J Braz Comput Soc (2012) 18:331-349
DOI 10.1007/s13173-012-0066-6

ORIGINAL PAPER

Optimal pagination and content mapping for customized

magazines

Ricardo Piccoli - Joao Oliveira - Isabel Manssour

Received: 20 July 2011 / Accepted: 17 February 2012 / Published online: 14 March 2012

© The Brazilian Computer Society 2012

Abstract Traditional media such as magazines and news-
papers are undergoing deep transformations as they cope
with the high volume and dynamicity of currently available
information. In addition, with the emergence of decentral-
ized publishing models, there is an increasing need for au-
tomated tools for authoring high-quality documents. More-
over, much of the dynamic information on the Web could
also profit from such mechanisms for automatic presenta-
tion and summarization.

This paper describes a solution to the problem of auto-
matically producing a camera-ready magazine from a set
of page templates and a sequence of variable content to be
placed on those templates. The algorithm is able to find the
optimal number of pages to hold the content, selecting the
best templates to be used in the magazine in such a way that
all pages are optimally used.

The algorithm was integrated to Adobe’s InDesign® soft-
ware, extending it to perform text fitting and rendering of
magazine pages. The complete workflow is described in this
paper, as well as an empirical evaluation and a discussion of
future research directions.

Keywords Variable data printing - Automatic document
layout - Mass customization - Customized magazines

R. Piccoli () - J. Oliveira - I. Manssour

Centro de Pesquisa em Computagdo Aplicada, Faculdade
de Informatica, PUCRS, Porto Alegre, Brazil

e-mail: rfbpiccoli@gmail.com

J. Oliveira
e-mail: oliveira@inf.pucrs.br

I. Manssour
e-mail: manssour @inf.pucrs.br

1 Introduction

Information is currently produced, consumed and delivered
in ways that directly affect traditional publishing businesses
such as magazine publishers, where information (e.g. news
stories, etc.) is usually produced by journalists and placed
on pages designed to hold information with sizes known in
advance. Such a scenario is changing as centralized publish-
ing models are unable to cope with the high volume and dy-
namicity of information available from a myriad of sources.
Therefore, a new model for publishing is required, combin-
ing graphical qualities and dynamic content obtained from
the web.

Another noticeable trend is the appearance of decentral-
ized self-publishing businesses, where any individual is able
to create and distribute their own publications. An example
of this trend is HP’s MagCloud® service: clients are able to
send their own PDF [5] files and the service takes care of
displaying, charging, printing and distributing. !

However, the task of assembling graphics and content to
produce one’s own magazine usually requires graphic de-
sign skills and technical knowledge of a desktop publishing
tool such as Adobe InDesign®? or QuarkXPress®? before a
PDF file is produced. In this case, an automated system for
assembling arbitrary content into camera-ready publications
is still a desirable technology.

Systems for assembling documents are not new. Vari-
able Data Printing (VDP) [4] systems evolved from earlier
transactional businesses such as direct mail marketing, bank
statements, bills and others [9], where static content is mixed

Uhttp://magcloud.com.
Zhttp://www.adobe.com/products/indesign.

http://www.quark.com.

@ Springer

mailto:rfbpiccoli@gmail.com
mailto:oliveira@inf.pucrs.br
mailto:manssour@inf.pucrs.br
http://magcloud.com
http://www.adobe.com/products/indesign
http://www.quark.com

332

J Braz Comput Soc (2012) 18:331-349

with custom data (i.e. relevant client information). The goal
was to assemble large numbers of document instances that
are unique and targeted at single individuals. However, most
VDP-related technologies, such as the PPML language [1]
can only handle content that is more or less predictable, and
a graphic artist must prepare for little document variability
in order to produce a document template that serves as base
for the customized instances.

1.1 Objectives and contributions of this paper

This work describes a method for the automatic construc-
tion of magazines where an arbitrary sequence of content
such as text and pictures is optimally mapped to designer-
generated templates, ensuring the best possible presentation
of the content. In addition, users may require the content to
fill a specified number of pages, or otherwise let the system
automatically determine an optimal number for that content.
Thus, this problem can be reduced to mapping content into
one or more pages and selecting appropriate templates for
each page, maximizing some quality measure. This is known
in the literature as the pagination problem.

The proposed algorithm receives a content sequence and
produces an optimal sequence of template selections match-
ing the content. After producing the optimal content map-
ping and pagination, Adobe’s InDesign® software is used as
a rendering engine. An extension to InDesign imports the
layouts and performs typographic corrections such as text
fitting on templates’ text placeholders.

In addition to the algorithm for mapping content to tem-
plates, other contributions of this paper are:

— A simple and extensible representation for different types
of content;

— A complementary solution to the recent works of Gian-
netti [9], to handle both pagination and text flow issues;

— The algorithm is able to fit the content to a specific num-
ber of pages provided by the user, or select an optimal
number by itself.

— Apart from other pagination methods, the proposed pag-
ination algorithm always fills every page completely, in-
cluding the last page.

— Itis very easy for a user to perform changes in content or
templates and quickly produce a new document for proof-
reading.

This paper is organized as follows. Section 2 describes
related works. Next, in Sect. 3 the problem is described
and the requirements for an optimal pagination are defined.
The workflow for the solution is described in the same
section and document and template representations are de-
tailed in Sect. 4. The mapping and pagination algorithms
are described in Sect. 5 and the generation of camera-ready
documents is described in Sect. 6. In Sect. 7 results and

@ Springer

performance are presented. Section 8 describes additional
techniques for enhancing results through the use of param-
eters used by the algorithm. Finally, Sect. 9 present conclu-
sions, and a discussion on possible improvements and future
directions of this work.

2 Related works

Purely automated solutions to the construction of documents
have been studied for years as the automatic page layout
problem [11, 13, 15, 16, 19, 21].

It is usually hard to produce an aesthetically pleasing
layout starting from unknown, variable content. To ensure
aesthetic quality and reduce the search space, current ap-
proaches may constrain the problem to less flexible lay-
outs and well-behaved content. Newspapers are an exam-
ple where the layout is hierarchical by nature and news
items are similar in appearance and length, rendering the
construction of deterministic algorithms for this task less
hard [19].

It is worth noting that given the complexity of the lay-
out problem, several non-deterministic approaches for au-
tomatic document layout have been proposed [11, 15, 21].
These approaches attempt to maximize an objective func-
tion that encodes one or more aesthetic qualities, and rely
on randomized optimization heuristics, such as simulated
annealing [8] or genetic algorithms [10] to find the best lay-
out. However, these approaches are known to require long
execution times in order to produce acceptable quality doc-
uments, and usually present poor convergence to optimal
solutions when given (often conflicting) multiple aesthetic
criteria [12, 21]. Given the predictability of results, deter-
ministic approaches are thus more desirable in a document
production setting, where documents cannot be manually in-
spected for aesthetic flaws.

For most high-end publications such as magazines, a
graphic designer produces page templates to be used in
the publication, conveying the look-and-feel and appeal of
that particular magazine. Approaches for the selection of
templates based on grids have been investigated by Ja-
cobs et al. [14, 22], describing a document authoring sys-
tem using constraint-based templates to have multiple geo-
metric representations for the same template depending on
its content. Their aim was to enable a designer to provide
multiple representations of a document using templates that
would be adaptable for different media sizes and capabili-
ties.

