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Abstract Decision-tree induction is a well-known tech-
nique for assigning objects to categories in a white-box fash-
ion. Most decision-tree induction algorithms rely on a sub-
optimal greedy top-down recursive strategy for growing the
tree. Even though such a strategy has been quite success-
ful in many problems, it presents several deficiencies. For
instance, there are cases in which the hyper-rectangular sur-
faces generated by these algorithms can only fit the input
space after several sequential partitions, which results in a
large and incomprehensible tree. In this paper, we propose
a new decision-tree induction algorithm based on clustering
named Clus-DTI. Our intention is to investigate how clus-
tering data as a part of the induction process affects the ac-
curacy and complexity of the generated models. Our perfor-
mance analysis is not based solely on the straightforward
comparison of our proposed algorithm to baseline classi-
fiers. We also perform a data-dependency analysis in order
to identify scenarios in which Clus-DTI is a more suitable
option for inducing decision trees.
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1 Introduction

Classification is the problem of identifying the category to
which observations belong, given that the identity of the
category is unknown a priori. A classification algorithm is
required to place these observations (objects) into groups
based on quantitative or qualitative information collected
from characteristics (attributes) of each object. A great deal
of algorithms have been proposed by researchers in machine
learning and statistics in the last decades for classifying data
in a variety of domains.

Decision-tree induction is a classification method that
represents the induced knowledge through a hierarchical
tree. Such a representation is intuitive and easy to assimilate
by humans, which has motivated a large number of studies
that make use of this strategy. Some well-known algorithms
for decision-tree induction are C4.5 [1] and CART [2].

Whilst the most successful decision-tree induction algo-
rithms make use of a top-down recursive strategy for grow-
ing the trees [3], more recent studies have looked for more
efficient strategies, e.g., creating an ensemble of inconsis-
tent trees. Ensembles are created by inducing different de-
cision trees from training samples and the ultimate classifi-
cation is generally performed through a voting scheme. Part
of the research community avoid the ensemble solution with
the argument that the comprehensibility component of an-
alyzing a single decision tree is lost. Indeed, the inconsis-
tent trees are necessary to achieve diversity in the ensemble,
which in turn is necessary to increase its predictive accu-
racy [4]. Since comprehensibility may be crucial in several
applications, ensembles are usually not a good option for
these cases.
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Another strategy that has been increasingly employed is
the induction of decision trees through evolutionary algo-
rithms (EAs) [5, 6]. The main benefit of evolving decision
trees is due to the EAs’ capability of escaping local optima.
EAs perform a robust global search in the space of candi-
date solutions, and thus they are less susceptible to local
optima convergence. In addition, as a result of this global
search, EAs tend to cope better with attribute interactions
than greedy methods [7]. The main disadvantages of evolu-
tionary induction of decision trees are related to time and
space constraints. EAs are a solid but computational expen-
sive heuristic. Another disadvantage lies on the large num-
ber of parameters that need to be set (and tuned) in order to
optimally run the EA for decision-tree induction [8].

There are advantages and disadvantages in using one
strategy or another for decision-tree induction, and the same
can be said for every machine learning algorithm developed
to date. Algorithms that excel in a certain dataset may per-
form poorly in others (i.e., the no free-lunch theorem [9]).
Whereas there are many studies that propose new classifica-
tion algorithms every year, most of them neglect the fact that
the performance of the induced classifiers is heavily data de-
pendent. Moreover, these studies usually fail to point out the
cases in which the proposed classifier may present signifi-
cant gain over well-established classifiers.

In this paper, we attempt to improve the accuracy of typi-
cal decision-tree induction algorithms, and at the same time
we try to preserve the comprehensibility of the model gen-
erated. For that, we propose a new classification algorithm
based on clustering, named Clus-DTI (Clustering for im-
proving Decision-Tree Induction). The key assumption that
is exploited in this paper is that a difficult problem can be de-
composed into simpler sub-problems. Our main hypothesis
is that we can make use of clustering for improving classi-
fication with the premise that, instead of directly solving a
difficult problem, solving its sub-problems may lead to im-
proved performance.

We investigate the performance of Clus-DTI regarding
the data it is being applied to. Our contributions are twofold:
(i) we propose a new classification algorithm whose objec-
tive is to improve decision tree classification through the
use of clustering, and we empirically analyze its perfor-
mance in public datasets; (ii) we investigate scenarios in
which the proposed algorithm is a better option than a tradi-
tional decision-tree induction algorithm. This investigation
is based on data-dependency analyses. For such, it takes into
account how the underlying data structure affects the perfor-
mance of Clus-DTI. Note that this work is an extended ver-
sion of a previous conference paper [10], in which we signif-
icantly increase the number of experiments, and also largely
improve on the original Clus-DTI methodological aspects.

In Sect. 2 we detail the proposed algorithm, which com-
bines clustering and decision trees. In Sect. 3 we conduct
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a straightforward comparison among Clus-DTI and a well-
known decision-tree induction algorithm, C4.5 [1] (more
specifically, its Java version, J48). Section 4 presents a data-
dependency analysis, where we suggest some scenarios in
which Clus-DTI can be a better option than J48. Section 5
presents related work, and we discuss our main conclusions
in Sect. 6.

