J Braz Comput Soc (2012) 18:43-59
DOI 10.1007/s13173-012-0059-5

LADC 2011

An exception handling system for service component architectures

Fernando Castor - Douglas Siqueira Leite -
Cecilia Mary F. Rubira

Received: 20 December 2011 / Accepted: 16 January 2012 / Published online: 4 February 2012

© The Brazilian Computer Society 2012

Abstract The Service Component Architecture (SCA)
makes it possible to combine existing and new services
based on a variety of technologies with components built
using a component-based development approach. However,
when asynchronous service compositions are executed, one
or more errors can occur, possibly at the same time, affect-
ing the dependability of the composition. To guarantee that
the composition succeeds or at least fails in a controlled
manner, fault tolerance mechanisms must be employed. In
this paper, we propose a novel exception handling model
that targets the needs of dependable SCA applications. The
model is applicable to service-oriented systems and allows
the creation of fault-tolerant asynchronous service compo-
sitions. The EH-SCA framework instantiates the proposed
model as an extension of the Apache Tuscany SCA in-
frastructure. Developers can apply this instantiation of the
model to both new and existing applications by using a
simple and flexible aspect-oriented programming model.
Finally, a case study of the EH-SCA framework shows
how it can be used to build dependable distributed appli-
cations.

F. Castor ()

Informatics Center, Federal University of Pernambuco,
Recife-PE, Brazil

e-mail: castor@cin.ufpe.br

D.S. Leite - C.M.F. Rubira
Institute of Computing, University of Campinas, Campinas-SP,
Brazil

D.S. Leite
e-mail: dougsleite @apache.org

C.M.F. Rubira
e-mail: cmrubira@ic.unicamp.br

Keywords Exception handling - Service-component
architectures - Fault tolerance - Service-oriented
computing - Coordinated exception handling

1 Introduction

Service-Oriented Architecture (SOA) is an architectural
model that aims to enhance efficiency, agility and produc-
tivity of enterprise businesses by structuring services and
service compositions [23]. A service is defined as a self-
contained distributed unit, composed of two loosely cou-
pled elements: a specification with a provided abstract inter-
face and an implementation. Services can be grouped to be
executed in a specific order, either synchronously or asyn-
chronously, resulting in a service composition.

Different software technologies can be used to imple-
ment the SOA paradigm, such as Web Services technology,
which is based on XML-based standards, like Simple Ob-
ject Access Protocol (SOAP) and Web Services Description
Language (WSDL). SOA can also be implemented using a
Service Component Architecture (SCA) [14], which defines
a component model for implementing services and service
compositions. A service implemented within an SCA com-
ponent model is called a service component. SCAs support
interoperability among various SOA technologies, such as
Web Services, WS-BPEL, Java Message Services (JMS),
JSON-RPC, CORBA, and EJB.

In particular, when asynchronous services compositions
are executed, one or more errors can occur concurrently
in different services, possibly at the same time, affecting
the composition’s dependability. In this way, fault tolerance
mechanisms are necessary in order to prevent services com-
positions from reaching a failure state. There are two ways to
recover a service composition from an error: backward and

@ Springer

mailto:castor@cin.ufpe.br
mailto:dougsleite@apache.org
mailto:cmrubira@ic.unicamp.br

44

J Braz Comput Soc (2012) 18:43-59

forward error recovery. The former is based on rolling the
system components back to a previous correct state, while
the latter involves transforming the system into a new cor-
rect state using exception handling mechanisms. Consider-
ing that, in the SOA context, it is not always possible to roll-
back services, since they are by definition autonomous and
self-contained units, one must rely on exception handling
mechanisms to bring the system to a new correct state, for
providing fault-tolerant asynchronous service compositions.
However, exception handling mechanisms for asynchronous
services compositions should consider the fact that differ-
ent exceptions types can be raised concurrently by different
services at the same time. This means that different com-
binations of concurrent exceptions might imply in the ex-
ecution of different combinations of service handlers sets.
This complex error handling scenario requires that excep-
tion handling mechanisms be flexible and dynamic during
runtime. Moreover, some global coordination mechanism
for error handling is required, such as Coordinated Atomic
actions (CA actions) [26]. A CA action provides fault toler-
ance by integrating coordinated exception handling, cooper-
ative multithreading, and atomic transactions.

WS-Business Process Execution Language (WS-BPEL)
[25], one of the most popular languages to create Web ser-
vices compositions, does not support fault-tolerant asyn-
chronous service compositions. When a service signals an
exception within a composition, all services invocations are
terminated as soon as the exception is caught, and a sin-
gle handler is executed. There is no support for error han-
dling coordination, and concurrent exception handling. Tar-
tanoglu et al. [21] proposes a solution in terms of a structur-
ing unit called Web Service Composition Action (WSCA),
based on the concept of CA action without transactional
guarantees. However, this solution has some drawbacks.
First, for each exception raised by a service, the same excep-
tion is delivered to all composition’s participants, decreasing
the flexibility for the implementation of handling actions.
Second, the recovery process is strongly based on compen-
sation actions, which is not a mandatory feature present in
the implementation of a service. Moreover, the proposed so-
lution is based only on Web services technology.

In this paper, we present the design and implementation
of a coordinated exception handling model targeting some
of the particularities of SCA (Sect. 2.1) systems. It allows
the creation of fault-tolerant asynchronous service compo-
sitions in a flexible way. Also, considering that SCA sys-
tems may be highly dynamic, it supports a flexible notion
of exception propagation where recovery rules that dictate
how exceptions are propagated can be defined on a per-
application basis. The definition of application-specific re-
covery rules, which are not necessarily based on compensa-
tion actions, makes our solution more general and flexible

@ Springer

than WSCA [21]. We describe our solution using the primi-
tives and abstractions of the Guardian model [15, 16] for ex-
ception handling (Sect. 2.3). Guardian is a general concep-
tual framework for describing coordinated exception han-
dling models and mechanisms. We have implemented the
proposed exception handling model as a framework, named
EH-SCA (Sect. 3), which extends the Apache Tuscany SCA
platform [12] (Sect. 2.2). The latter is an SCA infrastruc-
ture capable of integrating various SOA technologies. To
use EH-SCA in their applications, developers can leverage
a simple aspect-oriented programming (AOP) [10] program-
ming model that requires little effort to use (Sect. 4). We also
provide an example of the usage of the EH-SCA framework
to implement a primary-backup system (Sect. 5).

2 Background
2.1 Service component architecture

A software component is a unit of modularity composed of
two parts: the specification part, with explicit provided and
required interfaces, and the implementation part [20]. A ser-
vice component provides support for implementing services
using components. Each component can implement one or
more services, where the service’s implementation is part of
the component’s implementation, and the service’s specifi-
cation is mapped to a component’s provided interface. An
implementation defines the materialization of the business
logic into a specific technology, including programming lan-
guages, like Java, C++, and Ruby, and frameworks and en-
vironments, such as Spring and BPEL. A provided inter-
face, referred to as “service” in the SCA context, defines the
operations provided by the service component. Moreover,
a service component can use required interfaces provided
by other service components, known as “references.”

SCA service components can be connected either manu-
ally (by a programmer) or automatically (by the SCA run-
time environment), using services and references. The com-
munication protocol used between two service components
is specified over the SCA “binding” element, which implies
that the service component’s communication infrastructure
is separated from the business logic implementation, en-
hancing the service component’s reusability.

The specification of compositions and service compo-
nents is based on a XML-based language called Service
Component Definition Language (SCDL). In Fig. 1, a com-
position named MyComposition connects the Calcu-
latorComponent and AddServiceComponent ser-
vice components, both implemented with Java (implemen-
tation.java, lines 4 and 12), over a Web services-based
communication (binding.ws, lines 7 and 15). Note that the

J Braz Comput Soc (2012) 18:43-59

45

Fig. 1 Example of a
composition described through
the SCDL

0O~ O Ut W

AddService reference (line 5) in CalculatorCom-
ponent matches the service provided by AddService-
Component (line 13), since both have the same interface
AddService.