For generating layouts, Jacobs et al. propose a workflow
that couples different document creation tasks, such as:

— template adaptation;
— content selection;
— automatic picture cropping;

J Braz Comput Soc (2012) 18:331-349

333

— document rendering;

— pagination; and

— low-level formatting (e.g. hyphenation, line-breaking,
justification, kerning, etc.).

As in our work, they also use an optimization method
for performing pagination, based on Plass’s method [20], al-
though admittedly a very complex adaptation that is tightly
coupled with their rendering engine.

This coupled approach, however, leads to several short-
comings in our intended scenario. Their algorithm requires
an intensive back-and-forth processing between the pagina-
tion algorithm, the rendering engine (for scoring the docu-
ment formatting), and the constraint solver for the adaptive
templates as well. Although the authors did not provide a
more detailed performance analysis, we believe that the ef-
ficiency of such approach would not scale well for larger
documents or mass production. The authors also point out
that the adaptive template language is very hard to use when
defining constraints between content placeholders.

Our approach, on the other hand, explores the separa-
tion between pagination and rendering, as this results in a
more efficient workflow, and is also more adaptable to dif-
ferent workflows for custom documents. For instance, one
may need different rules for content selection, or use dif-
ferent rendering engines for different media. Although our
approach relies on static templates, the simpler template lan-
guage makes authoring significantly easier.

More recently, Giannetti [9] described a model for link-
ing elements from one or more streams of content over a set
of page templates. The sequence of page templates used in
the final document is determined by simple rules defined by
the author, such as the repetition of a page template in even
or odd pages, or only in the first page. Our approach uses
the same streams of content, as for example there could be a
stream of texts and pictures and another stream of advertise-
ments to be placed across the publication, keeping balance
between the amounts of each content. On the other hand, the
choice of template is made optimally and not constrained by
previously defined rules.

3 Problem statement and workflow

The goal of this work is to allow an author to produce a
high-quality publication made of several pages based solely
on its content and a set of templates for those pages. There-
fore, the problem consists of splitting an input sequence of
contents (e.g. headlines, texts, pictures, etc.) into a number
of pages (possibly specified by the user). A set of page tem-
plates is provided, and for each page on the final document
an appropriate template must be chosen to hold its content.
A template is informally defined as a hand-made page de-
sign that holds one or more geometric placeholders, each

representing a specific type of content, such as texts, pic-
tures, advertisements, and others. Therefore, a pagination
algorithm should include a mapping procedure that knows
how to place content into a template.

Given a desired number N of pages, it is necessary to
split the content into N parts such that for each part there ex-
ists a template able to hold it. Moreover, a sequence of con-
tent may fit in a template but produce wasted page space or
the over/under filling of content inside a placeholder, caus-
ing an uneven distribution over a page. This accounts for
the need for some placement error of a sequence of con-
tent into a template. Therefore, the splitting must be selected
so that the placement errors are minimized (more details in
Sect. 5.1).

Some natural requirements for a magazine-like publica-
tion are also assumed:

— The templates and their placeholders are rigid, as changes
in their geometry are forbidden;

— The input order for textual content should be preserved;

— All pages must be filled entirely with content, including
the last page;

— The selection of templates must be globally optimal ac-
cording to some quality measure. For instance, all text
placeholders must have a similar text density and the
wasted space around pictures (due to differences in aspect
ratio between pictures and placeholders) must be mini-
mized.

As the content sequence will be split, text is modeled as
a sequence of blocks (whole paragraphs, sentences, words,
or even characters) that are discrete and indivisible objects.
Therefore, text flows are handled after choosing an appropri-
ate partitioning of content. This accounts for a granularity of
content, where a finer division of text blocks will result in a
better document, at the cost of run time performance. Such
division of text objects is assumed to be performed prior to
the pagination algorithm and represented in the input con-
tent accordingly. This will be discussed in more detail in the
following sections, especially in Sect. 8.1.

The workflow is decomposed into independent steps as
this solution suits a larger variety of workflows for produc-
ing documents. Separating concerns such as document pagi-
nation from rendering also results in a more efficient system,
enabling the production of documents in a non-interactive
setting. Basically, input is read from a sequence of content,
decisions are taken about the layout and the generation of
the final document is forwarded to a document processor
such as InDesign. Figure 1 illustrates how input content is
mapped to candidate templates and produces a sequence of
pages with associated content.

Files describing the input content and the templates are
fed into a layout engine, which breaks down content into

@ Springer

334

J Braz Comput Soc (2012) 18:331-349

Fig. 1 The workflow for the sequences.xml

proposed pagination algorithm.

An input sequence of content, a
set of templates and the desired
number of pages are fed to a

title text (200 ch)[—1 picture

text (150 ch)[—] —>] picture

pagination algorithm that

produces an optimal mapping of
content to page templates. The
content is represented by the
linked sequence of boxes in the
upper part of the figure, where
each piece of content has its
type, denoted by the legend in
each box. The corresponding
XML files described in Sect. 4

Content Sequence

templates.xml

=i

are also indicated above each
structure

N

Desired number of pages

Templates with placeholders

Pagination algorithm

Content mapper

Layout engine

mapping.xml

Page 1

Page 2

Page N

TITLE |

N
&
N

TITLE

PICTURE

TEXT

PICTURE

TEXT

TEXT

TITLE

TEXT

Selected templates with mapped content

pages and selects appropriate templates for each page as de-
scribed in Sect. 5. Both input and output of the workflow are
made through XML files described in the next section.

4 Document format

XML [18] files are used for the pagination and could be ex-
tended to a more complete document description language,
such as PPML [1] or the higher-level Document Description
Framework (DDF) [17]. Three XML formats are used for
the different elements in our approach: content sequences,

@ Springer

templates and the resulting mapping of content of a se-
quence into page templates. These will be briefly described
in the following sections.

4.1 Content sequences

The content sequences file is responsible for representing
the actual content to be presented on the document. Each
file holds one or more content sequences, as multiple se-
quences are useful for representing elements that belong to-
gether such as news articles comprised of headlines, text and
pictures. The <ob3j > notation was introduced to allow more

J Braz Comput Soc (2012) 18:331-349

335

<sequences>

<sequence>
<obj type="picture">
<picture> ...dsc02528....jpg </picture>
</obj>

<obj type="headline">

<text> Donec odio neque, male... </text>
</obj>
<obj type="text">
<text> Donec odio neque, malesu... </text>
</obj>
<obj type="text">
<text> Sed orci. Vestibulum a mi... </text>
</obj>

</sequence>

</sequences>

Fig. 2 An example of a content sequence XML file

complex types of object to be defined, but in the examples
from this paper only three types of atomic object are used:
headlines, texts and pictures, discussed in Sect. 4.4. Figure 2
illustrates a content file.

4.2 Page templates

Templates use the format shown in Fig. 3 and their graphical
representation is illustrated in Fig. 4. The template file con-
tains several templates, each providing placeholders for dif-
ferent types of object. For simplicity, only rectangular place-
holders (described by the %, y, w, h attributes) are allowed,
but arbitrary polygons could also be supported. The type
attribute defines what type of object that placeholder sup-
ports and text placeholders have a capacity that specifies
how many characters of text they are able to hold. This num-
ber must be based on the selected base font size and spacing
for rendering (see Sect. 6.2), and can be automatically cal-
culated when authoring a template. Although the base font
size is estimated, the rendering engine is later able to handle
text more precisely, as discussed in Sect. 6. The text place-
holder is the only one able to hold more than one object,
as in the case of a text placeholder containing several para-
graphs.