2 Clus-DTI

We have developed a new algorithm, named Clus-DTI
(Clustering for improving decision-tree induction), whose
goal is to cluster the classification data aiming at improv-
ing decision-tree induction. It works based on the following
premise: some classification problems are quite difficult to
solve; thus, instead of growing a single tree to solve a poten-
tially difficult classification problem, clustering the dataset
into smaller sub-problems and growing several trees may
ease the complexity of solving the original problem. For-
mally speaking, our algorithm approximates the target func-
tion in specific regions of the input space, instead of making
use of the full input space. These specific regions are not
randomly chosen, but defined through a well-known cluster-
ing strategy. It is reasonable to assume that objects drawn
from the same class distribution can be grouped together in
order to make the classification problem simpler. We do not
assume, however, that we can achieve a perfect cluster-to-
class mapping (and we do not mean to).

Our hypothesis is that solving sub-problems indepen-
dently from each other, instead of directly trying to solve
the larger problem, may provide better classification results
overall. This assumption is not new and has motivated sev-
eral strategies in computer science (e.g., the divide-and-
conquer strategy).

Clus-DTI works as follows. Given a classification train-
ing set X, Clus-DTI clusters X in k non-overlapping sub-
sets of X, i.e., P ={Cq, ..., Cx}, such that C; N C; =¥ for
j#iand CyU---UCk =X. In this step, Clus-DTI uses ei-
ther k-means [11] or Expectation Maximization (EM) [12],
two very well-known clustering algorithms. The choice of
clustering algorithm is specified by the user, according to its
own knowledge of the data. Note that Clus-DTI ignores the
target attribute when clustering the training set. In addition,
note that Clus-DTT scales all numeric values to the interval
[0, 1], and that nominal values with w categories are trans-
formed in w binary attributes.

Once all objects are assigned to a cluster, Clus-DTI builds
a distinct decision tree to each cluster according to its re-
spective data. It uses the well-known C4.5 decision-tree in-
duction algorithm [1]. Therefore, partition P will have a set
of k distinct decision trees, D = {Dty, ..., Dt }, trained ac-
cording to data belonging to each one of the clusters.
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In order to decide the “optimal” value of k, Clus-DTI
employs different strategies according to the clustering al-
gorithm employed. If the user has selected k-means as the
clustering algorithm, Clus-DTI employs the Ordered Mul-
tiple Runs of k-means (OMRK) algorithm [13] for deciding
the “optimal” value of k. OMRk executes k-means repeat-
edly for an increasing number of clusters. For each value
of k, a number of partitions obtained by k-Means (from dif-
ferent initializations) are assessed by using a relative valid-
ity index [14], in order to determine the best estimated value
for k. Algorithm 1 depicts this rationale, where k™#* is the
largest value of k tested, k* is the number of clusters esti-
mated by the method, V is the value of the validity criterion
after a single run of k-means, V* is the value of the validity
criterion for the best partition found and p is the number of
different partitions generated for each number k£ < k™ of
clusters. We assume that V should be maximized.

Algorithm 1: OMRk algorithm

input : Training dataset X, number of executions p, maximum
number of clusters k™

output: The optimal number of clusters k* and the resulting
partition P

begin
V* <« —00
for k =2 to k™ do
fori =110 pdo
Generate a random partition with k clusters
Run k-means until convergence
Compute V for the resulting partition
if V > V* then
V¥V
\\ k* <k

Hold the resulting partition as P*

return k*, P*
end

We define the required parameters of OMRk as follows.
The value of k™3 is set to +/]X], where |X| is the number of
objects to be clustered. This value is a commonly used rule
of thumb [15]. The number of executions, p, is set to 10, to
generate different partitions of k-means by varying the seed
of its random initialization. Recalling that the estimated time
complexity of k-means is of the order of O (k- N - n), where
N is the number of objects, n the number of attributes and
the number of clusters, then the estimated time complexity
of OMRK can be calculated as

O(p-N-(2+3+---+k™).n)
— O(p-N- (k™). n) (M

Since we have defined p as a small constant, and that usually
N > n,then N and k™ are the potentially critical variables
of this problem.

Regarding the validity criterion to evaluate the partitions,
we have chosen the Simplified Silhouette Width Criterion
(SSWC) [14]. It is a simplified version of the well-known
silhouette width criterion for cluster validity [16]. In order
to define this criterion, let us consider that the ith object of
the dataset, x;, belongs to a given cluster ¢ € {1, ..., k}. Let
the average distance of this object to the centroid of clus-
ter ¢ be denoted by a, ;. In addition, let the average distance
of this object to the centroid of another cluster g, g # ¢, be
called d ;. Finally, let b, ; be the minimum d, ; computed
over g € {1,...,k}, g #t, which represents the distance of
object x; to its closest neighboring cluster. Then, the simpli-
fied silhouette of the individual object x; is defined as

bt,i — Az

@)

X; == —-——————
' max|ay ;, by ;]

where the denominator is a normalization term. The higher
the value of Sy,, the better the assignment of x; to cluster ¢.
The SSWC is given by the average of Sy,, 1 <i < N, i.e.

N
1
SWC=— Z; S, 3)
1=

and the higher the SWC value, the better the performance
of the clustering algorithm, since maximizing SSWC means
minimizing the intra-cluster distance a; ; while maximizing
the inter-cluster distance by, .