In terms of error handling, SCAs pose a number of chal-
lenges. First of all, SCA systems are essentially service-
oriented. They may span different administrative domains
and comprise services whose implementations are not avail-
able or that are hosted by different organizations. As pointed
out previously [21], error recovery mechanisms cannot make
assumptions about the recovery capabilities of these ser-
vices. In this scenario, it is not possible to employ a rollback-
based approach. Second, services can be invoked asyn-
chronously and errors may be signaled concurrently. Since
it is usually not safe to assume that concurrently signaled
errors are independent, some means for coordinating error
recovery are necessary. A third challenge is that SCA sys-
tems can integrate a number of different technologies with
different features and based on different standards. In this
sense, SCA differs from Web services, since the latter are
only one of the technologies that can be used in applica-
tions based on the former. An exception handling model
for SCAs must be generic and flexible enough to support
service compositions involving diverse technologies. At the
same time, it has to be well-integrated with the underlying
SCA platform, the infrastructure that mediates the interac-
tions amongst the parts of the composition. Finally, the ex-
ception handling model must work in a dynamic setting,
because components may fail or become temporarily un-
available due to failures, upgrades, reboots, etc., services
may be taken out since they can be hosted by different or-
ganizations, and application needs may trigger reconfigu-
rations, which imply different interactions and, hence, dif-
ferent sets of parts to be involved in coordinated error han-
dling.

<composite name="MyComposition">

<component name="CalculatorComponent">
<implementation. java class="CalculatorImpl"/>
<reference name="AddService" >
<interface.java interface="AddService"/>
<binding.ws uri="..."/>
</reference>
</component>

<component name="AddServiceComponent">
<implementation.java class="AddServiceImpl"/>
<service name="AddService">
<interface.java interface="AddService"/>
<binding.ws uri="..."/>
</service>
</component>

</composite>

2.2 Apache Tuscany—an SCA platform

Apache Tuscany' is a platform for developing SCA-based
applications. It aims to allow developers to focus on the
business logic of the applications, without having to worry
about communication and interoperation issues. At a very
high level, the Tuscany SCA can be divided into a core in-
frastructure and a set of extensions which make the core ca-
pable of working with various technologies [12]. The Tus-
cany SCA runtime environment was designed to encompass
a large range of existing technologies, as well as new, emer-
gent ones. Figure 2 provides an overview of the runtime ar-
chitecture of Tuscany.

Tuscany’s runtime environment has a modular and plug-
gable architecture so users can choose the functionality that
they need. The Composite Application block represents the
business application built with Tuscany and described us-
ing the XML-based SCA assembly model (Sect. 2.1). Tus-
cany Extensions are implemented by using the Tuscany SPI
(Service Provider Interface), which offers a modularized
way to define bindings, databindings, implementation types,
policies, and interface types. Bindings provide support for
different kinds of communication protocols. Databindings
provide support for different data formats for communica-
tion among services. Implementation types provide support
for different programming languages and container mod-
els. Policies provide flexibility to adjust architecture con-
cerns, such as security and transactions, without impacting
the business logic code.

To run an SCA business application, the first step the Tus-
cany runtime takes is to load and configure the SCA SCDL
file. The various SCDL file artifacts are inspected, and fac-
tory methods help instantiate the various objects, which rep-
resent the service components in memory. The next step is

Uhttp://tuscany.apache.org.

@ Springer

http://tuscany.apache.org

46

J Braz Comput Soc (2012) 18:43-59

Fig. 2 Tuscany’s runtime
architecture

Composite Application

SCA API
Binding Type
1
Databinding Type
I
Tuscany Core Tussc;alny Tuscany Extensions| Implementation Type

Policy Type

Interface Type

Tuscany Hosting

Runtime wire

Runtime wire

Invocation chain |

Invocation chain |

Binding
protocol

Invocation chain

Invocation chain |

Invocation chain |

Binding
protocol

Invocation chain

Invokers /

Interceptors Sender

Legend:

Invokers /

Listener
Interceptors

’ Reference D Service O Binding C) Service Component

Fig. 3 Tuscany SCA invocation chain

to instantiate the runtime wires that connect the components.
In this phase, runtime wires are created for component refer-
ences and component services over the mentioned bindings
in the SCDL file.

A runtime wire is a collection of invocation chains. Each
invocation chain consists of a set of invokers and intercep-
tors. Invokers provide the invocation logic to binding pro-
tocols and implementation technologies, while interceptors
are a special kind of invoker that provides additional func-
tionality, such as data transformation, security, and transac-
tion control. The runtime environment creates an invocation
chain for each operation in a service/reference interface [2].

Figure 3 shows a schematic view of the Tuscany SCA in-
vocation architecture, where service component A invokes,

@ Springer

via a reference, an operation provided by a service imple-
mented by service component B, using a specific binding.
When the service component A invokes an operation of B,
the Tuscany runtime creates and associates a runtime wire
with the service, and another with the reference. An SCA
handler determines which invocation chain within the refer-
ence’s runtime wire is associated with the invoked operation.
Parameters passed to the method that represents the invoked
operation are used by invokers and interceptors, creating a
proper message to be sent over the chosen communication
protocol. On the receiving component, a listener takes the
message from the underlying protocol and routes it to the
correct receiving component’s invocation chains. The corre-
spondent operation (implemented by a method or function)

J Braz Comput Soc (2012) 18:43-59

Fig. 4 Schematic view of the

guardian model

47

Envl Env2 EnvN

Pl P2 PN

GM1 GM?2 GMn

A A A

Guardian|Primitives
A4 Y
RR) RT) Guardian Group

Legend:

Env: Environment GM: Guardian Member RT: Resolution Trees
P: Participant

RR: Recovery Rules C: Exception Context

is executed and, if there is a return value, the reverse path is
taken back to the caller component.

2.3 The guardian model of exception handling

The guardian model is a set of primitives, responsibilities,
and mechanisms aimed at supporting the definition of ex-
ception handling models, in particular ones that require
coordination. It is based on the notion of global excep-
tion handling, in which a distributed global entity called
“guardian” orchestrates the exception handling actions for
each involved participant. This is achieved by raising an ap-
propriate exception in each participant. The guardian model
uses specific application-defined recovery rules to determine
which exception should be raised in each participant. The
raised exception in turn causes the exception handler to be
invoked [16]. Figure 4 shows a conceptual vision of the
Guardian model, as well as its main elements: exception
context, guardian members, guardian group, guardian prim-
itives, recovery rules, and resolution trees.

An exception context corresponds to an application spe-
cific execution phase or region of a program, which has a
symbolic name and a handler associated with it (e.g., in
Java, a try-catch block). There are three kinds of ex-
ception contexts: signaling context, raising context, and tar-
get context. The first one is the context a participant is in
when an exception is signaled within it. The second is the
context a participant is in when an exception is raised in it.
Finally, the target context is the context in which an excep-
tion is handled. Furthermore, as depicted in Fig. 4, the com-
munication occurs among participants and guardian mem-
bers, and guardian members and the guardian group, where

a guardian member is a logical replication of the guardian
associated with each participant. A set of operations, called
guardian primitives, are used as the communication channel.
The guardian primitives are responsible for controlling con-
texts (enabling and removing a context) and exception prop-
agation (throwing global exceptions) at runtime and check-
ing whether there are any pendent global exceptions to be
delivered to a specific participant. In a coordinated exception
handling mechanism, a global exception is an exception that
needs to be handled cooperatively by a set of participants.
On the other hand, an exception that can be handled locally
within a participant is called local exception [15].

When one or more different exceptions types are raised
concurrently, the guardian uses a resolution tree mechanism
to find a resolved exception. Finding a resolved exception
consists of searching for the lowest common ancestor in a
resolution tree, which establishes a hierarchy among a set
of exceptions that can be raised concurrently. Since the re-
solved exception is found, the guardian relies on the recov-
ery rules to determine which exception should be raised in
each involved participant, as well as the proper target con-
text.