Adobe InDesign® was used to perform the rendering of
documents, but it was also used for the authoring of tem-
plates using the format from Fig. 3.

4.3 Mapping

The mapping file (Fig. 5) is produced by the pagination al-
gorithm and combines the content of the two previous files,
defining relationships between placeholders from templates
and content from the input sequences. Since each selected
template is a page in the output document, they appear or-
dered in the mapping file as a <page> tag. The placeholders
chosen for each page will have the associated content from

<templates>

<template w="210" h="297">
<obj type="headline"

x="14.82" y="17.47" w="180.45" h="30.51"/>
<obj type="headline"

x="14.82" y="167.45" w="180.45" h="25.90"/>
<obj type="text" capacity="2097"

x="14.82" y="54.76" w="180.45" h="102.31"/>
<obj type="text" capacity="1576"

x="14.82" y="202.42" w="180.45" h="77.61"/>
</template>
<template w="210" h="297">
<obj type="picture"

x="12.70" y="12.70" w="184.60" h="271.60"/>
</template>
<template w="210" h="297">
<obj type="headline"

x="16.93" y="19.58" w="175.15" h="20.11"/>
<obj type="text"
x="16.93" y="49.41" w="92.60" h="227.34"

capacity="2367"/>
<obj type="text" capacity="1201"
x="120.88" y="125.41" w="71.21" h="151.34"/>
<obj type="picture"
x="120.88" y="49.41" w="71.21" h="69.00"/>
</template>
</templates>

Fig. 3 Sample templates XML file

Template 1

TITLE

Template 2 Template 3

TITLE

PICTURE
TEXT

PICTURE

TEXT

TITLE

TEXT

TEXT

Fig. 4 The templates described in the XML file on Fig. 3

the content sequences file as child elements as well as their
geometric information. Text placeholders may also contain
more than one text object.

4.4 Introducing new objects

As templates handle the same types of object as contained
in the input sequence and a placement error can be mea-
sured for each type (see Sect. 5.1), it is possible to extend
the model and introduce new types of content as necessary.
For instance, publications may define an advertisement type
and some of the available templates will be able to hold such
objects. As another possibility, using the picture type could
be avoided altogether by introducing two new types small-
pic and bigpic to be used only in specific places on the tem-

@ Springer

336

J Braz Comput Soc (2012) 18:331-349

<magazine>

<page w="210" h="297">
<obj type="picture" x="12.7" y="12.7" w="185" h="272">
<picture> ...dsc02528....jpg </picture>
</obj>

</page>

<page w="210" h="297">

<obj type="headline" x="16.9" y="19.6" w="175" h="20.1">
<text> Donec odio ne... </text>
</obj>
</page>

<page w="210" h="297">

<obj type="text" x="14.8" y="202" w="180" h="77.6">

<text> Donec vulputate... </text>
<text> Donec odio nequ... </text>
<text> Sed orci. Vest... </text>
</obj>

</page>

</magazine>

Fig. 5 Output XML file containing the resulting pagination and con-
tent mapping

<!-- A captioned picture in a content sequence file —-->
<obj type="captioned-picture">

<picture> Picture source </picture>

<text> Caption text </text>

</obj>

<!-- A captioned picture in a template file -->

<obj type="captioned-picture">

<obj type="picture" x="12.7" y="12.7" w="185" h="272"/>

<obj type="text" x="12.7" y="290" w="185" h="10" capacity="300"/>
</obj>

Fig. 6 Defining a captioned picture object

plates, gaining more control of the final look of the publica-
tion.

Consider that a new type is defined, representing a cap-
tioned picture. The XML syntax used in the template and
content sequence models would be as illustrated in Fig. 6.
Note that a composite type may have many different geo-
metric representations, depending on how each instance is
defined in the templates file.

Composite elements can also be used to prevent related
objects to be split apart in two different pages by the pagina-
tion algorithm. For instance, an article object type may
be composed by a headline, two columns of text and a pic-
ture for that article. The entire article will appear as a single
object to the pagination algorithm, and as a consequence its
contents will appear together in the final document.

5 The pagination and mapping algorithms

For each content sequence the basic algorithm finds the best
way to split it into pages in such a way that each selected
template produces a minimal mapping error. The optimiza-
tion function selects the best set of templates based on the
method adapted by Oliveira in [19] from Skiena [24], which

@ Springer

can be defined as

o(l,1) n=
o(l,n) p=1

minj<j<,—1 maxr (P p—1,0(+ 1,n)).

Pnp=

ey

This recurrence can be implemented as a dynamic pro-
gramming algorithm that fills a table P, , holding informa-
tion to optimally divide a sequence of n elements into p
page templates.

In (1), o (i, j) is an error function that returns the mini-
mal error obtained by the templates from the set 7 of tem-
plates when holding sub-sequence [i, ..., j] of contents.
The o function must also keep information about which
template is the best choice for the given interval, for further
use. The error function is given in Sect. 5.1.

Each case of the recurrence in (1) may be described as
follows:

— When n = 1, only the first element of the sequence re-
mains, so it has to be placed in a single page template,
which is selected by the o function with o (1, 1);

— When p =1, all elements of the sequence 1, ..., n must
be placed in a single page template, selected by o (1, n);

— Otherwise, an optimal page break must be found, so the
recurrence attempts to split the content sequence into
two groups at every possible break point in the sequence
1,...,n — 1, and solving the problem recursively at the
left side of each break point. By minimizing the largest
error o between the left and right sides of the sequence,
it is possible to find a sequence of page breaks that mini-
mizes the global error from o for every page 1, ..., p.

During template evaluation, it may happen that some el-
ement in the sequence does not fit in the candidate template,
or some placeholder from that template may be left empty.
In that case, this template must be rejected, by attributing to
it an infinite error (o (i, j) = 00). The pagination algorithm
will then select different sequences of elements for mapping.
If no valid sequences can be found, the algorithm will fail to
provide a solution. Therefore, a different or larger set of tem-
plates must be provided to handle the same input sequence.
If input order is not important, reordering the sequence can
also be attempted to yield a valid solution.

Figure 7 illustrates a scenario where templates are being
selected for a set of attempted page breaks, during the eval-
uation of the recurrence in (1).

Figure 8 shows a sequence of pages produced from the
templates in Fig. 4 with mapped content and ready to be
sent to a rendering stage.

J Braz Comput Soc (2012) 18:331-349

337

Fig. 7 Instance of the
pagination algorithm, evaluating
the set of templates for each

Candidate templates

Candidate templates

attempted sub-sequence of
content
[
1
score=1013 score=824
score=513 score=443
score=21 score=73
Content sequence
title text (200 ch)[—> picture [text (50 ch) —'9 title text (250 ch)[—] title text (260 ch)‘i> L
page break U page break
Page 1 Page 2
=

PICTURE|

TEXT
TEXT

Best matching template

5.1 Template scoring and mapping

To select the best template for a sub-sequence of contents
[i, ..., j], some error measure that evaluates how well the
content fits one template must be provided. From that it is
possible to pick the best matching template among the can-
didates. The pseudo-code for such an algorithm is illustrated
in Fig. 9. It tries every template ¢ in 7 and by attempting
to map the content sequence [i, ..., j] to it (i.e. calling the
allocate(t,i,j) function), it is able to measure the
placement error and minimize it. During evaluation, infor-
mation about the best template found for each pair (i, j) is
kept as this enables us to recall the selected templates af-
ter an optimal pagination has been found by the main algo-
rithm.