We have chosen SSWC since it has scored among the
best validity criteria in a recent comparative study [14]. Fur-
thermore, its time complexity is estimated as O(n - N),
which is considerably better than the original silhouette
width criterion—O (n - N?).

The other strategy for selecting the “optimal” value of k,
i.e., if the user has chosen the EM algorithm for clustering in
Clus-DTI, is based on a 10-fold cross-validation (CV) pro-
cedure, as follows:

1. The number of clusters is set to 1.

2. The training set is split randomly into 10 folds.

3. EM is performed 10 times using the 10 folds the usual
CV way.

4. The resulting loglikelihood is averaged over all 10 re-
sults.

5. If the loglikelihood has increased, the number of clusters
is increased by 1 and the program continues at step 2.
Else, the estimated number of clusters k* is returned, and
the optimal partition P* is generated with the full (train-
ing) dataset.

After partition P* has been chosen either by OMRk or
by the 10-fold cross-validation procedure, and after one de-
cision tree per generated cluster has been induced, each ob-
ject belonging to the test set Z is assigned to one of the k*
clusters, and the corresponding decision tree Dt;, 1 <i < k*
is used to classify the test object. This procedure is repeated
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for every object in test set Z. The assignment of a test in-
stance to a cluster is performed according to the algorithm
being employed. If the algorithm of choice is k-means, the
test instance is assigned to the closest cluster according to
the Euclidean distance between test instance and clusters’
centroids. Similarly, if the EM algorithm is being employed,
the joint densities are calculated so the test instance is as-
signed to its most probable cluster.

Algorithm 2 depicts the previously mentioned steps of
Clus-DTI. Note that we do not necessarily expect a full ad-
herence of clusters to classes. While clustering the training
data may sometimes gather examples from the same class
in their own cluster, we do not believe that would be the
case for most real-world classification problems. Our inten-
tion on designing Clus-DTI was to provide subsets of data
in which the classification problem is easier than the one of
the original set. In other words, we want to identify situa-
tions in which the sum of the performance of decision trees
in subsets results in better overall performance than the one
of a single decision tree in the original set.

Even though this concept may be similar to the one of an
ensemble of trees, we do not make use of any voting scheme
for combining predictions. In that sense, Clus-DTI could be
seen as a particular case of the well-known mixture of ex-
perts strategy [17], in which we have multiple experts (in our
case, decision trees) and a “gating network” that stochasti-
cally decides which expert to use on each test instance. In
the particular case of Clus-DTI, the “gating network” role is
performed by the cluster analysis step. The absence of a vot-
ing scheme results in an important advantage of Clus-DTI
over traditional ensembles: it can track which decision tree
was used to achieve the prediction of a particular object, in-
stead of relying on averaged results provided by inconsistent
models.

Algorithm 2: Clus-DTI

input : Training dataset X, test dataset Z
output: Set of decision trees D, test accuracy acc
begin
Execute OMRK or 10-fold cross-validation to discover
optimal partition P*
foreach cluster C; € P* do

Generate decision tree DT; for data € C;

Add DT; to the set D of decision trees
numCorrect < 0
foreach object obj € Z do

Assign obj to closest/most probable cluster C*

Classify obj with DT™* built on C*

if obj was correctly classified then

I numCorrect < numCorrect + 1

acc < numCorrect + | Z|
return D, acc

end
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3 Baseline comparison

We tested the performance of Clus-DTI into 27 public
UCIT datasets [18] and compared it to the performance of
J48 (java implementation of C4.5, available at the Weka
Toolkit [19]). The datasets selected are: anneal, audiology,
autos, balance-scale, breast-cancer, breast-w, colic, credit-
a, credit-g, diabetes, glass, heart-c, heart-h, heart-statlog,
hepatitis, ionosphere, iris, kr-vs-kp, labor, lymph, mush-
room, primary-tumor, segment, sick, sonar, soybean and
waveform-5000 (see Table 1 for details). Those datasets
with k classes, k > 2, were transformed into k datasets with
two classes (one class versus all other classes), so every clas-
sification problem in this paper is binary. The restriction of
dealing only with binary classification problems is due to the
fact that the geometrical complexity measures [20, 21] used
in this study for data-dependency analyses can deal with
only two classes in most cases. With the transformations,
the 27 datasets became 129 datasets, which were divided in
70 % for training and 30 % for test.

We tested both versions of Clus-DTI, i.e., by using either
k-means or EM to cluster objects. Henceforth, we refer to
Clusk as the Clus-DTI version with k-means and to ClusEM
as the Clus-DTI version with EM. Table 2 presents the re-
sults obtained in this comparison among ClusEM, Clusk and
J48. # Wins indicates the number of datasets in which each
method has outperformed the other two regarding either test
accuracy (Acc) or tree size (TS). Note that ties were omitted.

We noticed that the three methods had a similar number
of wins considering test accuracy, with a small advantage to
J48. Regarding tree size, both Clus-DTI versions provided
smaller trees (tree size is averaged over all trees generated
for a single dataset), which was expected since we are gener-
ating trees for smaller training sets (clusters). One can argue
that interpreting several small trees is as difficult as inter-
preting a big tree. However, we highlight the fact that, for
each test instance, only one tree is selected to perform the
instance classification, and thus the user has to interpret only
a single tree at a time.

