J Braz Comput Soc (2012) 18:29-42
DOI 10.1007/s13173-012-0058-6

LADC 2011

Timing analysis of leader-based and decentralized Byzantine

consensus algorithms

Fatemeh Borran - Martin Hutle - André Schiper

Received: 4 November 2011 / Accepted: 13 January 2012 / Published online: 4 February 2012

© The Brazilian Computer Society 2012

Abstract We consider the Byzantine consensus problem in
a partially synchronous system with strong validity. For this
problem, two main algorithms—with different resilience—
are described in the literature. These two algorithms assume
a leader process. A decentralized variant (variant without
leader) of these two algorithms has also been given in a
previous paper. Here, we compare analytically, in a round-
based model, the leader-based variant of these algorithms
with the decentralized variant. We show that, in most cases,
the decentralized variant of the algorithm has a better worst-
case execution time. Moreover, for the practically relevant
case t < 2 (where ¢ is the maximum number of Byzantine
processes), this worst-case execution time is even at least as
good as the execution time of the leader-based algorithms in
fault-free runs.

Keywords Distributed algorithms - Fault tolerance -
Byzantine consensus - Timing analysis

The work was done while M. Hutle was at EPFL.

F. Borran () - A. Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland

e-mail: fatemeh.borran @epfl.ch

A. Schiper
e-mail: andre.schiper @epfl.ch

M. Hutle

Fraunhofer AISEC, Parkring 4, 85748 Garching near Munich,
Germany

e-mail: martin.hutle @aisec.fraunhofer.de

1 Introduction

Consensus is a fundamental building block for fault-tolerant
distributed systems. Algorithms for solving the consensus
problem can be classified into two broad categories: leader-
based algorithms that use the notion of a (changing) leader
(a process with some specific role), and decentralized al-
gorithms, where no such dedicated process is used. Most
of the consensus algorithms proposed in early 80s, for both
synchronous and asynchronous systems,! are decentralized
(e.g., [2, 11, 14, 15]). Later, a leader (also called coordina-
tor) was introduced, in order to reduce the message com-
plexity and/or improve the best-case performance (e.g., [5,
7, 10]).

Obviously, there is a trade-off between the best-case per-
formance and the worst-case performance of leader-based
algorithms. For instance, a leader-based algorithm that re-
quires « rounds in the best case (« is usually a constant),
would typically require (¢ 4+ 1) rounds in the worst case
(where ¢ is the maximum number of faulty processes). The
first question we address, is whether the decentralized ver-
sion of the same algorithm requires less than ¢ (¢ + 1) rounds
or not? If it requires less, since the best case for a leader-
based algorithm is expected to have better performance than
the best case for its decentralized version, there is an inter-
esting trade-off to analyze. The second question is to analyze
the worst-case performance of the leader-based algorithm
and the decentralized algorithm in terms of (i) number of
rounds and (ii) in terms of execution time. The last question
we address is whether the performance in terms of number
of rounds allows us to predict the performance in terms of
execution time.

!In asynchronous systems, using randomization to solve probabilistic
consensus.

@ Springer

mailto:fatemeh.borran@epfl.ch
mailto:andre.schiper@epfl.ch
mailto:martin.hutle@aisec.fraunhofer.de

30

J Braz Comput Soc (2012) 18:29-42

This work is motivated by the results of Amir et al. [1]
and Clement et al. [6]. These two papers have pointed
out that the leader-based PBFT Byzantine consensus algo-
rithm [4] is vulnerable to performance degradation. Accord-
ing to these two papers, a malicious leader can introduce
latency into the global communication path simply by de-
laying the message that it has to send. Moreover, a mali-
cious leader can manipulate the protocol timeout and slow
down the system throughput without being detected. This
has motivated the development of decentralized Byzantine
consensus algorithms [3]. The next step, addressed here, is
to compare analytically the execution time of decentralized
and leader-based consensus algorithms. We study the ques-
tion analytically in the model considered in [4] for PBFT,
namely a partially synchronous system in which the end-to-
end messages transmission delay § is unknown.