The actual measurement of the placement error is per-
formedby allocate(t,1i,Jj), whichreceives a template
t from T and a sub-sequence [i, ..., j]. This procedure is
described below.

TEXT

TITLE

TEXT

Best matching template

5.2 Allocating elements to placeholders

Once an interval [i,..., j] of elements has been selected
for placement, it is necessary to map this interval to the
candidate template and measure the placement error. Tem-
plates that cannot match the sequence are discarded before
attempting any mapping of content.

For text mapping, the placement error for one or more
texts totaling N, characters in a text placeholder ¢ with total
text capacity N, and text area A, is defined as

A, * Ne Ne))
max| —,— | —1),
¢ N;" N,

which penalizes over/under filling the placeholder.

To map pictures, we try every ordering of pictures on
the page to minimize the wasted space by aspect ratio dif-
ferences between the pictures and their placeholders, since
no automatic cropping or non-proportional scaling is per-
formed. However, a picture is only moved out of order if it

@ Springer

338

J Braz Comput Soc (2012) 18:331-349

l Donec odio neque, ma ‘

2-2

877 /2260
5-5

329/1107

Nulla eu nulla. Fusc ‘

’ Nullam mollis risus ‘ l

7-7
671/1928

11-12

’ Quisque eu urna tinc
1278 /2260

14-14

319/1107

9-9
365/ 1476

Integer in eros et m ‘ ’ Nulla eu nulla. Fusc

20-20
319/1928

15-15
Vestibulum quis eros
1003 /2260
18-18
738/1107
22-22
909 /1476

’ Vestibulum quis eros

25-25
909/ 1928

’ Quisque eu urna tinc

28-29
1278 /1476

Nullam sit amet magn ‘ l Nullam mollis risus ‘

’ Duis ac nisl. Proin

30-31 34-34

1609 / 2260 671/2260

33-33 37-37

464/1107 365/1107

40-41
1704 /1928

Donec odio neque, ma

—46
1678/ 1476

Fig. 8 Example of a result from the pagination algorithm, matching
a sequence of templates to the input content. The numbers on the text
placeholders indicate which texts in the sequence have been allocated

is unrelated to the other contents on the input sequence. The
coupling between pictures and other pieces of content can be
specified in the input content by the use of composite types,
described in Sect. 4.4.

The placement error for a rectangular picture p having

aspect ratio A, in a rectangular placeholder ¢ with aspect

@ Springer

to that placeholder, as well as the ratio of the amount of text by the
placeholder’s capacity (i.e. how “filled a placeholder is)

ratio A, and area A, is

Ac A,
Acx |max{ —,—) —1], 3
AL

which penalizes aspect ratio differences between a picture
and its placeholder, proportionally to the area of the place-
holder.

J Braz Comput Soc (2012) 18:331-349

339

1. function o (i, j)

2. {table is a global data structure filled with the best
matching templates for each pair (7, j)}

3. if rableli, j].memoized then

4. return tableli, jl.error

5. end if

6. minerror <— 00

7. bestt < nil

8. for eachtemplatezin 7 do

9 error < allocate(t, i, j)

10. if error < minerror then

11. minerror <— error

12. bestt <t

13. endif

14. end for

15. tableli, j].memoized < true

16. tableli, j].template < bestt

17. tableli, jl.error <— minerror

18. return minerror

Fig. 9 Template scoring and selection function

To calculate the final error for the template, the maximum
placement error is used among all placeholders of the tem-
plate. The pagination algorithm then uses this error to find
the solution that is the global minimum, effectively mini-
mizing the maximum placement error.

6 Rendering with InDesign

After selecting appropriate page templates and mapping
content into them, it is necessary to render the actual content
in the templates and perform the lower level text formatting
to generate the final document. Figure 10 depicts how the
rendering step is integrated to the workflow from Fig. 1.

For rendering, the pagination algorithm was integrated
to Adobe InDesign®, a standard application in document
processing and publishing systems that handles lower-level
formatting. The integration was performed with functions
inserted through InDesign’s scripting system [2] using the
JavaScript language [7]. These functions perform the fol-
lowing steps:

1. The mapping XML file (Sect. 4) generated by the pagi-
nation algorithm is read by InDesign;

2. Each page is assembled with its placeholders and their
corresponding content from the content sequences;

3. Each type of element (i.e. text, headlines, pictures, etc.)
is rendered according specific rules, as described in the
following sections.

Additionally, for composite elements (a captioned picture
for instance, see Sect. 4.4), the rendering is performed recur-
sively inside the element’s corresponding placeholder on the

page. The following sections describe how each type of ele-
ment as described in the document model is rendered.

6.1 Rendering headlines

Headlines are basically single lines of text that must fit in-
side their associated placeholder in the page template. It is
assumed that the placeholder size is the intended size for its
content as well, therefore typographic adjustments are made
by changing the font size, so that the headline fits its place-
holder entirely.

6.2 Rendering texts

To place text objects in InDesign, a two-step procedure was
used: flowing and fitting. Fitting adjusts font sizes to fit a
block of text to the placeholder using the same procedure
applied for headlines. Flowing means making a single block
of text span one or more placeholders, for example when the
text of one article spans two columns on a page. InDesign al-
lows a block of text to flow across logically linked text place-
holders, and thus it is desirable to take advantage of such
feature, for more realistic layouts. But since the pagination
algorithm cannot make text objects flow between placehold-
ers, a simple heuristic was used as described by the steps
below:

1. The text placeholders are sequentially linked in each
page template and across the pages. When the document
contains a single sequence of content, a simple heuristic
is to consider each headline occurring in the sequence as
the beginning of a new “article”. Thus, every text place-
holder is connected sequentially (as given by the input
order) until a new headline appears. Then a new flow
begins and the process is repeated. If the content is al-
ready split into several sequences, another approach is
to simply associate every text placeholder to each se-
quence.

2. After the flows are created, the font size for each flow is
adjusted across text placeholders belonging to this flow,
therefore completely filling up every text placeholder.
Since this adjustment is performed for a whole series of
placeholders, the font size is changed only very slightly,
and is uniform across the whole flow.

It is also possible to avoid text flows at all, by adjust-
ing each text placeholder separately. However, if text den-
sities change too much between adjacent placeholders, the
font sizes will be visibly different, creating an unpleasant
effect.

Flowing information could also be explicitly defined in
the template language, but such idea is not explored in this
paper. However, the template language may easily be ex-
tended to support explicit text flows.

@ Springer

340

J Braz Comput Soc (2012) 18:331-349

Fig. 10 The workflow for
performing the actual document

mapping.xml

formatting step, using InDesign Page 1 Page 2 Page N
N —
\LIB TITLE N
PICTURE
TEXT
PICTURE

TEXT

TEXT

TITLE

TEXT

Selected templates with mapped content

Rendering script within InDesign

Actual content (image files,
text files, etc.)

Page 1

Page 2

Page N

Donec odio neque, malesuada in,

Nullam mollis risus nec est.B B

Quisque eu urna tincidunt ligula

Final document rendered by InDesign

To illustrate text flows in InDesign, Fig. 11 shows an ex-
treme example with two versions of a one-page document.
This document is comprised by two text articles contain-
ing two text objects each, where their lengths range from
very small to very large, creating an unpleasant effect. Fig-
ure 11(a) illustrates the document where no flow strategies
have been applied, whereas Fig. 11(b) shows that texts in-
side each article have been linked, resulting in a more ho-
mogeneous font size for each article.