3 The EH-SCA framework

In this section, we describe the proposed exception han-
dling model in terms of the abstractions and primitives of
the Guardian model. Concomitantly, we present our imple-
mentation of these abstractions and primitives, the EH-SCA
framework, as an extension to the Apache Tuscany platform.

@ Springer

48

J Braz Comput Soc (2012) 18:43-59

Fig. 5 Overview of the
components of the EH-SCA
framework

Pl
requires="coordinatedEH"

(1]

P2
requires="coordinatedEH"

PN
requires="coordinatedEH"

Then, in the next section, we present the EH-SCA program-
ming model, which leverages aspect-oriented programming
techniques to simplify the definition of handlers and their
association with specific points of an SCA system.

In the current version of EH-SCA, the components that
signal, raise, and handle exceptions should be written in
Java. To make EH-SCA language-independent would re-
quire more in-depth understanding of Tuscany’s internals
and a larger implementation effort. Since we organize EH-
SCA in terms of the primitives of the guardian model, which
is language-independent, we can say that it does not rely
on the specifics of the Java language. At the same time, an
SCA application whose components employ multiple tech-
nologies can still use EH-SCA, since Apache Tuscany can
make these components communicate employing different
technologies, such as WS-BPEL, JSON-RPC, and Web Ser-
vices. In scenarios where third-party services must be inte-
grated in a fault-tolerant manner by using EH-SCA, service
components written in Java are responsible for raising and
handling the exceptions. This does not limit the applicabil-
ity of the proposed model and implementation. The compo-
sition of third-party services can be performed by using EH-
SCA-based service components as proxies for the composed
services, since it is not be possible to modify the composed
services.

Figure 5 presents the overall structure of a fault-tolerant
composition that uses EH-SCA. The Guardian is an instance
of a new implementation type, impl.guardian, responsible for
implementing the exception handling model. It manages ex-
ception handling contexts, exception propagation, and ex-
ception resolution. Each participant component (P1-N) is
connected to the guardian by means of a guardian member
(GM1-N). EH-SCA implements guardian members as poli-
cies (Sect. 2.2) and exceptions as regular Java types. In the

@ Springer

Guardian Primitives

Resolution
Trees

Recovery
Rules

remainder of this section, we present the elements of EH-
SCA.

3.1 Exception representation

We define exceptions as classes that extend the Glob-
alException class. These exceptions are global, i.e.,
they flow between different service components. Instances
of GlobalException carry the information of which
participant has raised the exception, the context in which
this exception was raised (the signaling context), as well
as the context in which the exception should be handled
(target context). The model also predefines some mem-
bership global exceptions, such as JoinException and
LeaveException. A JoinException is raised when
a new participant joins a group (Sect. 3.2). In a similar way,
a LeaveException is raised when a participant leaves
the group. These exceptions are useful to maintain compati-
bility with the Guardian model.

A program raises a global exception by calling the
gthrow () method (Sect. 3.2). This method is homonym
to the primitive of the Guardian model responsible for sig-
naling a global exception. In our Java implementation, local
exceptions are raised by using the throw statement. We
do not impose any constraints on how exceptions are rep-
resented within a component since programming languages
employ different approaches for exceptions. Some of them,
such as C, do not have the concept of exception nor anything
similar to it.

The signatures of the services in component interfaces
should explicitly indicate the exceptions they raise. During
composition, the compiler should check whether clients of
these services handle these exceptions and, if they do not,
produce an error message. In other words, global exceptions
are checked exceptions. A number of modern programming

J Braz Comput Soc (2012) 18:43-59

49

Fig. 6 Pseudo-schema for the
“implementation.guardian” type

S U W N

Fig. 7 Interface of a guardian
group component

0O ULk W+

languages, such as C#, Scala, and Go, do not use checked
exceptions because of their well-known maintainability is-
sues [24]. Nonetheless, we consider that explicitly indicated
exceptions provide useful documentation. In addition, they
represent part of the contract that users of a service must
be aware of. Furthermore, due to compiler support, they can
improve system reliability by emphasizing the need for er-
rors to be handled. Finally, if checked exceptions are em-
ployed only at the component interface level, changes to
such interfaces do not necessarily imply global changes as
would be the case for finer-grained checked exceptions.

3.2 Exception handling contexts and coordination

The guardian group is the central entity responsible for me-
diating the interaction between participants of a composi-
tion when errors occur during its execution. The guardian
group provides an interface to enable and disable raising,
signaling, and handling exception contexts. In EH-SCA, the
guardian group is itself a service component.

Each participant is associated with a set of exception han-
dling contexts, enabled dynamically, at runtime, and explic-
itly, by the application. Nonetheless, applications can enable
and disable contexts in a nonintrusive way, without the need
to modify the source code of preexisting service compo-
nents. When one or more global exceptions are raised within
a context, all the participants where that context is enabled
are involved in coordinated error recovery. In the proposed
model, contexts are always associated with sets of partic-
ipants and may be nested, similarly to Java’s try blocks
(although the latter define static scopes). As discussed in the
previous section, for SCA systems, it does not make sense
to define finer-grained, intracomponent exception handling
contexts since components might be implemented using rad-
ically different technologies and languages.

The guardian group (or simply guardian) element was
implemented as an implementation type called “implemen-
tation.guardian” using the Tuscany SPI (Sect. 2.2). Fig-
ure 6 depicts the pseudoschema of this new implemen-

<implementation.guardian>

<guardianProperties
recovery_rules="pathXMLRecoveryRulesFile"
resolution_trees="pathXMLResolutionTreesFile"

/>

</implementation.guardian>

public interface GuardianPrimitives {

public void enableContext (Context c);

public Context removeContext ();

public void gthrow(GlobalException ex,Stringl[] participantList);
public boolean propagate(GlobalException ex);

public void checkExceptionStatus () throws GlobalException;

tation type. Note that the configuration is done through
the “guardianProperties” element (line 2). The recov-
ery_rules (line 3) and resolution_trees (line 4)
attributes allow the definition of the recovery rules and res-
olution trees, respectively.

Figure 7 shows the GuardianPrimitives interface
implemented by all guardian service components. This in-
terface defines operations that are used to establish commu-
nication between participants and guardian members, and
guardian members and their respective guardians, where a
participant is implemented as a service component. It is im-
portant to stress that the implementation of GuardianGroup
is internal to EH-SCA; applications to not need to imple-
ment this interface.

The first two methods control exception contexts. The
enableContext () method adds and enables a context
c in a LAST-IN-FIRST-OUT (LIFO) context list associated
with a participant. The removeContext () method re-
moves the last added context in same list. The Context
class implements the concept of exception context, aggre-
gating a name and a list of exceptions that can be handled in
the context.

The gthrow () and propagate () methods control
the flow of global exceptions. The first one was explained
previously and is used by a participant to throw a global
exception ex to a set of participants specified in par-
ticipantList. The invocation of gthrow () causes
the suspension of all the participants listed in partici-
pantList, as well as the interruption of the invoker partic-
ipant. The propagate () method determines whether the
global exception ex should be handled in the current context
or propagated to an upper level context. In other words, the
method compares the current context with the target context
specified in ex. Since the guardian does not have control
over the exception flow inside the participant, the existence
of the propagate () method is necessary.

At last, the checkExceptionStatus () method al-
lows a participant to check the existence of any pendent

@ Springer

50

J Braz Comput Soc (2012) 18:43-59

global exception that needs to be handled. It is executed pe-
riodically by the participants. If there are any global excep-
tions to be delivered, they are raised within the participant.
Otherwise, the method simply returns.

3.3 Handler attachment

In the proposed model, exception handlers can be attached to
local or global contexts. Local contexts are the contexts that
the underlying programming language implements. In EH-
SCA, a local context corresponds to a block of statements,
the only kind of exception handling context that Java sup-
ports, by means of try-catch blocks, where the catch
blocks are local handlers. Local handlers address internal
exceptions. Handling these exceptions does not require a co-
ordinated approach.