We executed the non-parametric Wilcoxon Signed Rank
Test [22] for assessing the statistical significance of both
test accuracy and tree size. The results are presented in Ta-
bles 3 and 4, indicating that both Clus-DTI methods out-
perform J48 with statistical significance regarding tree size.
Moreover, ClusEM provides significantly smaller trees than
Clusk. The pairwise comparisons amongst the versions of
Clus-DTI and J48 did not reveal any significant difference in
terms of test accuracy. All differences were measured with a
95 % confidence level.

The statistical analysis suggest that ClusEM is the best
option among the methods, since it generates smaller trees
than J48 with no significant loss in accuracy. However, bear-
ing in mind that Clus-DTI is computationally more expen-
sive than J48, it would be unwise to suggest its application
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Table 1 Data sets specification. Columns “min-class” and “max-class” refer to, respectively, the number of instances of the less-frequent class

and the number of instances of the most-frequent class

Dataset Instances Numeric Nominal % Missing min-class max-class Classes
attributes attributes values
anneal 898 6 32 0 % 0 684 6
audiology 226 0 69 2 % 1 57 24
autos 205 15 10 1.15 % 0 67 7
balance-scale 625 4 0 % 49 288 3
breast-cancer 286 0 0.34 % 85 201 2
breast-w 699 9 0 0.25 % 241 458 2
colic 368 7 15 23 % 136 232 2
credit-a 690 6 9 0.64 % 307 383 2
credit-g 1000 7 13 0 % 300 700 2
diabetes 768 8 0 0 % 268 500 2
heart-c 303 6 0.17 % 0 165 5
heart-h 294 6 20 % 0 188 5
heart-statlog 270 13 0 0% 120 150 2
hepatitis 155 6 13 5.67 % 32 123 2
hypothyroid 3772 7 22 5.54 % 2 3481 4
ionosphere 351 34 0 % 126 225 2
iris 150 4 0 % 50 50 3
kr-vs-kp 3196 0 36 0% 1527 1669 2
labor 57 8 8 35.74 % 20 37 2
lymph 148 3 15 0% 2 81 4
mushroom 8124 0 22 1.38 % 3916 4208 2
primary-tumor 339 0 17 3.90 % 0 84 22
segment 2310 19 0 0 % 330 330 7
sick 3772 6 22 217 % 231 3541 2
sonar 208 60 0 0% 97 111 2
soybean 683 0 35 9.77 % 8 92 19
waveform 5000 40 0 0 % 1653 1692 3

Table 2 Comparison among the methods J48, Clusk and ClusEM

Wins Acc Wins TS Margin Acc Wins (vs. J48) Margin TS Wins (vs. J48) Margin Acc Loss (vs. J48)

Margin TS Loss (vs. J48)

J48 14
Clusk 13
CluseM 10

2

63
18

234
28.2

4.30 %
4.40 %

1.75
0.91

Wins Acc—number of times each method has outperformed the other two regarding accuracy

Wins TS—number of times each method has outperformed the other two regarding tree size

Margin Acc Wins (vs. J48)—average difference in accuracy when a Clus-DTI method outperforms J48

Margin TS Wins (vs. J48)—average difference in tree size when a Clus-DTI method outperforms J48

Margin Acc Loss (vs. J48)—average difference in accuracy when a Clus-DTI method is outperformed by J48

Margin TS Loss (vs. J48)—average difference in tree size when a Clus-DTI method is outperformed by J48
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Table 3 Wilcoxon two-sided signed rank test for test accuracy

Accuracy J48 Clusk ClusEM

J48 -
Clusk -
ClusEM -

A The algorithm in the column outperforms the one in the row with
statistical significance at a 95 % confidence level

Table 4 Wilcoxon two-sided signed rank test for tree size

Tree Size J48 Clusk ClusEM
J48 - A A

Clusk _ A
ClusEM

A The algorithm in the column outperforms the one in the row with
statistical significance at a 95 % confidence level

for any future problems. Hence, our goal is to investigate in
which situations each algorithm is preferred and try to relate
these scenarios to meta-data and measures of geometrical
complexity of datasets. This discussion is presented in the
next section.

4 Data-dependency analysis

It is often said that the performance of a classifier is data
dependent [23]. Notwithstanding, work that proposes new
classifiers usually neglects data-dependency when analyz-
ing their performance. The strategy usually employed is to
provide a few cases in which the proposed classifier outper-
forms baseline classifiers according to some performance
measure. Similarly, theoretical studies that analyze the be-
havior of classifiers also tend to neglect data-dependency.
They end up evaluating the performance of a classifier in
a wide range of problems, resulting in weak performance
bounds.

Recent efforts have tried to link data characteristics to
the performance of different classifiers in order to build rec-
ommendation systems [23]. Meta-learning is an attempt to
understand data a priori of executing a learning algorithm.
Data that describe the characteristics of datasets and learn-
ing algorithms are called meta-data. A learning algorithm is
employed to interpret these meta-data and suggest a particu-
lar learner (or ranking a few learners) in order to better solve
the problem at hand.