@ Springer

6.3 Rendering pictures

To place a picture in a placeholder, one of the picture’s di-
mensions (width or height) is scaled to that of the place-
holder, and the other dimension is set so that the picture’s
aspect ratio is preserved and no part of it is clipped. Auto-
matic cropping of the picture is not attempted, although it
would be possible to integrate such a feature.

J Braz Comput Soc (2012) 18:331-349

341

Nulla eu nulla. Fusce iaculis Nulla eu nulla. Fusce iaculis

e —

e

Fusce nec purus sed dolor

(a) No linking between text
placeholders.

(b) Linking text placeholders at
each headline occurrence.

Fig. 11 Two versions of a one-page document, showing the use of text
flows in InDesign

Table 1 More detailed description on the content datasets

Dataset Text objects Pictures Avg. text length
folha 2420 318 660 chars.
lipsum 14 84 1212 chars.

7 Results and discussion

This section presents results produced by the algorithm us-
ing empirical data and InDesign to generate ready-to-print
documents.

In Sect. 7.1, the method is compared to a simpler ap-
proach, where quantitative measures show that the pagi-
nation algorithm scores significantly better. Consequently,
possibly longer running times are justifiable if better-quality
documents are required. Section 7.2 discusses the perfor-
mance of the pagination algorithm, comparing it to a simpler
but efficient method.

A qualitative evaluation is presented in Sect. 7.3, where
output documents are compared to others generated with a
simpler pagination approach, as well as a comparison be-
tween the proposed method and a real-world magazine, al-
though some limitations must be considered.

7.1 Minimization of worst error and density variation

To evaluate the solution and its benefits, test instances were
generated and the results using the proposed algorithm were
compared against a simple first-fit method. This was imple-
mented as a greedy algorithm which attempts only a single
choice for content placement. It works as follows:

1. The input is the same as before: a content sequence and
a set of templates;

2. At each step, every template is tested against the current
sequence of content, in order to evaluate how much con-
tent can be consumed by this template;

Variation of placement errors for consecutive document items

Optimal placement errors —+—
Optimal page breaks @
First-fit placement errors

100000 + First-fit page breaks

max. value

10000 1

igax. value

T

100

error (logscale)

Item number
1

Fig. 12 Comparison of placement errors between the proposed ap-
proach and a first-fit pagination

3. The template that uses the most content with the least
amount of error is selected and the sequence of content
is reduced.

4. The algorithm repeats from step 2 until the content se-
quence is empty.

Given the greedy nature of a first-fit pagination strategy,
sometimes there will be no way to fill up a template, leav-
ing empty placeholders in the output document. For the pur-
poses of this evaluation, this is going to be allowed for the
first-fit method (when it fails to find an adequate solution) by
assigning very large errors (more precisely, 10°) to unused
placeholders.

As the optimal pagination algorithm has a wider range of
available solutions to search than simpler pagination strate-
gies, it is able to select a solution that is more homogeneous
(according to the objective function from (1)), where the
content is well distributed over the document pages.

7.1.1 Generating test instances

For generating the test instances, two datasets containing an
assortment of texts and pictures with varying aspect ratios
were used:

1. The folha dataset (obtained from a Brazilian newspa-
per’s RSS feed),* which is comprised by a large number
of text articles (mostly short) and pictures;

2. The lipsum dataset, which is smaller and contains
larger, randomly generated text articles.

Table 1 shows more details about the datasets.
7.1.2 Single-instance results

Figure 12 illustrates the placement error for a test case using
both pagination methods, according to the error functions

“http://www.folha.uol.com.br/folha/informatica/ult124u16829.shtml.

@ Springer

http://www1.folha.uol.com.br/folha/informatica/ult124u16829.shtml

342

J Braz Comput Soc (2012) 18:331-349

from (2) and (3). The results indicate that document items
are more evenly distributed across the pages by our method,
resulting in a more aesthetically pleasing document [12].
The test instance is a document containing approximately
100 text objects. The template set used for this test is shown
in Fig. 13 and the resulting mapping and pagination for both
methods is shown in Fig. 14. A text placeholder in the tem-
plates can be filled up with any number of text objects, and

the graph in Fig. 12 shows the placement errors for each
placeholder (i.e. the x-axis).

Another important detail in Fig. 12 is that the placement
error from the first-fit pagination increases abruptly at the
end. This is a well-known tendency for the first-fit method,
as it uses the content sequence to fill up pages until there is
a small sequence left at the end, causing the last page to be
under-filled. This does not happen in the method proposed
in this paper, as it guarantees an even distribution of content.

Template 1 Template 2 Template 3
7.1.3 Multiple-instance results
TEXT TET
More results are presented for several test instances, us-
rext || TExT TEXT ing both datasets from Table 1. However, only text objects
were used, because the inclusion of headlines and/or pic-
TEXT || TEXT TEXT tures would cause the first-fit pagination to fail more of-
ten and result in worse choices. Test instances were gen-
erated with the number of text articles ranging from 50 to
100 broken in smaller objects of sizes from 30 to 250 words
Fig. 13 Template set used for the test presented in Fig. 12 each.
4 objects s 4 objects 3 objects 4 objects
2004 } 2209 2004 / 2209 1952 } 2209 2254 } 2209
3objects | | 3 objects 4 objects 4objects | | 4 objects 3objects | | 3 objects
2464 /2343 | [1986 / 2156] X [2436 / 2221 2281/2343 | [2265 / 2156 2464 /2343 | 1986/ 2156
2 objects 2 objects 1320:/]916;20 2 objects || 2 objects 1 object 2 objects 2 objects 3 objects
[1017 /1116(| 1582/ 1394 [1017/111§ | 1582/1394 874/1116| | 1234/1394 229/1116 | 1405/1394
5785 ovime BovieEs 58785
4 objects 4 objects 4 objects 4 objects 4 objects 3 objects 3 objects 3 objects 3 objects 4 objects 4 objects
2441/2343 | 1944 / 2156 2281 / 2221 [2433 / 2221 [2406 / 2221 2063 /2343 | (1865 /2156 2081 /2343 | {1909 / 2156| 2540 /2343 | [1936/2156]
2 objects . 3 objects 3 objects
1596/ 1550 e ‘gngﬁ‘f,g " 1617 /1550 1559/ 1550
92405b}escg|§ g 310313}3252(%9 2?1?:);82‘:2‘39 120?'7)1? 5‘959
3 objects 4 objects 4 objects 4 objects 3 objects 3 objects 4 objects 4 objects 5 objects 3 objects
[2464 / 2221 2316/2343 | [2218 / 2156] 2281/2343 | [2206 / 2156 2464 /2343 | 2013/ 2156| [2316 / 2221 2422 /2343 | 2077 / 2156|
3 objects 2 objects || 3 objects 2 objects || 3 objects 3 objects
EZTEED 1017 /1116 | 1437 /1394 945/1116|| 1524 /1394 ETEED
3 objects 1 object 3objects | | 4 objects
1440/2343 | | 730/ 2156 2206 /2343 | [2170/ 2156

(a) First-fit mapping and pagination. (b) Optimal mapping and pagination.