In broad terms, we consider that global handlers can be
attached to sets of service components taking part in a com-
position. At the same time, participants of a composition
can have multiple global exception contexts associated with
them. For each context, it is possible to attach a number of
exception handlers. In fact, there are no bounds on the num-
ber of contexts per service component, nor on the number of
exception handlers per global context. When a global excep-
tion is signaled by a method, it is passed on to the guardian.
The latter, based on its recovery rules (Sect. 3.4), decides
which exception will be raised in each participant of the
composition and the context where this will happen. An ex-
ception handler is triggered in a service component if it has
an exception handler attached to the selected context and
targeting the raised exception.

In EH-SCA, a handler is any subclass of the Abstract-
Handler class. The latter defines the execute () method,
which receives a single argument of type GlobalExcep-
tion and implements the handler logic. Components in
an application that uses EH-SCA should extend the Han-
dlerContainer class. This class implements methods
for managing the handlers attached to the contexts enabled
in a service component. We more carefully describe the im-
plementation of exception handlers in EH-SCA in Sect. 4.

3.4 Exception propagation

Exception propagation is a difficult issue in service com-
ponent architectures. As pointed out in Sect. 2.1, excep-
tions must be propagated in nonstandard ways because SCA
systems are intrinsically dynamic due to user needs, het-
erogeneous technologies, administrative issues, and the dis-
tributed setting in which they run. As a consequence, SCA
systems require more flexible policies for exception prop-
agation, to make it possible to deal with situations such as
the enabling and disabling of exception handling contexts at
runtime or simply the unavailability of certain service com-
ponents.

@ Springer

1 <recovery_rules>

2 <rule name="name"

3 signaled_exception="className">

4 <participant match="regularExpression">
5 <throw_exception class="className"

6 target_context="contextName"

7 min_participant_joined="number"?
8 max_participant_joined="number"?>
9 <affected_participants>

10 keyword

11 </affected_participants>?

12 </throw_exception>

13 </participant>*

14 </rule>*

15 <recovery_rules>

Fig. 8 Pseudo-schema for the definition of the recovery rules

In the proposed model, recovery rules determine the ex-
ception propagation paths in an application. They establish
the destination of an exception raised in a set of contexts
associated with a set of participants. These rules also deter-
mine the exception that will be handled by each participant
of a guardian group involved in coordinated exception han-
dling. To better cope with the dynamism of SCA systems, re-
covery rules can be enabled and disabled at runtime. Hence,
the propagation paths in an application can be modified dy-
namically, orthogonally to its structure, as required during
its execution. To the best of our knowledge, this is the first
exception handling model to provide this kind of flexibility
to software developers.

In the EH-SCA framework, recovery rules are defined by
an XML-based language whose pseudoschema is shown in
Fig. 8. The rule element (line 2) defines a named (via the
name attribute) rule and the exception to which that rule is
applied (via signaled_exception attribute). Each rule
can select one or more sets of participants in order to signal
a new exception. This is accomplished via the partic-
ipant element with a regular expression assigned to the
match attribute (line 5).

Each participant has a dot-separated identifier defined by
the elements in its context list. The same structure is ap-
plied for building the regular expression associated with the
match attribute, where the character “*” can be used as a
wildcard, meaning that it does not matter the context the par-
ticipant is. Also, the keyword SIGNALER can be used to re-
trieve the participant that has raised the referred exception.

The exception that should be raised in the selected par-
ticipants is determined in the throw_exception ele-
ment (line 4), where the exception class is specified via
class attribute and the context where the exception will
be handled via the target_context attribute. The
min_participants_joined and max_partici-
pant_joined optional attributes represent, respectively,
the minimum and maximum number of participants that
must join the guardian group for the exception to be

J Braz Comput Soc (2012) 18:43-59

51

1 <resolution_trees>

2 <resolution_tree exception_level="level">
3 <exception class="className" />*

4 </resolution_tree>*

5 </resolution_trees>

Fig. 9 Pseudo-schema for the definition of the resolution trees

delivered to the selected participants. Finally, the af-
fected_participants optional element (line 9) yields
a subset of the selected participants, for example, the first
(FIRST keyword) or the last (LAST keyword) in the se-
lected participant list. The order of participants in the list is
determined by the order in which the guardian receives the
requests for association.

3.5 Exception resolution

The proposed model, analogously to previous approa-
ches [26], uses exception resolution trees to determine
which exception represents a set of exceptions raised con-
currently in a certain context. In summary, the exceptions
that can be raised in a system are organized as the nodes of a
tree. When two or more exceptions are raised in a given con-
text, the tree is looked up to find a node E that has all of the
raised exceptions as its children. E is then called a “resolved
exception” and it is the exception sent to all the participants
in involved coordinated error recovery. On the other hand,
the resolved exception may undergo a transformation before
it is delivered to each participant of the composition. This
transformation is useful to allow independently-developed
exception handlers to work as a unit because they may have
been defined in terms of different exception types. As a con-
sequence, after resolution, a number of different exceptions
can be delivered to the various handlers. The transforma-
tion of resolved exceptions is defined by means of recovery
rules, more specifically, the throw_exception element
of Fig. 8.

The model supports the definition of various resolution
trees, associated with different levels of an application. The
usage of levels allows the establishment of semantic re-
lationships among different sets of exceptions. The set of
resolution trees in an application is defined using a XML-
based language, as shown in Fig. 9. Currently, our imple-
mentation supports only one exception level. The resolu-
tion_tree element (line 2) defines a resolution tree for a
given level, defined by the exception_level attribute.
The tree itself consists of a hierarchy of exception types built
using the exception element (line 3).

The guardian is responsible for finding a resolved excep-
tion when two or more exceptions are concurrently raised
in a composition. Exception resolution uses the types of
the raised exceptions, organized in a type hierarchy (using
the exception_resolution element). Considering the

Fig. 10 An example of exception type hierarchy

types of the concurrently raised exceptions and the excep-
tion type hierarchy, exception resolution finds the lowest
common ancestor of the types of all the exceptions. EH-SCA
employs the algorithm of Bender and Farach [3] to find the
common lowest ancestor. Considering the exception type hi-
erarchy of Fig. 10, at initialization time, EH-SCA conducts
three steps. Initially, the tree is traversed depth-first. Each
node is included in a vector, E, each time it is visited. There-
fore, for the hierarchy of Fig. 10, we would obtain the fol-
lowing:

E = {NO,N1,N3, N1, N4, N1, NO, N2, N5, N2, N6, N2, NO}

Afterward, we compute the depth of each node in the tree.
For each position that a node occupies in E, we record its
depth in the corresponding position of the L vector:

L={0,1,2,1,2,1,0,1,2,1,2,1,0}

For example, E[2] = N3 and L[2] = 2, the depth of node
N3. Finally, we build the R vector, which contains the posi-
tion of the first occurrence of each node in E. Each position
in R corresponds to a node in the exception type hierarchy.
The order of the nodes in R is the order in which the nodes
would be traversed in a breadth-first search.

R=1{0,1,7,2,4,8,10}

In the event that two exceptions are concurrently raised,
EH-SCA first obtains the values stored at the corresponding
positions of R. It then uses these values as indexes for vec-
tor L. The lowest depth appearing between these values in
L is the depth of the resolved exception. EH-SCA obtains it
by inspecting the corresponding position in vector E. Both
the time required to construct the E, L, and R vectors and
the time to perform exception resolution are linear with the
number of nodes in the tree.