Our paper analyzes two Byzantine consensus algorithms
that ensure strong validity, each one with a decentralized
and a leader-based variant.> One of these two algorithms
is inspired by Fast Byzantine (FaB) Paxos [12], the other
by PBFT [4]. Our analysis shows that there is a signifi-
cant trade-off between the leader-based and the decentral-
ized variants. Mainly, it shows the superiority of the de-
centralized variants over the leader-based variants in dif-
ferent cases: First, the analysis shows that for the decen-
tralized variants the worst-case performance and the fault-
free case performance overlap, which is not the case for the
leader-based variants. Second, it shows that, in most cases,
the worst case of the decentralized variant of our two algo-
rithms is better than the worst case of its leader-based vari-
ant. Third, for r < 2, it shows that the worst-case execution
time of our decentralized variant is never worse than the ex-
ecution time of the leader-based variant in fault-free runs.

Finally, our detailed timing analysis confirms that the
number of rounds in an algorithm is not necessarily a good
predictor for the performance of the algorithm.

Roadmap In the next section, we give the system model
for our analysis and introduce the round model that we use
for the description of our algorithms. Section 3 presents in a
modular way the consensus algorithms under consideration.
In Sect. 4, we give the implementation of the round model.
Section 5 contains our main contribution, the analysis and
comparison of the algorithms. Section 6 discusses about the
hybrid variants. Finally, we conclude the paper in Sect. 7.

2A similar study could be done for the consensus algorithms that en-
sure only weak validity, such as FaB Paxos and PBFT. The results and
conclusion would be similar.

@ Springer

2 Definitions and system model
2.1 System model

We consider a set IT of n processes, among which at most ¢
can be faulty. A faulty process behaves arbitrarily. Nonfaulty
processes are called correct processes, and C denotes the set
of correct processes.

Processes communicate through message passing, and
the system is partially synchronous [7]. Instead of separate
bounds on the process speeds and the transmission delay,
we assume that in every run there is a bound §, unknown
to processes, on the end-to-end transmission delay between
correct processes, that is, the time between the sending of
a message and the time where this message is actually re-
ceived (this incorporates the time for the transmission of
the message and of possibly several steps until the process
makes a receive step that includes this message). This is the
same model considered in [4] for PBFT. We do not make use
of digital signatures. However, the communication channels
are authenticated, i.e., the receiver of a message knows the
identity of the sender. In addition, we assume that processes
have access to a local nonsynchronized clock; for simplicity
we assume that this clock is drift-free.

2.2 Round model

As in [7], we consider rounds on top of the system model.
This improves the clarity of the algorithms, makes it sim-
pler to change implementation options, and makes the tim-
ing analysis easier to understand. In the round model, pro-
cessing is divided into rounds of message exchange.

In each round r, a process p sends a message according
to a sending function S[’7 to a subset of processes and, at the
end of this round, computes a new state according to a tran-
sition function T; , based on the messages it received and its
current state. Note that this implies that a message sent in
round r can only be received in round r (rounds are commu-
nication closed). The message sent by a correct process p in
round r is denoted by a;; messages received by process p
in round r are denoted by u; (/L; is a vector, with one entry
per process; i,[g] = L means that p received no message
from g in round r). In all rounds, we assume the following
integrity predicate Pin(7), which states that if a correct pro-
cess p receives a non- message from a correct process g
in round r, then this message was sent by ¢ in round 7:

Pine(r) =Vp,q €C: wlqle{L, o}

In a partially synchronous system it is possible to en-
sure the following property: there exists some round GSR
(Global Stabilization Round) such that for all rounds r >
GSR, the message sent in round r by a correct process g

J Braz Comput Soc (2012) 18:29-42

31

to a correct process p is received by p in round r. This is
expressed by Vr > GSR : Pgync(r), where

Psync(r) =Vp,q € C: IL;[Q] = O“;.

We say that such a round r is synchronous. We further
need the definition of a consistent round. In such a round,
correct processes receive the same set of messages:

Peons(r) =Vp,q € C: IL; = [l,;.

Consensus algorithms consist of a sequence of phases,
where each phase consists of one or more rounds. For our
consensus algorithms, we need eventually a phase where all
rounds are synchronous, and the first round is consistent.
A round in which Pgons eventually holds will be called a
WIC round (Weak Interactive Consistency, defined in [13]).

2.3 Byzantine consensus

In the consensus problem each process has an initial value,
and processes must decide on one value that satisfies the
following properties:

— Strong validity: If all correct processes have the same ini-
tial value, this is the only possible decision value.

— Agreement: No two correct processes decide differently.