Fig. 14 Mapping and pagination of both methods for the test presented in Fig. 12. The gray shades indicate how much a placeholder is filled with
text

@ Springer

J Braz Comput Soc (2012) 18:331-349

343

Maximum error for each test instance
Optimal vs. First-fit

1e+07
Optimal method s
First-fit method E===m
1e+06 E
o)
[
& 100000 E
=}
L2
£ 10000 E
[}
£
=]
£ 1000]
3
[
=
100 E
10

testcase (dataset - number of text objects - text object size (in words)
(a) Maximum error.
Maximum sum of error variation in a page for each test instance

16407 Optimal vs. First-fit

Optimal method
First-fit method E===m

1e+06

100000

10000

1000

100

maximum sum of error differences in a page (logscale)

testcase (dataset - number of text objects - text object size (in words)
(b) Maximum error variation in one page.

Maximum sum of errors in a page for each test instance
Optimal vs. First-fit

1e+07
Optimal method
First-fit method ===

1e+06

100000

10000

1000

-
[=3
o

maximum sum of errors in a page (logscale)

o

testcase (dataset - number of text objects - text object size (in words)
(c) Maximum sum of errors in one page.

Fig. 15 Results of both methods for more test instances using three
different quantitative measures

Figure 15 shows the results for both methods using
three different measures: the worst error over all place-
holders in the document (Fig. 15(a)); the maximum error
“variation” (i.e. sum of error differences) in a single page
(Fig. 15(b)); and the maximum sum of errors in a single page
(Fig. 15(c)).

7.2 Performance

The system described in Sect. 3 was implemented using
Java. Given real-world time constraints, the pagination al-
gorithm (see Sect. 5) had to be implemented using dynamic
programming, for producing output in acceptable running
times. The allocation algorithm from Fig. 9 also uses memo-
ization in order to store the best template selections for each
different sequence of elements.

Using these optimizations, the worst-case performance
of the pagination algorithm is bounded by O (n®) when the
number of pages is unknown and O (k n?), when a number
k of pages is defined, where n is the size of the input se-
quence. The cost for memoizing template choices depends
on the number of templates and the methods for allocating
elements to placeholders, described in Sect. 5.2. In the worst
case its asymptotic bound is O(|T|n!), where |T| is the
number of available templates. This is due to the allocation
method for pictures, which requires a search for every possi-
ble ordering to find the best match in pictures’ aspect ratios.
If reordering is not allowed, the bound drops to O(|T|n?).
In practice, however, this cost is low because templates are
checked for matching before attempting allocation and usu-
ally they contain just a few placeholders.

Two performance tests were made to compare the first-
fit and optimal algorithms, shown in Fig. 16. Figure 16(a)
shows how the running times behave when using an increas-
ing number of textual elements but keeping the number of
templates constant (50 in this case). Figure 16(b) on the
other hand shows a different behavior when the number of
templates is increased and the number of elements is kept
constant (100 textual elements).

Although the performance degradation in the optimal al-
gorithm can be severe when processing very large sequences
of content, we found that the algorithm performs well on
typical input sizes. For instance, a magazine comprised of
250 elements (20 % pictures and 80 % text) matched against
500 templates was generated in under a minute, running on
an Intel® Core™ 2 Duo 1.86 GHz machine with 2 GB of
memory. On the other hand, increasing the number of avail-
able templates does not seem to impair performance quickly,
according to Fig. 16(b).

7.3 Camera-ready results

Though no user studies were performed in this paper for
qualitative assessment, camera-ready PDF files produced by
the workflow from this paper are presented below. The doc-
uments are a proof-of-concept for the pagination and map-
ping algorithms, and no further attempts are made to en-
hance the templates with features such as visual styles, fixed
elements on a page, page imposition, and others. There-
fore, pages contain only the variable content that has been

@ Springer

344

J Braz Comput Soc (2012) 18:331-349

Performance of each pagination method when increasing the number of elements
25 T

Running tir‘nes using op‘(ima\ pagina(i‘on
Running times using first-fit pagination

20 /r

[

15

10 M'
At

w("’w)
number of elements MM

0 WM‘ N
0 50 100 150 200 250 300 350 400

&
time (seconds)

(a) Curves when increasing the number of elements.

Performance of each pagination method when increasing the number of templates
3.5

' Running times hsing optimal padinalion
Running times using first-fit pagination - A

; o
o

el
el

A\l

)

time (seconds)

=

0 number of templates
0 50 100 150 200 250 300

(b) Curves when increasing the number of templates.

Fig. 16 Performance comparison between the optimal and first-fit
pagination algorithms when increasing number of elements or tem-
plates

mapped to them. However, a visual comparison with a real-
world example is still useful as it provides basis for future
enhancements.

Templates used in this test were not created by graphic
designers, but were generated automatically using different
configurations of a set of boxes of fixed geometry. Approx-
imately 300 different templates were generated using this
method.

It is important to mention that the templates were not
generated with aesthetic concerns in mind (i.e. no attempts
were made to produce aligned or well distributed contain-
ers), but rather to demonstrate how the pagination algorithm
produces balanced distribution of content among pages.

The test document was crafted to mimic a magazine pub-
lication from our university. For the comparisons, only pages
that were simple enough to contain mostly headlines, texts
and pictures have been selected. Texts and pictures from
such pages were extracted, but details such as headers and
footers were left out, given that the templates used here are

@ Springer

quite simple. Figure 17 presents a document produced by the
workflow. The documents to be compared to this one will be
shown in the two following sections.

7.3.1 A real-world magazine

Figure 18 shows 15 sample pages of a magazine from our
university.> Although the quality of the templates used in
this paper is simpler when compared to the pages from the
magazine in Fig. 18, an important detail to notice is that
in Fig. 17 the pagination algorithm was able to preserve
the same content structure from the real magazine (i.e. the
sequence and grouping between titles, texts and pictures),
without markedly increasing the number of pages. Another
important detail is that all pages are completely filled, in-
cluding the last one.

7.3.2 First-fit comparison

The results from the optimal pagination method were com-
pared to the first-fit heuristic described in Sect. 7.1. Fig-
ure 19 shows the same test document from Fig. 17, but gen-
erated from the first-fit method.

The first-fit algorithm generated 40 pages, and only the
first 20 are shown in Fig. 19. This was almost twice the num-
ber than generated by the optimal method, due to the regions
left empty by the first-fit method. As it can be seen, this can
impair both document readability and aesthetics.

As discussed in Sect. 7.1, due to the poor set of choices
from the first-fit method, some placeholders could not be
filled and little content has remained in the last page, as this
method is unable to attempt a more balanced division of con-
tent to pages.

7.4 Discussion

Results indicate that the proposed algorithm is able to gen-
erate high-quality solutions in practice. Given that the eval-
uation was made by comparing the algorithm to a first-fit
heuristic, one may point out that an exhaustive method will
always win against a simple heuristic. We chose a simple
heuristic due to a lack of options, as we are not aware of
any other openly available method for performing automatic
pagination and template selection for variable content. Aes-
thetic evaluation [12] would also be of limited value, given
that templates are rigid, so the aesthetic measures would be
more dependent on the templates’ design than on the content
mapping itself.

3Obtained from http://www.pucrs.br/revista/pdf/0149.pdf.

http://www.pucrs.br/revista/pdf/0149.pdf

J Braz Comput Soc (2012) 18:331-349

345

Fig. 17 Test document as produced using our workflow with optimal pagination. It mimics the document from Fig. 18

Ouvidota cort com um oo s
A —-
T

Fig. 18 Sample pages of a real-world magazine publication

8 Tuning documents

The pagination algorithm offers some extra advantages to
solve the pagination problem in a more general way:

— Fine tuning of text granularity (i.e. breaking input text
into smaller elements, such as paragraphs, sentences,
words, etc.);

— Automatic selection of the optimal number of pages for
the publication.

