtering
	Abstract
	Introduction
	Related work
	Collaborative filtering with forgetting mechanisms
	Sliding windows
	Fading factors

	Algorithms
	Sliding windows
	Fading factors

	Evaluation and results
	Datasets
	Evaluation methodology
	Evaluation parameters
	Implementation and hardware details

	Experiments with synthesized datasets
	Experiments with quasinatural datasets
	Nonincremental with sliding windows
	Incremental with fading factors

	Update time
	Nonincremental with sliding windows
	Incremental with fading factors

	Update times with Netflix data
	Discussion
	Predictive ability
	Update time

	Conclusions
	Acknowledgements
	References