— Termination: All correct processes eventually decide.

In the paper we analyze a sequence of consensus instances.

3 Consensus algorithms

In this section, we first present two consensus algorithms,
namely MA and CL, both from [3, 13], that we use for our
analysis. Both algorithms require a WIC round. Then we
give two implementations of WIC rounds, one leader-based
(L), the other decentralized (D).

Figure 1 presents an overview of the consensus algo-
rithms presented in the paper. The upper layer is the round-
based Byzantine consensus algorithm (MA or CL) and is
discussed in Sect. 3.1. Our consensus algorithms require
eventually a phase where all rounds are synchronous, and the
first round is consistent. Eventually synchronous rounds are
provided by the implementation of the round model, which
is discussed in Sect. 4 (third layer from top in Fig. 1). En-
suring eventually consistent rounds can be done in a leader-
based (L) or decentralized (D) way, and is discussed in
Sect. 3.2 (second layer from top in Fig. 1). By combining
two consensus algorithms with two WIC round implementa-
tions we get four algorithms that will be analyzed in Sect. 5.

MA (n > 5t), CL (n > 3t)

s()

WIC round
Sy Implementation)
L D (n > 3t)

s()

[Sync round

[Consensus Algorithm

round model

Implementation (n > 3t)

send () receive

[Physical Network

] system model

Fig. 1 Overview of the Byzantine consensus algorithms (the arrows
represent function calls; S}, and 7, are the sending and transition func-
tions introduced in Sect. 2.2)

3.1 Consensus algorithms with WIC rounds
3.1.1 The MA algorithm

The MA algorithm [3, 13] (Algorithm 1) is inspired by the
FaB Paxos algorithm proposed by Martin and Alvisi [12].3
A phase ¢ of Algorithm 1 consists of two rounds: 2¢ — 1
and 2¢. Each process p has a state consisting of its cur-
rent estimate x, initially its initial value, and its decision
decisionp, initially L. In round 2¢ — 1, processes first ex-
change their estimate (line 6) and if they receive at least
n —t messages (line 8), then they adopt the smallest most of-
ten value received (line 9). In round 2¢, processes exchange
their new estimate (line 12) and can decide if at least n — ¢
messages are the same (lines 14—15). The algorithm is safe
with ¢t < n/5. For termination, there must be a phase, where
both rounds are eventually synchronous and the first round
is a WIC round.

Agreement follows from the fact that once a process de-
cided, at least n — 2t correct processes have the same es-
timate x, and thus no other value will ever be adopted in
line 9. A similar argument is used for validity. Termination
follows from the fact that in a round 2¢p — 1 > GSR with
a consistent reception vector g” all correct processes adopt
the same value in line 9, and thus decide on this value in
round 2¢.

”»

3FaB Paxos is expressed using “proposers”, “acceptors” and “learn-
ers.” MA is expressed without these roles. Moreover, FaB Paxos solves
consensus with weak validity, while MA solves consensus with strong
validity. In addition, MA is expressed using rounds.

@ Springer

32

J Braz Comput Soc (2012) 18:29-42

Algorithm 1 The MA algorithm with n > 5¢ (code of pro-
cess p) [3, 13]

Algorithm 2 The CL algorithm with n > 3¢ (code of pro-
cess p) [3, 13]

1: State:
2: xpeV /*V is the set of initial values */
3: decision, € V

4: Round r =2¢ —1: /* WIC round */
5 S;:

6 send (x,) to all processes

7 T;; :

8 if number of non-_L elements in [L; >n —t then

9 xp < smallest most frequent non-_L element in p),

10: Round r =2¢ :

11 S

12: send (x,) to all processes

13: Ty

14: if n — 1 elements in p/, are equal to v 7L then
15: decision, < v

3.1.2 The CL algorithm

The CL algorithm [3, 13] (Algorithm 2) is inspired by the
PBFT algorithm proposed by Castro and Liskov [4], ex-
pressed using rounds, including one WIC round.*

Algorithm 2 consists of a sequence of phases ¢, where
each phase has three rounds: 3¢ — 2, 3¢ — 1, 3¢. Each pro-
cess p has an estimate x,, a vote value vote, (initially ?),
a timestamp ts, attached to vote, (initially 0), and a set
pre-vote,, of valid pairs (vote, ts) (initially). Processes ex-
change some of their state variables in every round. The
structure of the algorithm is as follows:

— If a correct process p receives the same estimate v in
round 3¢ — 2 from n — t processes by line 14, then it
accepts v as a valid vote and puts (v, ¢) in pre-vote,, set
by line 15. The prevote set is used later to detect an invalid
vote (lines 28-30).