These extensions are discussed in the next sections.
8.1 Changing text granularity

One apparent problem with the solution is that, contrary to
other pagination methods that consume text from input as a
continuous stream, texts are handled as discrete blocks to be
mapped into a single template placeholder. As discussed in
Sect. 3, this causes two problems:

— Itis not possible to make text objects flow across different
pages;

— Large text objects may be forced to fit into a small place-
holder, resulting in a bad distribution of text densities
over the document, damaging the balanced distribution
requirement for the proposed algorithm.

Both problems can be circumvented by breaking large
text objects into smaller units prior to sending them to the

@ Springer

346

J Braz Comput Soc (2012) 18:331-349

Fig. 19 The same document from Fig. 17, but generated using a first-
fit pagination method. Only 20 out of the total 40 pages are presented
here

pagination algorithm. This is a feature that can be made
transparent to the user, given that the smaller text objects
still preserve their input order, and will appear more evenly
spread across the pages.

To test this strategy, two test cases are provided: the first
example used 50 different text objects, and the second one
had each of the 50 objects automatically split as a new text
object at every 76 words, resulting in 150 smaller objects.
Figure 20 illustrates the results obtained with these two ap-
proaches. In Fig. 20(a), the gray shades in each placeholder
represent the density information for that placeholder (text
area/placeholder capacity). Placeholders with higher ratios
(and darker shades) will hold too much text, resulting in
over-filled placeholders along with under-filled ones. Fig-
ure 20(b) has placeholders with similar shades, showing that
text is more evenly distributed on the page and resulting in a
better document.

One drawback of this strategy is that having too many
small text objects may result in a longer execution time of

@ Springer

the algorithm, as discussed in Sect. 7.2. However, tests show
that it is not necessary to increase granularity too much to
obtain a good document, as can be seen from Fig. 20. In this
case, a set of 20 templates were used, and the difference in
running times was less than a second, as shown in Table 2.

8.2 The optimal number of pages

Given the recursive nature of the splitting algorithm as it
constructs an optimal pagination of p pages by solving an
optimal pagination of p — 1 pages first, it is possible to se-
lect the optimal number of pages by solving the problem
starting from the longest possible magazine, that is, having
one element on each page, and the solution of this problem
will include all shorter versions of it (including the extreme
situation of all elements on a single page), so that it is only
necessary to choose the number of pages that produces the
minimal error.

Figures 21 and 22 illustrate PDF output from the same
test case. Figure 21 shows a document with 12 required
pages. Figure 22 on the other hand has 8 pages and was op-
timally selected from the solutions already computed by the
pagination algorithm.

9 Conclusions

This work presented a new algorithm for the construction of
personalized documents using page templates and optimally
choosing the best templates to hold the content. In addition,
the algorithm can be used to find the best number of pages
and the best templates for a given amount of content. There-
after, a description of the document is sent to a standard tool
from the printing industry and graphical quality comparable
to high-end publications was achieved. This approach can
be easily integrated into workflows that require automatic
pagination and mapping of content, such as VDP or self-
publishing services.

Although the quality of the solutions cannot be compared
to hand-crafted publications, a middle-ground is provided
between purely automated solutions and high-quality, non-
personalized documents.

The self-publishing scenario described earlier could also
benefit from an automated approach. For instance, authors
with no experience in graphic design could simply submit
their content and select a “style” for his/her magazine (i.e.
different sets of templates), leaving the actual layout produc-
tion to the publishing service.

We believe that an automated process for the creation
of high-quality personalized publications will leverage the
publishing businesses, marketing-oriented VDP and pub-
lishing of web-driven content. We can envisage several ap-
plications for this work:

J Braz Comput Soc (2012) 18:331-349

347

891/910 1011/910

12288/2154| 082/2096| [2034/2096| [2069/2154]

1628/1523 1548/1523

2911/2153 2839/2153 1896/2153

2374/2369 350/2096|

1582/1525 1017/1180|| 1017/1525 [1196/1180| 1901/1525

2268/2153 2043/2153 2179/2153

2271/2369 | 1944/2096]

1120/118Q | 1705/1525 [1017/118Q | 1656/1525 [1249/1180 | 1379/1525

1196/910

2805/2153 2552/2153 2911/2153

1896/2154|

1986/1523

1196/1180 | 2105/1525 11405/1180| | 1268/1525 1268/1525

1041/910

2516/2369 | [2273/2096] 2384/2369 | [2074/2096| 2424/2369 | 1945/2096| [2229/2154]

1410/1523

2603/2153 1717/2153

1896/2154| 1896/2369 | [2031/2096|

1896/1523

2077/1525 [1643/118Q | 2077/1525

2257/2153

2432/2369 | [2015/2096|

1103/118Q | 1557/1525

(a) Pagination with large pieces of text, resulting in too much
difference of text densities.

Fig. 20 Tuning text granularity

Fig. 21 Example of a magazine generated with the proposed method,
composed by 12 pages as requested by a user

(b) Breaking text into smaller pieces yields a better distribu-
tion, at the cost of a longer execution time and more pages.

Table 2 Running times for low and high granularities of text objects

Text splitting Objects Time (sec)
Low granularity 50 0.206
High granularity 150 0.898

— Create high-quality publications out of web-driven dy-
namic content, such as personal blogs and RSS feeds [6];

— Automate self-publishing services, such as MagCloud®
from HP;

— Enable pagination on VDP workflows for personalized
catalogs [23].

The contribution presented in this work is the core of a
larger workflow, of which we presented only a simplified
model, leaving room for several possible improvements. For
example, it is not possible to toggle on or off optional el-
ement placeholders or convert between elements (placing
a picture on a text placeholder if necessary, for example).
Moreover, the template selection method searches for mul-

@ Springer

348

J Braz Comput Soc (2012) 18:331-349

Fig. 22 The same magazine shown in Fig. 21, but with its number of
pages optimally selected and computed by the pagination algorithm

tiple combinations of picture placement on a page, which
can be costly for the generation of picture-driven docu-
ments such as photo albums, and could be disallowed for a
faster algorithm. Images could also have scaling constraints
added to the scoring function from (3) (Sect. 5.2). For exam-
ple, busy pictures would only be considered for placement
in larger containers. This would result in a more efficient
method with better results as well.

To handle these issues, the use of adaptive grid-based
templates, as suggested by Lin [16] and Jacobs et al. [14]
could be an alternative. However, the difficulty in automati-
cally specifying relations between elements in adaptive tem-
plates would hinder flexibility in automated workflows. We
believe that in the near future the construction of personal-
ized publications will be more content-driven, so devising a
set of complex rules for broad scope content selection would
be a challenge.

Regarding the pagination algorithm, while we do not con-
sider line-breaking and justification issues [14], the decou-
pling between rendering and layout evaluation is cleaner and
encourages re-usability of the method. What is needed today
is not a complete monolithic system, but rather the easy inte-
gration with other personalized workflows, to reach a larger
scope on web-driven publishing. RSS delivery [6] and on-
line photo albums [3] are a good example of possible inte-
grations.

Finally, one interesting improvement that could be made
to the pagination algorithm is the handling of solutions with
too many repeated instances of the same templates, which
usually result in a monotonous publication. A simple mech-
anism to count the number of times a template has been used
and penalize it in the error function would be sufficient to al-
low for more variability on the appearance of the document,
but further investigation is still necessary.