3.6 Guardian member
In EH-SCA, the guardian member is an infrastructure el-
ement responsible for mediating communication between

participants of a composition and the corresponding guar-
dian. It is not part of the exception handling model, strictly

@ Springer

52

J Braz Comput Soc (2012) 18:43-59

Fig. 11 Definition of the
guardianExceptionHan-
dling intent to abstract
guardian members

1 <definitions xmlns="http://www.osoa.org/xmlns/sca/1.0"
2 targetNamespace="http://tuscany.apache.org/xmlns/sca/1.0"
xmlns:sca="http://www.osoa.org/xmlns/sca/1.0">

3 <intent name="guardianExceptionHandling"

=n

constrains=

sca:implementation. java/sca:reference">
4 <description> All messages to the guardian group implementation

will be intercepted
5 by the guardian member. </description>
6 </intent>
7 </definitions>

Fig. 12 Guardian members
represented as an interceptor
within the invocation chains

Participant 1
requires
"coordinatedEH"

Composite

Participant 2
requires
"coordinatedEH"

Participant N
requires
"coordinatedEH"

7
Runtim9/wire
Invocation/Hain |
Invoca?én Chain |

Invgkation Chain

Guardian Member
Interceptor

V4
Runtir}/e wire Runtlmywwe
Invocatio/Chain |

Invoca/ion Chain |

Invocation Lhain |

Invoca;{on Chain |

Invpcation Chain Invgcation Chain

Guardian Member
Interceptor

Guardian Member
Interceptor

speaking, but it is necessary to ease the burden on soft-
ware developers. We implemented guardian members in
Apache Tuscany SCA as a new policy type (Sect. 2.2),
more specifically, a new intent: guardianException-
Handling. An intent is an abstract policy that can af-
fect component interactions but does not include any de-
ployment information. Figure 11 presents the definition
of the guardianExceptionHandling intent. The
constraints attribute (line 3) specifies that the in-
tent applies to the references of a Java component. When
guardianExceptionHandling is enabled for a par-
ticipant, an interceptor is created in the invocation chains
associated with the methods of the references to which the
intent is associated. This interceptor is responsible for in-
voking the guardian member corresponding to the partici-
pant.

Figure 12 shows how guardian members fit within the
structure of an EH-SCA service composition. To obtain the
instance of the guardian member associated with each par-
ticipant (an instance of type GuardianMemberImpl),
each interceptor employs the GuardianMemberFac-
toryImpl factory. The internal usage of factories en-
sures that a single guardian member is created for each
service component participant of a fault-tolerant composi-
tion.

@ Springer

The usage of a policy avoids the need to explicitly declare
the guardian members in the SCDL file. At the developer
side, a service component participant communicates directly
with the guardian (another service component). However,
this communication is mediated by an interceptor that hides
the guardian member logic, and the defined communication
model is held: participants <> guardian members, guardian
members <> guardian group.

As an alternative to using a policy to implement guardian
members, we could have implemented guardian mem-
bers as service components. In this scenario, Guardian-
MemberImpl would need to implement a hypothetical
GuardianMember interface which extends Guardian-
Primitives (Sect. 3.2). Moreover, it would have a ref-
erence to the guardian service component. This approach
has two drawbacks. The first one is that there is a runtime
overhead due to the need to manage extra service compo-
nents. A policy is much cheaper than a component. The sec-
ond one is that developers of service-oriented applications
would then need to be aware of guardian member compo-
nents, declaring them in the SCDL file. By using policies to
represent the latter, developers only indicate the participants
of a fault-tolerant composition, associating them with the
guardianExceptionHandling intent.

J Braz Comput Soc (2012) 18:43-59

53

4 AOP programming model for EH-SCA

The EH-SCA programming model, as the guardian pro-
gramming model defined originally by Miller [15, 16], con-
sists of the invocation of the guardian primitives by a partic-
ipant using a predefined programming pattern. The way in
which participants invoke the guardian primitives depends
on recovery actions implemented in the application logic.
However, a general structure based on the conversation con-
cept [17], that is suitable to a large range of applications, is
depicted in Fig. 13.

public void method () { //Scope
//Enables a context
guardian.enableContext (c);

//Check for any pendent global exceptions

1
2
3
4
5 try{
6
7 guardian.checkExceptionStatus () ;
8

9 //Application specific code
10 R

11

12 }catch (Exception e) { . . . }
13 finally {

14 //Removes the context

15 guardian.removeContext () ;

16 }

17}

Fig. 13 Conversation-based structuring pattern using the guardian
primitives

The code snippet enables a context within a scope, checks
for any pendent global exceptions, executes the application-
specific code, and then removes the enabled context. There
is also a handler for each global and local exception that can
be raised, respectively, by the checkExceptionSta-
tus () guardian primitive and by the application-specific
code. The problem with this approach is that application
logic is tangled with error recovery code. Ideally, the parts
of the code that enable and disable contexts, and handle ex-
ceptions should be separated from application code [1]. In
this manner, it becomes possible to change exception han-
dlers without affecting application-specific parts of the code.
At the same time, one can reuse exception handlers across
components within the same application, in order to avoid
duplication [22].

Using AOP, Java annotations, and a predefined class hi-
erarchy, it is possible to separate the normal application-
specific code from the exception handling code, i.e., the in-
vocation of the guardian primitives and Java handlers. More-
over, this solution enables services to be easily reused and
reduces the syntactic overhead that EH-SCA imposes on ap-
plications. Application developers only need to directly in-
teract with EH-SCA in two ways: (i) by throwing or propa-
gating exceptions with gthrow and propagate; and (ii)
by annotating the relevant methods (see below). The main
elements of the EH-SCA programming model with aspects
are depicted in Fig. 14.

HandlerContainer

AbstractHandler

+ getHandlers{context : String) : AbstractHandler[]
+ addHandler(contextName : String, handler : AbstractHandler) : void

+ getGuardianReference() : GuardianGroup

+ setHandlers(contextName : String, handlers : AbstractHandler(]) : void

+ removeHandler(contextName : String, handler : AbstractHandler) : boolean

exceptionClass : Class
localVariables : Object(]

+ getLocalvariables(: Object[]
+ getExceptionClass(: Class
+ execuwte(ex : GlobalException) : void

>

JAN

ImplementationClass
- @Reference guardianGroup : GuardianGroup

+ @Context() @Checkpoint method() : void
+ getGuardianReference(: GuardianGroup

<
I’ N
.

< <Crosscuts> >

4 ~
L: ‘\!
S ag:zttilgn) 4 < <annotation> >
CheckPoint
- name : String

- exceptions : Class|[]

- value : CheckPointPositions

.l

»* DefaultHandler

+ DefaultHandler{exception : Class) : void
+ DefaultHandler{exception : Class, localvariables : Object[])
+ execute{ex : GlobalException) : void

< <aspect>>
AssemblerAspect

+ @Pointcut contextAnnotatedMethods() : void
+ @Around aroundContextAnnotatedMethods(: void

Fig. 14 The main elements necessary to use EH-SCA following a conversation-based structure with separation between the normal and excep-

tional code

@ Springer

54

J Braz Comput Soc (2012) 18:43-59

Fig. 15 Using the EH-SCA
aspect-based programming
model

© 00~ Ut WN -

Assuming that the scope of the structure of Fig. 13 is the
scope of a method, the Context annotation is used to spec-
ify the context that will be enabled, at the beginning of the
method, and disabled at the end. The name of the context is
specified by means of the name attribute, whereas the ex-
ceptions attribute lists the exceptions that are handled at
that context. On the other hand, the Checkpoint annota-
tion specifies when EH-SCA should invoke the checkEx-
ceptionStatus () primitive (Sect. 3.2), before or after
executing the method. Two values are possible for this anno-
tation: CheckpointPositions.BEFORE or Check-
pointPositions.AFTER.

The HandlerContainer abstract class implements a
number of operations to manipulate global exception han-
dlers. These operations support the retrieval, attachment,
and deletion of handlers (Fig. 14) associated with contexts
of a service component. The main class implementing each
service component must be a subclass of HandlerCon-
tainer in an application that uses EH-SCA. In addition,
the class must provide an implementation for the get-
GuardianReference () abstract method to make the
guardian accessible.

As briefly mentioned in Sect. 3.3, the Abstract-
Handler abstract class represents a generic handler for
GlobalException. Application-specific exception han-
dling strategies for a certain context are realized by imple-
mentations of the execute () abstract method. The re-
maining methods of AbstractHandler provide: (i) the
Class object corresponding to the type of the handled ex-
ception; and (ii) the actual parameters of the method to
which the Context annotation is linked. EH-SCA pro-
vides an implementation for AbstractHandler, the
DefaultHandler class. The latter provides constructors
that developers can use to pass information to the handler,
and an empty execute () method.