— If a correct process p receives the same pre-vote (v, ¢)
in round 3¢ — 1 from n — t processes by line 20, then it
votes v (i.e., vote, < v) and updates its timestamp to ¢
(i.e., tsp < ¢) by line 21.

— If a correct process p receives the same vote v with the
same timestamp ¢ in round 3¢ from 2¢ + 1 processes by
line 26, it decides v in line 27.

The algorithm guarantees that (i) two correct processes do
not vote for different values in the same phase ¢; and (ii)
once t + 1 correct processes have the same vote v and the
same timestamp ¢, no other value can be voted in the fol-
lowing phases.

The algorithm is safe with < n/3. For termination, the
three rounds of a phase must eventually be synchronous and
the first round must be a WIC round.’

4PBFT solves a sequence of consensus instances with weak validity,
while CL solves consensus with strong validity.

5The proofs are given in [3].

@ Springer

1: State:
2: xpeV /*V is the set of initial values */
3: pre-vote, <

4: votep € V U ({7}, initially ?
5 ts, <0

6 decision, € V

7: Roundr =3¢ —2: /* WIC round */

8: S;

9: send (x, vote,) to all processes

10: T[f :

11: if at least n — ¢ elements in [L;, are equal to (—, ?) then
12: xp < smallest most frequent element (x, —) in [L;,
13: pre-vote, < pre-vote, U {(x,, $)}

14: if at least n — ¢ elements in [L;, are equal to (v, —) then
15: pre-vote, < pre-vote, U {{v, ¢)}

16: Roundr =3¢ —1:

17: S;:

18: send (v | (v, ¢) € pre-vote) to all processes

19: T

20: if at least n — r elements in u; are equal to (v) then
21: vole,,(—v;tsp(—(j);x/,(—v

22: Round r =3¢ :

23: Spe

24: send (vote,, tsp,, pre-vote,) to all processes

25: Tl; :

26: if at least 27 + 1 elements in u;, are equal to (v # ?2,¢, —)
then

27: decision, < v

28: if exists (v # ?,ts, —) in u; s.t.vote, # v and ts > ts, then

29: if exists # + 1 elements (—, —, pre-vote) in p/, s.t. (v, #s) €

pre-vote and ts' > ts then
30: vote, <= 7,15, < 0;x, < v
31: if vote, # ? then x, <—vote,

3.2 Implementation of a WIC round

We consider two implementations for a WIC round: one
leader-based and one decentralized. The implementations
are also expressed using rounds. In order to distinguish them
from the “normal” rounds, we use p to denote these rounds.
The implementation has to be understood as follows. Let r
be a WIC round, e.g., round r = 2¢ — 1 of Algorithm 1.
The messages sent in round » = 2¢ — 1 are used as the input
variable m , in the WIC implementation (see Algorithm 3).
The resulting vector provided by the WIC implementation,
denoted by M p (Algorithm 3) is then passed to the transition
function of round r as the reception vector p’,.

3.2.1 Leader-based implementation

Algorithm 3, which appears in [13], implements WIC
rounds using a leader. It implements a WIC round if eventu-
ally the coordinator is correct and all three rounds are syn-
chronous. If a correct process is the coordinator, and round

J Braz Comput Soc (2012) 18:29-42

33

Algorithm 3 Leader-based implementation of a WIC round
with n > 3¢ (code of process p) [13]

Algorithm 4 Decentralized implementation of a WIC round
with n > 3¢ (code of process p) [3]

1: Initialization:
2: Vg € IT : received,|q] < L

3: Round p=1:

4 Sp:

5: send (m) to all processes
6 T,ﬁ) :

7 received, < p),

8: Round p=2:

9: S,/;Z

10: send (received,,) to coord,,

11: Ty

12: if p = coord), then

13: for all ¢ € IT do

14: if |{g' €IT: Mﬁ[q’][q] = received,[ql}| < 2t + 1 then
15: receivedp,|q] < L

16: Round p=3:

17: Sp:

18: send (received,,) to all processes

19: Tp:

20: for all ¢ € IT do

21: if (uhlcoord,llq] # L) A i € T : phlillg] =
u‘f,’[coordp][q]}l >t + 1 then

22: Mlq] < mpleoord,llq]

23: else

24: Mpylg]l < L

p = 3 is synchronous, all processes receive the same set of
messages from this process in round p = 3.