Meta-learners for algorithm selection usually rely on data
measures limited to statistical or information-theoretic de-
scriptions. Whereas these descriptions can be sufficient for
recommending algorithms, they do not explain the geometri-
cal characteristics of the class distributions, i.e., the manner
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in which classes are separated or interleaved, a critical fac-
tor for determining classification accuracy. Hence, geomet-
rical measures are proposed in [20, 21] for characterizing
the geometrical complexity of classification problems. The
study of these measures is a first effort to better understand
classifiers’ data-dependency. Moreover, by establishing the
difficulty of a classification problem quantitatively, several
studies in classification can be carried out, such as algorithm
recommendation, guided data pre-processing and design of
problem-aware classification algorithms.

Next, we present a summary of the meta-data and geo-
metrical measures we use to assess classification difficulty.
For the latter, the reader should notice that they actually
measure the apparent geometrical complexity of datasets,
since the amount of training data is limited and the true prob-
ability distribution of each class is unknown.

4.1 Meta-data

The first attempt to characterize datasets for evaluating the
performance of learning algorithms was made by Rendell
et al. [24]. Their approach intended to predict the execution
time of classification algorithms through very simple meta-
attributes such as number of attributes and number of exam-
ples.

A significant improvement of such an approach was
project STATLOG [25] which investigated the performance
of several learning algorithms over more than twenty data-
sets. Approaches that followed deepened the analysis of
the same set of meta-attributes for data characterization
[26, 27]. This set of meta-attributes was divided in three
categories: (i) simple; (ii) statistical; and (iii) information
theory-based. An improved set of meta-attributes is further
discussed in [28], and we make use of the following mea-
sures presented in there:

Number of examples (N)

Number of attributes (n)

Number of continuous attributes (con)
Number of nominal attributes (nom)
Number of binary attributes (bin)
Number of classes (cl)

Percentage of missing values (%mv)
Class entropy (H(Y))

. Mean attribute entropy (MAE)

10. Mean attribute Gini (MAG)

11. Mean mutual information of class and attributes (MMI)
12. Uncertainty coefficient (UC)

I R N N N

We have chosen these measures because they are widely
used, presenting interesting results in the meta-learning lit-
erature. At the same time, they are computationally efficient
and simple to be implemented.
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Measures 1-7 can be extracted in a straightforward way
from data. Measures 8—12 are information-theory based.
Class entropy, H (Y) is calculated as follows:

cl
HY)==) p(Y =yj)log, p(Y =y;) “
J

where p(Y = y;) is the probability the class attribute ¥ will
take value y;. Entropy is a measure of randomness or dis-
persion of a given discrete attribute. Thus, the class entropy
indicates the dispersion of the class attribute. The more uni-
form the distribution of the class attribute, the higher the
value of entropy; the less uniform, the lower the value.

Mean attribute entropy is the average entropy of all dis-
crete (nominal) attributes. It is given by

_ 2t HX)
nom

MAE (5)

Similarly, the mean attribute Gini is the average Gini in-
dex of all nominal attributes. The Gini index is given by

Gini(X)=1- > [p(X =xp]’ ©6)

J
> i Gini(X;)
nom

MAG = N

The mean mutual information of class and attributes
measures the average of the information each attribute X
conveys about class attribute Y. The mutual information
MI(Y, X) (also known as information gain in the machine
learning community) describes the reduction in the uncer-
tainty of ¥ due to the knowledge of X, and it is defined as

MI(Y,X)=H(Y)— HY|X) 8)
HY|X)=) p(X=x)H(Y|X =x;) ©

for attribute X with i categories and class attribute Y with j
categories. Note that H (Y| X = x;) is the entropy of class at-
tribute Y considering only those examples in which X = x;.
Since MI(Y, X) is defined, the mean mutual information of
class and attributes is given by

Y2 MIY, X))
nom

MMI = (10)

The last measure to be defined is the uncertainty coeffi-
cient, which is the M1 normalized by the entropy of the class
attribute, MI(Y, X)/H (Y), which is analogous to the well-
known gain ratio measure, though the gain ratio normalizes
the MI by the entropy of the predictive attribute and not the
class attribute.

In addition to the measures presented in [28], we have
also make use of the ratio of the number of examples of
the less-frequent class to the most-frequent class. For bi-
nary classification problems, such a measure indicates the
balancing level of the dataset. Higher values (closer to one)

indicate a balanced dataset whereas lower values indicate an
imbalanced-class problem.

Next we present measures that seek to explain how the
data is structured geometrically in order to assess the diffi-
culty of a classification problem.

4.2 Geometrical complexity measures

In [20] a set of measures is presented to characterize datasets
with regard to their geometrical structure. These measures
can highlight the manner in which classes are separated or
interleaved, which is a critical factor for classification accu-
racy. Indeed, the geometry of classes is crucial for determin-
ing the difficulty of classifying a dataset [21].

These measures are divided in three categories: (i) mea-
sures of overlaps in the attribute space; (ii) measures of class
separability; and (iii) measures of geometry, topology, and
density of manifolds.

4.2.1 Measures of overlaps in the attribute space

The following measures estimate different complexities re-
lated to the discriminative power of the attributes.

The maximum Fisher discriminant ratio (FI1) This mea-
sure computes the 2-class Fisher criterion, given by

)
d’ xd
where d = X ! A is the directional vector on which data are
projected, A = u1 — U, > s the pseudo-inverse of ¥,
[; is the mean vector for class i, F=aXi+ (1 —-a)Xs,
0 <a <1, X; is the scatter matrix of instances for class c;.