Acknowledgements This paper was achieved in cooperation with
Hewlett-Packard Brasil Ltda. using incentives of Brazilian Informatics
Law (Law n°. 8.2.48 of 1991).

@ Springer

References

1. Podi, Personalized print markup language (PPML) 2.2 (2008).
http://www.podi.org/
2. Desktop publishing software—adobe indesign cs4 (2010).
http://www.adobe.com/products/indesign
3. Photo books—create a wide variety of photo books using your
favorite photos from snapfish (2010). http://www2.snapfish.com/
photobookcategory/COBRAND_NAME=snapfish
4. Bagley SR, Brailsford DF, Ollis JA (2007) Extracting reusable
document components for variable data printing. In: DocEng’07:
Proceedings of the 2007 ACM symposium on document engi-
neering. ACM, New York, pp 44-52. http://doi.acm.org/10.1145/
1284420.1284435
5. Cohn R (1993) Portable document format reference manual.
Addison-Wesley Longman Publishing Co, Inc, Boston
6. Cold SJ (2006) Using really simple syndication (rss) to enhance
student research. SIGITE Newsl 3(1):6-9. http://doi.acm.org/
10.1145/1113378.1113379
7. Flanagan D (2006) JavaScript: The definitive guide. O’Reilly Me-
dia, Inc
8. Fleischer M (1995) Simulated annealing: past, present, and fu-
ture. In: WSC’95: Proceedings of the 27th conference on win-
ter simulation. IEEE Comput Soc, Washington, pp 155-161.
http://doi.acm.org/10.1145/224401.224457
9. Giannetti F (2008) An exploratory mapping strategy for web-
driven magazines. In: DocEng’08: Proceeding of the eighth ACM
symposium on document engineering. ACM, New York, pp 223—
229. http://doi.acm.org/10.1145/1410140.1410188
10. Goldberg DE (1989) Genetic algorithms in search, optimization
and machine learning. Addison-Wesley Longman Publishing Co,
Inc, Boston
11. Goldenberg E (2002) Automatic layout of variable-content print
data. Master’s thesis, School of Cognitive & Computing Sciences,
University of Sussex, Brighton, UK. http://www.hpl.hp.com/
techreports/2002/HPL-2002-286.html
12. Harrington SJ, Naveda JF, Jones RP, Roetling P, Thakkar N (2004)
Aesthetic measures for automated document layout. In: Do-
cEng’04: Proceedings of the 2004 ACM symposium on document
engineering. ACM, New York, pp 109-111. http://doi.acm.org/
10.1145/1030397.1030419
13. Hurst N, Li W, Marriott K (2009) Review of automatic document
formatting. In: DocEng’09: Proceedings of the 9th ACM sym-
posium on document engineering. ACM, New York, pp 99-108.
http://doi.acm.org/10.1145/1600193.1600217
14. Jacobs C, Li W, Schrier E, Bargeron D, Salesin D (2003) Adap-
tive grid-based document layout. In: SIGGRAPH’03: ACM SIG-
GRAPH 2003. ACM, New York, pp 838-847
15. Johari R, Marks J, Partovi A, Shieber S (1997) Automatic
yellow-pages pagination and layout. http://citeseer.ist.psu.edu/
johari97automatic.html
16. Lin X (2005) Active document layout synthesis. In: Proceed-
ings, eighth international conference on document analysis and
recognition, 29 Aug-1 Sept 2005, vol 1, pp 86-90. doi:10.1109/
ICDAR.2005.42
17. Lumley J, Gimson R, Rees O (2005) A framework for structure,
layout & function in documents. In: DocEng’05: Proceedings of
the 2005 ACM symposium on document engineering. ACM, New
York, pp 32—41. http://doi.acm.org/10.1145/1096601.1096615
18. Morrison M, Brownell D, Boumphrey F (1999) Xml unleashed.
Sams, Indianapolis
19. de Oliveira JBS (2009) Two algorithms for automatic page layout
and possible applications. Multimed Tools Appl 43(3):275-301.
doi:10.1007/s11042-009-0267-y
20. Plass MF (1981) Optimal pagination techniques for automatic
typesetting systems. PhD thesis, Stanford, CA, USA

http://www.podi.org/
http://www.adobe.com/products/indesign
http://www2.snapfish.com/photobookcategory/COBRAND_NAME=snapfish
http://www2.snapfish.com/photobookcategory/COBRAND_NAME=snapfish
http://doi.acm.org/10.1145/1284420.1284435
http://doi.acm.org/10.1145/1284420.1284435
http://doi.acm.org/10.1145/1113378.1113379
http://doi.acm.org/10.1145/1113378.1113379
http://doi.acm.org/10.1145/224401.224457
http://doi.acm.org/10.1145/1410140.1410188
http://www.hpl.hp.com/techreports/2002/HPL-2002-286.html
http://www.hpl.hp.com/techreports/2002/HPL-2002-286.html
http://doi.acm.org/10.1145/1030397.1030419
http://doi.acm.org/10.1145/1030397.1030419
http://doi.acm.org/10.1145/1600193.1600217
http://citeseer.ist.psu.edu/johari97automatic.html
http://citeseer.ist.psu.edu/johari97automatic.html
http://dx.doi.org/10.1109/ICDAR.2005.42
http://dx.doi.org/10.1109/ICDAR.2005.42
http://doi.acm.org/10.1145/1096601.1096615
http://dx.doi.org/10.1007/s11042-009-0267-y

J Braz Comput Soc (2012) 18:331-349

349

21.

22.

Purvis L, Harrington S, O’Sullivan B, Freuder EC (2003) Creat-
ing personalized documents: an optimization approach. In: Do-
cEng’03: Proceedings of the 2003 ACM symposium on docu-
ment engineering. ACM, New York, pp 68-77. http://doi.acm.org/
10.1145/958220.958234

Schrier E, Dontcheva M, Jacobs C, Wade G, Salesin D (2008)
Adaptive layout for dynamically aggregated documents. In:
TUT’08: Proceedings of the 13th international conference on intel-

23.

24.

ligent user interfaces. ACM, New York, pp 99-108. http://doi.acm.
org/10.1145/1378773.1378787

Sellman R (2007) Vdp templates with theme-driven layer vari-
ants. In: DocEng’07: Proceedings of the 2007 ACM sympo-
sium on document engineering. ACM, New York, pp 53-55.
http://doi.acm.org/10.1145/1284420.1284436

Skiena SS (1998) The algorithm design manual. Springer, New
York

@ Springer

http://doi.acm.org/10.1145/958220.958234
http://doi.acm.org/10.1145/958220.958234
http://doi.acm.org/10.1145/1378773.1378787
http://doi.acm.org/10.1145/1378773.1378787
http://doi.acm.org/10.1145/1284420.1284436

	Optimal pagination and content mapping for customized magazines
	Abstract
	Introduction
	Objectives and contributions of this paper

	Related works
	Problem statement and workflow
	Document format
	Content sequences
	Page templates
	Mapping
	Introducing new objects

	The pagination and mapping algorithms
	Template scoring and mapping
	Allocating elements to placeholders

	Rendering with InDesign
	Rendering headlines
	Rendering texts
	Rendering pictures

	Results and discussion
	Minimization of worst error and density variation
	Generating test instances
	Single-instance results
	Multiple-instance results

	Performance
	Camera-ready results
	A real-world magazine
	First-fit comparison

	Discussion

	Tuning documents
	Changing text granularity
	The optimal number of pages

	Conclusions
	Acknowledgements
	References