The AssemblerAspect aspect combines all the afore-
mentioned elements. It intercepts the execution of applica-
tion-specific methods annotated with Context and
Checkpoint in subclasses of HandlerContainer and
uses the handler management methods to integrate nor-
mal and exceptional behavior. Using the aspect-oriented
programming model involves the following steps: (1) to
make the main class of a participant service component a
subclass of HandlerContainer; (2) to implement the

@ Springer

// Enables contezt,
@Context (name = "METHOD", exceptions = {Exception.class})
// Checks for pendent global exzceptions

@Checkpoint (CheckpointPositions.BEFORE)

public void method {//Scope

defines handler

//Application specific code

getGuardianReference () method so as to return the
guardian; (3) to define a set of exception handlers as sub-
classes of AbstractHandler, attaching them to ser-
vice components by means of the addHandler () and
setHandlers () methods (Fig. 14); and (4) to annotate
each method that takes part in a context where exceptions
are handled with the Context and Checkpoint annota-
tions.

Figure 15 shows what a method looks like as a conse-
quence of the AOP programming model. The method imple-
mentation itself includes the code implementing the appli-
cation logic. It may also invoke gthrow and propagate.
The annotations provide all the information about contexts,
handlers, and the moment when the runtime verifies whether
an exception was received. The error handling concern in
this case is textually separated from the application logic.
This separation can be further improved if the developer de-
cides to use AOP to introduce the annotations [11]. In this
case, exception handling code is completely separated from
the normal application code, improving maintainability and
reusability.

5 Case study: primary-backup system

This section describes how to use EH-SCA, including the
AOQOP programming model, to implement a primary-backup
structuring technique in a client-server application. The
primary-backup approach is well known in the fault toler-
ance literature and, as a consequence, a good showcase for
the capabilities of EH-SCA. Moreover, previous work on the
Guardian model [16] has employed a primary-backup sys-
tem as a case study.

5.1 System description

Figure 16 presents an overview of a client-server system that
employs the primary-backup technique with three backup
replicas. In this application, a server receives requests from
a client, processes them, and sends a response to the client.
The fault tolerance mechanism consists of replicating the
server so that, when the primary server fails, a backup as-
sumes the primary role. For each request, the backups re-
ceive the updated primary server state in order to update its
own state, maintaining replica consistency.

J Braz Comput Soc (2012) 18:43-59

55

Fig. 16 Overview of a
client-server system that
employs the primary-backup
technique

Client

Fig. 17 Application server side
description over SCDL

© 00~ Ut WN -

Using the EH-SCA framework, each primary/backup is
implemented as a service component, and its role behavior
is controlled by the guardian coordinator. Figure 17 shows
part of the SCDL file for the server application side using the
primary-backup technique. The component ServerNodel
(lines 2—-10) describes a server node that can be used either
as a primary or backup. The component, implemented in
Java, exposes the ServerNodeInterface service inter-
face used for establishing the communication with different
server nodes by the matching with its nodes reference. Fur-
ther, each server node communicates with the Guardian-
Component (lines 12-18) through the guardian ref-
erence. This reference requires coordinatedExcep-
tionHandling, ensuring that the guardian members will
be created and intercept the communication among a partic-
ipant and the guardian.

Since a server node can assume the role of a primary or
backup, three different contexts were defined: MAIN, PRI -
MARY, and BACKUP. The MAIN context represents a config-
uration context where the server node is set up to operate as
a primary (the PRIMARY context is activated) or backup (the
BACKUP context is activated). The contexts are associated to
methods through the Context annotation. Figure 18 shows
the primaryService method, which provides the busi-

2a. sends update 3a. applies

update
1. request

3b. applies

update

2. response
2¢. sends update 3c. applies

update

Replica

<composite name="ServerBackupComposition">
<component name="ServerNodel">
<implementation. java class="ServerNodeImpl"/>
<service name="ServerNodeInterface"/>
<reference name="nodes"
target="ServerNode2, ,ServerNode3,. .
<reference name="guardian"
target="GuardianComponent"
requires="coordinatedExceptionHandling"/>
</component>

/>

<component name="GuardianComponent">
<implementation.guardian>
<guardianProperties
recovery_rules="recoveryRules.xml"
resolution_trees="resolutionTrees.xml"/>
</implementation.guardian>
</component>
</composite>

1 @Context(name = "PRIMARY",

2 exceptions = {BackupFailedException.class,
3 BackupJoinedException.class,

4 PrimaryServiceFailureException.class})
5 @Checkpoint (CheckpointPositions.BEFORE)

6 public void primaryService() {

7 //Process the request then...

8 Lo

9 //Send the updates to the backups

10 R

11 //Send the responde back to the client
12

13}

Fig. 18 Description of the primaryService method

ness logic of a primary server. The method implements only
the normal behavior, which consists of: (1) processing the
client request; (2) sending the new state to the backups node,
and (3) sending the reply to the client.

In a similar way, the backupService method, shown
in Fig. 19, carries the business logic of a backup server. The
method simply applies the updates received from the pri-
mary server.

When the operations primaryService () and back-
upService () are invoked, the assembler aspect inter-
cepts their execution and combines the normal code with the

@ Springer

56

J Braz Comput Soc (2012) 18:43-59

Table 1 Global exceptions and

the contexts in which they need Exception Context Meaning
to be handled
PrimaryFailedException =~ MAIN, PRIMARY Internal primary server error
PrimaryExistsException =~ MAIN Indicates the existence of a primary server
BackupFailedException MAIN, PRIMARY, BACKUP Internal backup server error
BackupJoinedException =~ PRIMARY Indicates that a new backup has joined in the
group
1 ©Context(name = "BACKUP", checkExceptionStatus () is invoked within both ser-
2 exceptions = {BackupFailedException.class}) . t int ti . din s _
3 @Checkpoint (CheckpointPositions.BEFORE) vice components, an nterruption 1s caused I server
4 public void backupService() { Nodel. At the same time, ServerNode2 becomes the
Z //Apply the updates receive from the primary pew primary server by executing the proper handler for
7y PrimaryFailedException associated to the MAIN

Fig. 19 Description of the backupService method

exceptional code. The exceptional code is provided by the
definition of handlers, subtypes of AbstractHandler,
that are stored in the component through the use of the in-
herited HandlerContainer operations. Table 1 shows
the global exceptions that can be raised in each participant,
as well as their meanings. Note that the same exception can
be raised in one or more different contexts.

Also it is necessary to specify how the handlers are acti-
vated. The recovery rules in Fig. 20 are responsible for this.

5.2 Execution scenarios

A normal execution of the application with no internal er-
rors in the server nodes follows these steps: the Server-
Nodel component is started in the MAIN context, caus-
ing the raising of a JoinException by the guardian.
Rulel is executed, but no exception is delivered since
there is not a minimum of participants joined in the group.
Thus, the component reaches the MAIN.PRIMARY con-
text. When the ServerNode2 component starts execut-
ing, the raising of the JoinException causes the de-
livery of a BackupJoinedException to be handled in
the PRIMARY context of ServerNodel, and a Prima-
ryExistsException to be handled in the MAIN context
of the ServerNode2. When an invocation of checkEx-
ceptionStatus () triggers the raising of exceptions in
the service components, the proper handlers are activated
and the ServerNodel updates its backup list, while the
ServerNode?2 reaches the MAIN . BACKUP context.

If an internal error occurs in the primary server, an
exception of type PrimaryFailedException is sig-
naled to the guardian, where the Rule?2 is executed. The
guardian delivers a PrimaryFailedException to the
ServerNodel and ServerNode2, but with different
target contexts: INIT and MAIN, respectively. When the

@ Springer

context. In case of a backup failure, a similar path is exe-
cuted over the recovery rule Rule3. At the end, the primary
removes a backup from its backup list, and the failed backup
node is interrupted.