A high value of the Fisher discriminant ratio indicates
that there exists a vector that can separate examples belong-
ing to different classes after these instances are projected on
1t.

Fl= (11)

The overlap of the per-class bounding boxes (F2) This
measure computes the overlap of the tails of distributions
defined by the instances of each class. For each attribute, it
computes the ratio of the width of the overlap interval (i.e.,
the interval that has instances of both classes) to the width
of the entire interval. Then, the measure returns the product
of the ratios calculated for each attribute:

n

o 1_[ MINMAX; — MAXMIN;
- | MAXMAX; — MINMIN;
1=

12)

where MINMAX; = min(max(f;,c1), max(f;,c2)),
MAXMIN; = max(min(f;, c1), min(f;, c2)), MAXMAX; =
max(max( f;, c1), max(f;, c2)), MINMIN; =
min(min( f;, c¢1), min(f;, ¢2)), and n is the total number of
attributes, f; is the ith attribute, ¢y and c;, refer to the two
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classes, and max(f;, ¢;) and min(f;, ¢;) are, respectively,
the maximum and minimum values of the attribute f; for
class c¢;. Nominal values are mapped to integer values to
compute this measure. A low value of this metric means
that the attributes can discriminate the instances of different
classes.

The maximum (individual) attribute efficiency (F3) This
measure computes the discriminative power of individual
attributes and returns the value of the attribute that can dis-
criminate the largest number of training instances. For this
purpose, the following heuristic is employed. For each at-
tribute, we consider the overlapping region (i.e., the region
where there are instances of both classes) and return the ra-
tio of the number of instances that are not in this overlapping
region to the total number of instances. Then, the maximum
discriminative ratio is taken as measure F3. Note that a prob-
lem is easy if there exists one attribute for which the ranges
of the values spanned by each class do not overlap (in this
case, this would be a linearly separable problem).

The collective attribute efficiency (F4) This measure fol-
lows the same idea presented by F3, but now it considers the
discriminative power of all the attributes (therefore, the col-
lective attribute efficiency). To compute the collective dis-
criminative power, we apply the following procedure. First,
we select the most discriminative attribute, that is, the at-
tribute that can separate a major number of instances of one
class. Then, all the instances that can be discriminated are
removed from the dataset, and the following most discrim-
inative attribute (regarding the remaining examples) is se-
lected. This procedure is repeated until all the examples are
discriminated or all the attributes in the attribute space are
analyzed. Finally, the measure returns the proportion of in-
stances that have been discriminated. Thus, it gives us an
idea of the fraction of instances whose class could be cor-
rectly predicted by building separating hyperplanes that are
parallel to one of the axis in the attribute space. Note that
the measure described herein slightly differs from the max-
imum attribute efficiency. F3 only considers the number of
examples discriminated by the most discriminative attribute,
instead of all the attributes. Thence, F4 provides more in-
formation by taking into account all the attributes since we
want to highlight the collective discriminative power of all
the attributes.

4.2.2 Measures of class separability

In this section, we describe five measures that examine the
shape of the class boundary to estimate the complexity of
separating instances of different classes.

@ Springer

The fraction of points on the class boundary (NI1) This
measure provides an estimate of the length of the class
boundary. For this purpose, it builds a minimum spanning
tree over the entire dataset and returns the ratio of the num-
ber nodes of the spanning tree that are connected and be-
long to different classes to the total number of examples in
the dataset. If a node n; is connected with nodes of differ-
ent classes, n; is counted only one time. High values of this
measure indicate that the majority of the points lay closely
to the class boundary, and therefore, that it may be more dif-
ficult for the learner to define this class boundary accurately.

The ratio of average intra/inter-class nearest neighbor dis-
tance (N2) This measure compares the within-class spread
with the distances to the nearest neighbors of other classes.
That is, for each input instance x;, we calculate the dis-
tance to its nearest neighbor within the class (intraDist(x;))
and the distance to its nearest neighbor of any other class
(interDist(x;)). Then, the result is the ratio of the sum of the
intra-class distances to the sum of the inter-class distances
for each input example:

ZlN: | intraDist(x;)
ZlN:l interDist(x;)

N2 = 13)
where N is the total number of instances in the dataset.
Low values of this measure suggest that the examples of
the same class lay closely in the attribute space. High values
indicate that the examples of the same class are disperse.

The leave-one-out error rate of the one-nearest neighbor
classifier (N3) The measure denotes how close the exam-
ples of different classes are. It returns the leave-one-out er-
ror rate of the one-nearest neighbor (the kNN classifier with
k = 1) learner. Low values of this metric indicate that there
is a large gap in the class boundary.

The minimized sum of the error distance of a linear classi-
fier (L1) This measure evaluates to what extent the training
data is linearly separable. For this purpose, it returns the sum
of the difference between the prediction of a linear classifier
and the actual class value. We use a support vector machine
(SVM) [29] with a linear kernel, which is trained with the
sequential minimal optimization (SMO) algorithm to build
the linear classifier. The SMO algorithm provides an effi-
cient training method, and the result is a linear classifier that
separates the instances of two classes by means of a hyper-
plane. A zero value of this metric indicates that the problem
is linearly separable.