In round p = 2, the coordinator compares the value re-
ceived from some process p with the value indirectly re-
ceived from other processes. If at least 2¢ 4+ 1 same values
have been received, the coordinator keeps that value, other-
wise it sets the value to L. This guarantees that if the co-
ordinator keeps v, at least # 4 1 correct processes have re-
ceived v from p in round p = 1. Finally, in round p =3
every process sends values received in round p =1 or L to
all. Each process verifies whether at least ¢+ + 1 processes
validate the value that it has received from the coordinator
in round p = 3. Rounds p =1 and p = 3 are used to verify
that a faulty leader cannot forge the message from another
process (integrity).

Since a WIC round can be ensured only with a correct
coordinator, we need to ensure that the coordinator is even-
tually correct. In Sect. 4 we do so by using a rotating coordi-
nator. A WIC round using this leader-based implementation
needs three “normal” rounds.

3.2.2 Decentralized implementation

Algorithm 4 is a decentralized (without leader) implemen-
tation of a WIC round [3]. It implements a WIC round if
eventually all ¢ + 1 rounds are synchronous. It is based on
the Exponential Information Gathering (EIG) algorithm for

1: Initialization:
2: Wp <_{<)hmp)}

3: Round p, 1 <p<r+1:

4: Spi

5: psend{(a,v)eW,,:|a|:p—1/\p¢aAv7éJ_}toall
processes

6: Tpp

7: forall {g | (0, v) e Wy Ala|=p—1Aqgell Aqg ¢a}do

8: if (B, v) is received from process g then

9: Wp < W, U{(Bg,v)}

10: else

11: W, < W, U{(Bq, L)}

12: if o =1+ 1 then

13: for all (o, v) € W), from |a| =1 to x| =1 do

14: Wy < Wy \ {a, v)

15: if I s.t. [{ag,v') € Wy| = n — |o| — ¢ then

16: Wy < W, U (o, v)

17: else

18: Wy <~ W, U(a, 1)

19: for all ¢ € IT do

20: M,lg] < vst (qg,v)eW,

synchronous systems proposed by Pease, Shostak and Lam-
port [14]. Initially, process p has its initial value m, given
by the first round of the consensus algorithm (e.g., round
2¢ — 1 in Algorithm 1). Throughout the execution, processes
learn about the initial values of other processes. The infor-
mation can be organized inside a tree. Each node of the tree
constructed by process p has a label and a value (represented
as a pair (lable, value)). The root has an empty label A and
a value m,. Process p maintains the tree using a set W,
When p receives a message (8, v) from g adds (Bq, v) to
W, otherwise it adds (8¢, L). After ¢ + 1 rounds, badly-
formatted messages in W), are dropped, and all correct pro-
cesses have the same values in W),.

Similarly to the leader-based implementation, Algo-
rithm 4 requires n > 3¢. On the other hand, a WIC round
using this decentralized implementation needs ¢ + 1 “nor-
mal” rounds.

3.3 The four combinations

Combining the two WIC based algorithms, namely MA and
CL, with the two implementations of WIC rounds, namely
leader-based (L) and decentralized (D), we get four algo-
rithms, denoted by MA-L, MA-D, CL-L and CL-D. Phases
have the following lengths: four rounds for MA-L, ¢t + 2
rounds for MA-D, five rounds for CL-L and ¢ + 3 rounds
for CL-D. Table 1 shows the number of rounds for different
algorithms in the best and worst cases. However, as we will
see in Sect. 5, these numbers are not good predictors of the
execution time of the algorithms.

@ Springer

34

J Braz Comput Soc (2012) 18:29-42

Table 1 Performance of algorithms in terms of number of rounds

Best case Worst case
MA-D t+2 t+2
MA-L 4 4@+ 1)
CL-D t+3 t+3
CL-L 5 5@+1)

4 Round implementation

As already mentioned in Sect. 2.1, we consider a partially
synchronous system with an unknown bound § on the end-
to-end transmission delay between correct processes. The
main technique to find the unknown § in the literature is us-
ing an adaptive timeout, i.e., starting the first phase of an
algorithm with a small timeout I and increasing it from
time to time. The timeout required for an algorithm can be
calculated based on the bound § and the number of rounds
needed by one phase of the algorithm. The approach pro-
posed in [7] is to increase the timeout linearly, while recent
works, e.g., PBFT [4], increase the timeout exponentially.