It is important to emphasize that exceptions are signaled
to the guardian through the use of the gthrow () guardian
primitive. In fact, the EH-SCA programming model with as-
pects hides most of the details related to the guardian prim-
itives programming. However, some of them still need to be
invoked explicitly. The same applies to the propagate ()
primitive. The latter is necessary to make exceptions reach
their intended contexts. Further, the INIT context is a top-
level context defined by the guardian in an application.

The most interesting scenario occurs when two or more
components fail at the same time. In this case, a set of
concurrent exceptions is signaled to the guardian, which
relies on the resolution tree to find a common exception
to be handled. Figure 21 shows a possible resolution tree
to the primary-backup application. Assume that the pri-
mary server and a backup server fail simultaneously. In this
case, a PrimaryFailedException and a Backup-
FailedException are signaled to the guardian. Since
they arrive within the same time frame, the guardian consid-
ers them as concurrent exceptions and checks the resolution
tree to obtain PrimaryBackupFailedTogetherEx-
ception. This exception is delivered to the recovery rules,
and Rule4 is executed, interrupting the failed primary and
backup servers and setting up a new backup to assume the
primary server role.

It is important to stress that, without the resolution tree,
the guardian would process the exceptions sequentially. If
PrimaryFailedException is processed first, the pri-
mary server will be interrupted and the first backup in the list
will became the new primary. However, the backup is down,
and will not be able to assume the primary role. If Backup-
FailedException is be processed first, a similar prob-
lem occurs: the primary receives a notification indicating the
failure of the backup but the primary itself has failed as well.
As a consequence, the backup list is not updated, and the
new primary sends messages to a failed backup.

J Braz Comput Soc (2012) 18:43-59

57

in the group -->
signaled_exception="JoinException">
ch="*_. PRIMARY">

<throw_exception class="BackupJoinedException"

<throw_exception class="PrimaryExistsException"

signaled_exception="PrimaryFailedException">
ch="%.PRIMARY">

<throw_exception class="PrimaryFailedException"

target_context="INIT_CONTEXT"/>

<throw_exception class="PrimaryFailedException"

<affected_participants> FIRST </affected_participants>

signaled_exception="BackupFailedException">
ch="%.PRIMARY">
on class="BackupFailedException"

on class="BackupFailedException"

target_context="INIT_CONTEXT"/>

The Primary and Backup fail together

-=>
signaled_exception="

PrimaryBackupFailedTogetherException">

<throw_exception class="PrimaryFailedException"

target_context="INIT_CONTEXT"/>

-=>

<throw_exception class="BackupFailedException"

target_context="INIT_CONTEXT"/>

-=>

<participant match="*.BACKUP,!SIGNALER">
<throw_exception class="PrimaryFailedException"

<affected_participants> FIRST </affected_participants>

Fig. 20 Recovery rules 1 <recovery_rules>
associated to the 2 <!-- 4 new participant joins
primary-backup application 3 <rule name="Rulel"
4 <participant mat
5
target_context="PRIMARY"/>
6 </participant>
7 <participant match="SIGNALER">
8
target_context="MAIN"
9 min_participant_joined="2"/>
10 </participant>
11 </rule>
12 <!-- The Primary fails -->
13 <rule name="Rule2"
14 <participant mat
15
16 </participant>
17 <participant match="*.BACKUP">
18
19 target_context="MAIN">
20
21 </throw_exception>
22 </participant>
23 </rule>
24 <!-- The Backup fails -->
25 <rule name="Rule3"
26 <participant mat
27 <throw_excepti
target_context="PRIMARY"/>
28 </participant>
29 <participant match="SIGNALER">
30 <throw_excepti
31 </participant>
32 </rule>
33 <l --
34 <rule name="Rule4"
35 <participant match="*.PRIMARY">
36
37 </participant>
38 <!-- Backup signaler
39 <participant match="*.BACKUP,SIGNALER">
40
41 </participant>
42 <! -- Ezcluding the backup signaler
43
44
target_context="MAIN">
45
46 </throw_exception>
47 </participant>
48 </rule>
49 </recovery_rules>

6 Related work

Garcia and Toledo [8] present an architecture for the con-
struction of fault-tolerant Web Services. It extends the Uni-
versal Description, Discovery, and Integration (UDDI—the

standard protocol for publishing and discovering services
in Web Service-based systems) protocol to enable quality
of service monitoring. This architecture introduces two new
elements in service-oriented applications: the monitor and

the mediator. The first one detects, notifies, and confines er-

@ Springer

58

J Braz Comput Soc (2012) 18:43-59

Fig. 21 Resolution tree
associated to the
primary-backup application

© 00Uk WN -

rors, intercepting messages with the goal of analyzing and
testing services. It is also responsible for forwarding ser-
vice invocations to replicas, when necessary. On the other
hand, the mediator creates and manages these replicas. This
approach leverages replication as a means for fault toler-
ance. In a similar vein, Chen and Romanovsky [6] introduce
a mechanism named WS-Mediator to improve the reliabil-
ity of Web service integration. The WS-Mediator is respon-
sible for monitoring Web Services, collecting information
such as response time and failure rate. Moreover, it applies
user-defined policies depending on the information it ob-
tains. Both of these approaches improve the dependability of
service-oriented applications. However, none of them uses
coordinated exception handling. Also, they are only appli-
cable to Web Services and not to SCA.

In the literature some solutions provided fault tolerance
over distributed systems based on the CA action concept.
The work by Tartanoglu et al. [21] is based on CA Ac-
tion concepts without transactional guarantees, resulting in a
structure called Web Service Composition Action (WSCA).
The WSCA description uses a XML-based language called
Web Service Composition Action Language (WSCAL). The
solution is implemented using the Web services technology,
and is strongly based on the use of compensation actions.
In our solution, a wide range of SOA technologies can be
used (it is not restricted to Web services), and the recovery
rules allow different ways to provide the recovery actions
(including compensation actions).

The work of Gorbenko et al. [9] proposes an approach to
model reliable Web Services that comprise unreliable com-
ponents. It uses WSCA as a means to structure Web Services
using CA actions. The authors apply the proposed approach
to a travel agency case study and claim that this significantly
increases the number of successful Web Service requests.
Since this work leverages WSCA, it exhibits the same limi-
tations, when compared to EH-SCA.

Silva et al. [18] propose the use of composition contracts,
an adaptation of coordination contracts [7] for the defini-
tion of concurrent fault-tolerant compositions. A coordina-
tion contract is a connection among a set of objects that is
governed by rules and restrictions that are necessary for col-
laboration to ensue. Composition contracts extend coordina-
tion contracts by using CA actions without atomicity guar-
antees to implement fault tolerance. Exception propagation

@ Springer

<resolution_trees>

<resolution_tree exception_level="1">
<exception class=
"PrimaryBackupFailedTogetherException">
<exception class="PrimaryFailedException"/>
<exception class="BackupFailedException"/>
</exception>
</resolution_tree>

</resolution_trees>

is static in this approach. Moreover, it does not define some
aspects of the underlying exception handling model, such as
what the granularity of exception handling contexts.

Souchon and colleagues [19] present a model for excep-
tion handling in multi-agents system. The model focuses
on two problems: (1) preserving the agent programming
paradigm, and (2) providing support to cooperative concur-
rency among the agents. The model implements coordinated
exception handling, where resolution is based on resolution
functions. However, the recovery rules are fixed, making the
model less flexible when compared to the EH-SCA frame-
work. Further, the proposed mechanism is abstract. On the
one hand, this means that it may be applicable to systems
that use different technologies. On the other hand, it does
not consider the peculiarities of real approaches for the con-
struction of distributed systems, in general, or SOA technol-
ogy, in particular.

Capozucca et al. [4] describe a framework to develop
software systems based on CA actions. Their framework,
CAA-DRIP, is an evolution of the DRIP framework pro-
posed by Zorzo and Stroud [27] to structure software sys-
tems in terms of dependable multiparty interactions. None
of them targets the construction of distributed systems. Fur-
thermore, they are not targeted at the integration of preex-
isting components and employ more constrained exception
propagation mechanisms. Later on, Capozucca et al. [5] con-
ducted a survey of existing frameworks implementing the
concept of CA actions. Among the frameworks that they ex-
amine, only one tackles the problems of SOA technology,
the work by Tartanoglu et al. [21], described above.