The training error of a linear classifier (L2) This measure
provides information about to what extent the training data is
linearly separable. It builds the linear classifier as explained
above and returns its training error.
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4.2.3 Measures of geometry, topology, and density of

manifolds
The following four metrics indirectly characterize the class > 0.182

separability by assuming that a class is made up of single
and multiple manifolds that form the support of the distribu-
tion of the class.

The nonlinearity of a linear classifier (L3) This metric im-
plements a measure of nonlinearity proposed in [30]. Given
the training dataset, the method creates a test set by linear
interpolation with random coefficients between pairs of ran-
domly selected instances of the same class. Then, the mea-
sure returns the test error rate of the linear classifier (the
support vector machine with linear kernel) trained with the
original training set. The metric is sensitive to the smooth-
ness of the classifier boundary and the overlap on the con-
vex hull of the classes. This metric is implemented only for
2-class datasets.

The nonlinearity of the one-nearest neighbor classifier (N4)
This measure creates a test set as proposed by L3 and returns
the test error of the 1NN classifier.

The fraction of maximum covering spheres (T1) This mea-
sure was originated in the work of Lebourgeois and Emp-
toz [31], which described the shapes of class manifolds with
the notion of adherence subset. In summon, an adherence
subset is a sphere centered on an example of the dataset
which is grown as much as possible before touching any ex-
ample of another class. Therefore, an adherence subset con-
tains a set of examples of the same class and cannot grow
more without including examples of other classes. The met-
ric considers only the biggest adherence subsets or spheres,
removing all those that are included in others. Then, the met-
ric returns the number of spheres normalized by the total
number of points.

The average number of points per dimension (T2) This
measure returns the ratio of the number of examples in the
dataset to the number of attributes. It is a rough indicator of
sparseness of the dataset.

4.3 Results of the data-dependency analysis

We have calculated the 13 complexity measures and the 13
meta-attributes for the 129 datasets, and we have built a
training set in which each example corresponds to a dataset
and each attribute is one of the 26 measures. In addition,
we have included which method was better for each dataset
regarding test accuracy (ClusEM, Clusk or J48) as our
class attribute. Thus, we have a training set of 129 exam-
ples and 27 attributes.

ClusgeM 148

Fig. 1 Decision tree that describes the relationship between the
measures and the most suitable algorithm to be used between
ClusEM x J48

Our intention with this training set is to perform a de-
scriptive analysis in order to understand which aspects of the
data have a higher influence in determining the performance
of the algorithms. In particular, we search for evidence
that may help the user to choose a priori the most suitable
method for classification. First, we have built a decision tree
for each pairwise comparison (Clusk x J48 and ClusEM x
J48) over the previously described training set. The idea is
that the rules extracted from this decision tree may offer an
insight on the reasons one algorithm outperforms the other.
In other words, we are using a decision tree as a descrip-
tive tool instead of using it as a predictive tool. This is not
unusual, since the classification model provided by the deci-
sion tree can serve as an explanatory tool to distinguish be-
tween objects of different classes [32]. Figures 1 and 2 show
these descriptive decision trees, which explain the behavior
of roughly 90 % of the data.

First, we start by analyzing the scenarios in which one
may choose to employ either ClusEM or J48. By analyz-
ing decision tree in Fig. 1, we can notice that J48 is rec-
ommended for problems in which the N4 measure is above
a given threshold. N4 provides an idea of data linearity, and
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]48

Clusk ]48

Fig. 2 Decision tree that describes the relationship between the mea-
sures and the most suitable algorithm to be used between Clusk x J48

the higher its value, the more complex is the decision bound-
ary between classes. The decision tree indicates that above a
given threshold of N4 (N4 > 0.182), clustering provides no
advantage for classifying objects. For the remaining cases,
the decision tree shows that those problems deemed to be
simpler by the attribute overlapping measures (F1 and F4)
are better handled by J48. Specifically regarding F4, notice
that the descriptive decision tree recommends employing
J48 for problems in which 100 % of the instances can be
correctly predicted by building separating hyperplanes that
are parallel to one of the attribute axis (F4 > 0.998). Thus,
for simpler problems in which axis-parallel hyperplanes can
separate the classes, J48 is an effective option. This conclu-
sion is intuitive considering that J48 will have no particular
difficulty in generating axis-parallel hyperplanes to correctly
separate the training instances in easier problems. However,
in more complex problems in which there are a few in-
stances whose classes cannot be separated by axis-parallel
hyperplanes, it is possible that a clustering procedure that
simplifies the input space in sub-spaces can be more effec-
tive in solving the problem.

The decision tree in Fig. 1 also recommends employing
J48 for problems whose sparsity (measured by T2) is below
a given threshold (the higher the value of T2, the denser the
dataset). This implies that for sparser problems, in which
J48 alone has problems in generating appropriate separating
hyperplanes, clustering the training set may be a more effec-
tive option for classification. Though the dataset sparsity is
not affected by clustering, one can assume that the generated
sub-spaces are simpler to classify than the full sparse input
space.

Next, we analyze the decision tree that recommends em-
ploying either Clusk or J48. The decision tree in Fig. 2
shows that for datasets whose number of nominal attributes
surpass a given threshold (nom > 7), J48 is the recom-
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mended algorithm. This can be intuitively explained by the
difficulty that most clustering algorithms have of dealing
with nominal values. For the remaining cases, measure of
sparsity T2 is tested to decide between Clusk and J48. No-
tice that, similarly to the previous decision tree, clustering
the dataset is recommended for sparser datasets, alleviating
the difficulty on finding axis-parallel hyperplanes for class
separation in sparse problems.