The main question is when to increase the timeout. In-
creasing the timeout in every phase provides a simple so-
lution, in which all processes adopt the same timeout for
a given phase. However, this is not an efficient solution,
since processes might increase the timeout unnecessarily.
An efficient solution is increasing the timeout when a correct
process requires that. This occurs typically when a correct
process is unable to terminate the algorithm (i.e., decide)
with the current timeout. The problem with this solution is
that different processes might increase the timeout at differ-
ent points in time. Therefore, an additional synchronization
mechanism is needed in this case.

For leader-based algorithms, a related question is the re-
lationship between leader change and timeout change. Most
of the existing protocols apply both timeout and leader mod-
ifications at the same time [1, 4, 6, 7, 9, 12]. Our round
implementation allows decoupling timeout modification and
leader change. We show that such a strategy performs better
than the traditional strategies in the worst case.

4.1 The algorithm

Algorithm 5 describes the round implementation. The main
idea of the algorithm is to synchronize processes to the
same round (round synchronization). The algorithm also re-
quires view synchronization (eventually processes are in the
same view) in addition to the round synchronization. This
is because processes might increase the timeout at different
rounds. The view number is thus used to synchronize the
processes’ timeout.

Each process p keeps a round number r, and a view
number v, initially equal to 1. While the round number

@ Springer

Algorithm 5 A round implementation for Byzantine faults
with n > 3¢ (code of process p)

1: 1rp < 1ynext_rp, <1
: Revy, <0
Vi e N: state,[i] < L
Vi eN: start,[i] <0
v, < 1; next_v, <1

/* round number */

/* set of received messages */

/* state of instance i */

/* starting round for instance i */
/* view number */

U wN

6: while true do

7. coord, < Pw,—1 mod n)+1

8: 1 < input()
9: for all (i,v) € I do
10: statep[i] < init(v)

% /* initialization of state with initial value v *
11:£ startyli] <=rp
12:g| foralli: state,[i] # L do
13 ;E msgs[i] < SIV,” (statep[i], coord)

14: for all g € IT do

15: M, < {(i,msgslillq]) : statep[i] # L }

16: send(START, My, vy, 7p, p) tO g

17: timeout, < current_time + 1" (v)

18: | while next_v, =v, and next_r, =r, do

19: if current_time > timeout, then

20: send(INIT, v, rp + 1, p) to all

21: receive(M)

22: Revp <= Revp, UM

23: if3r and 7 +1 g s.t. (INIT,v,, 7 + 1,g) € Rcv), then
24: let ro be the largest such r

25: if ro > r), then

26: -3 next_r, <rg

27: § send(INIT, v, ro + 1, p) to all

28: ifJvandt +1¢g s.t. (INIT,v+ 1, —, g) € Rev,, then
29: let vp be the largest such v

30: if vo > v), then

31: next_v, < vy

32: send(INIT, vo + 1,7, p) to all

33: if 327 + 1 g s.t. (INIT, v, 7y + 1, q) € Rev), then
34: next_rp < max{r, + 1, next_rp}

35: if 327 + 1 g s.t. (INIT, v, + 1, —, g) € Rcv), then
36: next_v, < max{v, + 1, next_v,}

37: O«

38: foralli: state,[i]# L do

39: 8 for all v € [r), next_r, — 1] do
40:% Vgell: M:[q] < m
; if AM (START, M, v,,,7,q) € Revy, Ali,m) e M
dl else M,[q] < L
41: g statep[i] eT,f(Mr,statep[i],coordp)
42: 9 if Jv s.t. decision(state,[i]) = v the first time then
43: O <« 0U(i,v) /* v is the decision of instance i *
44: output(0)
45: if v, = next_v, A next_r, mod a =1 then
46: if 3i : startpli] < next_r, —a A decision(state,[i]) = L
then
47: send(INIT, v, + 1, next_rp, p) to all
48: rp <—next_rp
49: v < next_vp

corresponds also to the round number of the consensus algo-
rithm, the view number increases only upon reconfiguration.
Thus, the leader and the timeout are functions of the view
number. The leader changes whenever the view changes,