A preliminary version of this paper appeared else-
where [13]. It did not discuss exception resolution and han-
dler attachment in detail, nor the AOP programming model.
Furthermore, it presented the case study only superficially.

7 Conclusions

In this paper, we have presented the design and implemen-
tation of a new exception handling model that targets the so-
called Service Component Architectures. We are not aware
of any middleware platform, service-oriented or otherwise,
that provides support for coordinated exception handling in
the way that EH-SCA does. Previous work that described

J Braz Comput Soc (2012) 18:43-59

59

actual middleware platforms did not focus on coordinated
exception handling and previous work targeting coordinated
exception handling did not cater for middleware platforms.

The first contribution of this paper is to allow the cre-
ation of fault-tolerant asynchronous service compositions in
a SCA architecture. The second contribution is the devel-
opment of a framework implementing the proposed model
named EH-SCA. The EH-SCA framework defines a way to
build applications in a conversation-based structuring unit,
hiding the explicit usage of most of the guardian primitives.
Our implementation is open-source and distributed under
Apache? license.”

Future work includes extending the resolution trees
model to allow the usage of different exception levels
and implementing some fault tolerance mechanism in the
guardian group element because it currently is a single point
of failure. In addition, we would like to conduct an experi-
mental validation of the ability of the framework to structure
exception handling in a practical application and how that
affects the application’s reliability and performance.

Acknowledgements We would like to thank the anonymous refer-
ees, who helped to improve this paper. Cecilia is supported by CNPq
(305331/2009-4) and FAPESP (2010/00628-1). Fernando is supported
by CNPq (308383/2008-7 and 475157/2010-9), FACEPE (APQ-0395-
1.03/10), and by INES (CNPq 573964/2008-4 and FACEPE APQ-
1037-1.03/08).

References

1. Anderson T, Lee PA (1990) Fault tolerance: principles and prac-
tice, 2nd edn. Springer, Berlin

2. Becker D (2009) Service component architecture (SCA) lets
you invoke components from different technologies. http://www.
ibm.com/developerworks/opensource/library/os-apache-tuscany-
sca/index.html

3. Bender MA, Farach-colton M (2000) The Ica problem revisited.
In: 4th Latin-American symposium on theoretical informatics,
Punta del Este, Uruguay, April 2000, pp 88-94

4. Capozucca A, Guelfi N, Pelliccione P, Romanovsky A, Zorzo AF
(2006) CAA-DRIP: a framework for implementing coordinated
atomic actions. In: Proc of IEEE international symposium on
software reliability engineering, Raleigh, USA, November 2006,
pp 385-394

5. Capozucca A, Guelfi N, Pelliccione P, Romanovsky A, Zorzo AF
(2009) Frameworks for designing and implementing dependable
systems using coordinated atomic actions: a comparative study.
J Syst Softw 82(2):207-228

6. Chen Y, Romanovsky A (2008) Improving the dependability of
web services integration. IT Prof 10(3):29-35

7. Fiadeiro JL, Andrade LF (2001) Interconnecting objects via
contracts. In: Proc 38th international conference on technology
of object-oriented languages and systems, Zurich, Switzerland,
March 2001, pp 182-183

8. Garcia DZG, de Toledo MBF (2007) A fault tolerant web ser-
vice architecture. In: 5th Latin-American Web congress, Santiago,
Chile, October/November 2007, pp 42-49

Zhttp://www.apache.org/licenses/LICENSE-2.0.html.

10.

12.

13.

14.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Gorbenko A, Kharchenko V, Romanovsky A (2007) On compos-
ing dependable web services using undependable web compo-
nents. Int J Simul Process Model 3(1/2)
Kiczales G, Lamping J, Mendhekar A, Maeda C, Lopes C, Lo-
ingtier J-M, Irwin J (1997) Aspect-oriented programming. In: Pro-
ceedings of the 11th ECOOP, June 1997

. Laddad R (2009) Aspect] in action: enterprise AOP with spring

applications. Manning Publications, Cambridge

Laws S, Combellack M, Feng R, Mahbod H, Nash S (2010) Tus-
cany SCA in action, 1st edn. Manning Publications, Cambridge
Leite DS, Rubira CMF, Castor F (2011) Exception handling for
service component architectures. In: Sth Latin-American sympo-
sium on dependable computing, Sdo José dos Campos, Brazil,
pp 84-93

Margolis B, Sharpe J (2007) SOA for the business developer—
concepts, BPEL, and SCA, 1st edn. MC Press, Paris

. Miller R, Tripathi A (2002) The guardian model for exception

handling in distributed systems. In: SRDS’02: proceedings of the
21st IEEE symposium on reliable distributed systems, Washing-
ton, DC, USA. IEEE Computer Society, Los Alamitos, p 304
Miller R, Tripathi A (2004) The guardian model and primitives for
exception handling in distributed systems. IEEE Trans Softw Eng
30(12):1008-1022

Randell B (1975) System structure for software fault tolerance. In:
Proceedings of the international conference on reliable software,
New York, NY, USA. ACM, New York, pp 437-449

Silva R, Guerra P, Rubira C (2003) Component integration us-
ing composition contracts with exception handling. In: 3rd work-
shop on exception handling in object-oriented systems, Darmstadt,
pp 1-20

Souchon F, Dony C, Urtado C, Vauttier S (2004) Improving ex-
ception handling in multi-agent systems. In: Software engineering
for multi-agent systems II. Springer, Berlin, pp 333-337
Szyperski C (2002) Component software: beyond object-oriented
programming, 2nd edn. Addison-Wesley, Reading

Tartanoglu F, Issarny V, Romanovsky A, Levy N (2003) Coordi-
nated forward error recovery for composite web services. In: 22nd
symposium on reliable distributed systems (SRDS), pp 167-176
Taveira JC, Queiroz C, Lima R, Saraiva J, Castor F, Soares S,
Oliveira H, Temudo N, Barreiros E, Araujo A, Amorim J (2009)
Assessing intra-application exception handling reuse with aspects.
In: Proceedings of the 23rd Brazilian symposium on software en-
gineering, Fortaleza, Brazil, October 2009. IEEE Computer Soci-
ety, Los Alamitos

Thomas E (2007) SOA principles of service design, 1st edn. Pren-
tice Hall, New York

van Dooren M, Steegmans E (2005) Combining the robustness of
checked exceptions with the flexibility of unchecked exceptions
using anchored exception declarations. In: OOPSLA’05, pp 455-
471

Web services business process execution language version 2.0
(2007) http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

Xu Jet al (1995) Fault tolerance in concurrent object-oriented soft-
ware through coordinated error recovery. In: Proceedings of FTCS
’95, Washington, DC, USA. IEEE Computer Society, Los Alami-
tos, p 499

Zorzo A, Stroud RJ (1999) A distributed object-oriented frame-
work for dependable multiparty interactions. In: ACM conference
on object-oriented programming, systems, languages, and appli-
cations, Denver, USA, November 1999, pp 435446

@ Springer

http://www.ibm.com/developerworks/opensource/library/os-apache-tuscany-sca/index.html
http://www.ibm.com/developerworks/opensource/library/os-apache-tuscany-sca/index.html
http://www.ibm.com/developerworks/opensource/library/os-apache-tuscany-sca/index.html
http://www.apache.org/licenses/LICENSE-2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

	An exception handling system for service component architectures
	Abstract
	Introduction
	Background
	Service component architecture
	Apache Tuscany-an SCA platform
	The guardian model of exception handling

	The EH-SCA framework
	Exception representation
	Exception handling contexts and coordination
	Handler attachment
	Exception propagation
	Exception resolution
	Guardian member

	AOP programming model for EH-SCA
	Case study: primary-backup system
	System description
	Execution scenarios

	Related work
	Conclusions
	Acknowledgements
	References