Our last recommendation is for users for whom inter-
pretability is a strong need: if none of the scenarios high-
lighted before suggested that Clus-DTI is a better option
than J48, it may be still worthwhile using it due to the re-
duced size of the trees it generates. It should be noticed that
even though Clus-DTI may generate several decision trees
for the same dataset, only one tree is used to classify each
test instance, and hence only one tree needs to be interpreted
at a time. We can think of the clustering step as a hidden (or
latent) attribute that divides the data in subtrees, which are
interpreted independently from each other. It is up to the
final user to decide whether he or she is willing to waste
some extra computational resources in order to analyze (po-
tentially) more comprehensible trees.

5 Related work

There is much work that combines clustering and deci-
sion trees for descriptive/predictive purposes. For instance,
Thomassey and Fiordaliso [33] propose employing clus-
tering to generate sales profiles in the Textile-Apparel-
Distribution industry, and then using these profiles as classes
to be predicted by a decision-tree induction algorithm. Other
example is the work of Samoilenko and Osei-Bryson [34],
which proposes applying a methodology that combines both
clustering and decision trees in data envelopment analysis
(DEA) of transition economies. The cluster analysis step is
responsible for detecting subsets in decision making units
(DMU), whereas a later decision-tree step is employed to
investigate the subset-specific nature of the DMUs used in
the study.

Notwithstanding, only one work relates clustering and
decision trees in the way we present in this paper, and that is
the work of Gaddam et al. [35], which proposes cascading
k-means and ID3 [36] for improving anomaly detection. In
their approach, the training datasets are clustered in k dis-
joint clusters (k is empirically defined) by the k-means al-
gorithm. A test example is first assigned to one of the gen-
erated clusters, and it is labeled according to the majority
label of the cluster. An ID3 decision tree is built according
to the training examples in each cluster (one tree per cluster)
and it is also used for labeling the test example which was
assigned to a particular cluster. The system also keeps track
of the f nearest clusters from each test example, and it uses
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a combining scheme that checks for an agreement between
k-means and ID3 labeling.

Whereas Clus-DTT shares a fair amount of similarities to
the work of Gaddam et al. [35], we highlight the main differ-
ences as follows: (i) Clus-DTI makes use of a more robust
tree inducer, C4.5, and also allows the choice of a more so-
phisticated clustering algorithm, EM; (ii) Clus-DTI does not
have a combining scheme for labeling test examples, which
means our approach keeps its comprehensibility since we
can directly track the rules responsible for labeling exam-
ples (which is not the case of the work in [35] and any other
work that uses combining/voting schemes); (iii) Clus-DTI
is not limited to anomaly detection applications; (iv) Clus-
DTT automatically chooses the “ideal” number of clusters;
(v) Clus-DTI is conceptually simpler and easier to imple-
ment than k-means+ID3, even though it makes use of more
robust algorithms (C4.5 instead of ID3, and eventually EM
over k-means).

6 Conclusions and future work

In this work, we have presented a new classification sys-
tem which is based on the idea that clustering datasets may
improve decision tree classification. Our algorithm, named
Clus-DTI, makes use of well-known machine learning al-
gorithms, namely k-means [11], Expectation Maximization
[12] and C4.5 [1].

We have tested Clus-DTI using 27 public UCI datasets
[18], which were transformed to binary class problems re-
sulting in 129 distinct datasets. Experimental results indi-
cated that Clus-DTI provided significantly smaller trees than
J48, with no significant loss in accuracy. A deeper analysis
was made in an attempt to relate the underlying structure of
the datasets with the performance of Clus-DTI. A total of 26
different measures were calculated to assess the complex-
ity of each dataset. Some of these measures were also used
in classical meta-learning studies [26, 27]. Other measures
were suggested in more recent works [20, 21] in an attempt
to assess data geometrical complexity. Through these mea-
sures, we were able to generate decision trees for supporting
a descriptive analysis whose goal was to point out scenarios
in which Clus-DTI is a better option than J48 for data clas-
sification.

This work is a first effort in the study of the potential ben-
efits of clustering on classification. It presents a new classifi-
cation algorithm that can also be seen as a framework that is
more elegant than simply pre-processing data through clus-
tering. It has opened several venues for future work, as fol-
lows. We intend to implement alternative methods of choos-
ing the best value of k, such as employing the GAP statis-
tic [37], a measure that evaluates the difference (gap) be-
tween the within-cluster sum of squares of a given partition

with its expectation under a null reference distribution. The
number of clusters defined by the partition with greater GAP
is thus selected as “optimal”. Other alternatives for estimat-
ing the value of k include calculating the accuracy of Clus-
DTI over a validation dataset and choosing the value of k
that provides the best accuracy in that validation set.

We also intend to test different decision-tree induction al-
gorithms in our framework, in order to evaluate whether our
conclusions are generalizable for other algorithms. Finally,
we intend to test Clus-DTI in artificial datasets so we can
guarantee its effectiveness in a variety of distinct scenarios,
such as linearly separable data, non-linearly separable data,
imbalanced datasets, high-dimensional data, sparse data and
other interesting problems.
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