J Braz Comput Soc (2012) 18:29-42

35

based on the rotating leader paradigm (line 7). Note that
the value of coord), is ignored in decentralized algorithms.
The timeout does not necessarily change whenever the view
changes. After line 7, a process starts the input & send part,
in which it queries the input queue for new proposals (using
a function input(), line 8), initializes new slots on the state
vector for each new proposal (line 10), calls the send func-
tion of all active consensus instances (line 13), and sends the
resulting messages (line 16). The process then sets a time-
out for the current round using a deterministic function I
based on its view number v, (line 17), and starts the receive
part, where it collects messages (line 22). Basically, this part
uses an init/echo message scheme for round synchronization
based on ideas that appear already in [7, 8, 16]. The receive
part is described later. Next, in the comp. & output part, the
process calls the state transition function of each active in-
stance (line 41), and outputs any new decisions (line 44)
using the function output(). Finally, a check is done at the
end of each phase, i.e., only if next_r, mod a =1 (line 45),
where o represents the number of rounds in a phase. The
check may lead to request a view change, therefore, the
check is skipped if v, # next_v, (the view changes any-
way). The check is whether all instances, started at the be-
ginning of the phase, have decided (lines 45-46). If not, the
process concludes that the current view was not successful
(either the current timeout was small or the coordinator was
faulty), and it expresses its intention to start the next view
by sending an INIT message for view v, + 1 (line 47).

The function init(v) (line 10) gives the initial state for
initial value v of the consensus algorithm; respectively,
decision(state) (line 42) gives the decision value of the cur-
rent state of the consensus algorithm, or L if the process has
not yet decided.

Receive part To prevent a Byzantine process from increas-
ing the round number and view number unnecessarily, the
algorithm uses two different type of messages, INIT mes-
sages and START messages. Process p expresses the inten-
tion to enter a new round r or new view v by sending an
INIT message. For instance, when the timeout for the cur-
rent round expires, the process—instead of starting immedi-
ately the next round—sends an INIT message (line 20) and
waits that enough processes timeout. If process p in round
rp and view v, receives at least 2¢ + 1 INIT messages for
round r, + 1 (line 33), resp. view v, + 1 (line 35), it ad-
vances to round rp, + 1, resp. to view v, + 1, and sends an
START message with current round and view (line 16). If the
process receives ¢ + 1 INIT messages for round r + 1 with
r > rp, it enters immediately round r (line 23), and sends
an INIT message for round r + 1. In a similar way, if the
process receives t + 1 INIT messages for view v + 1 with
v > vp, it enters immediately view v (line 28), and sends an
INIT message for view v + 1.

Properties of Algorithm 5 The correctness proofs of Al-
gorithm 5 are given in Sect. 4.4. Here, we give the main
properties of the algorithm:

1. If one correct process starts round r (resp. view v), then
there is at least one correct process that wants to start
round r (resp. view v). This is because at most ¢ pro-
cesses are faulty (see Lemma 1).

2. If all correct processes want to start round r + 1 (resp.
view v + 1), then all correct processes eventually start
round r + 1 (resp. view v + 1). This is because n — ¢ >
2t + 1 and lines 33-36 (see Lemma 2).

3. If one correct process starts round r (resp. view v),
then all correct processes eventually start round » (resp.
view v). This is because a correct process starts round
r (resp. view v) if it receives 2¢ 4+ 1 INIT messages for
round r (resp. view v). Any other correct process in
round r’ < r (resp. view v’ < v) will receive at least ¢ + 1
INIT messages for round r (resp. view v). By lines 23 to
26, these correct processes will start round r — 1 (resp.
view v — 1) and will send an INIT message for round r
(resp. view v), see line 27. From item 2, all correct pro-
cesses eventually start round r (resp. view v). The com-
plete proof is given by Lemmas 3-5.

4.2 Timing properties of Algorithm 5

Algorithm 5 ensures the following timing properties:

1. If process p starts round r (resp. view v) at time T, all
correct processes will start round r (resp. view v) by time
T 4 24. This is because p has received 2¢ + 1 INIT mes-
sages for round r (resp. view v), at time t. All correct
processes receive at least r + 1 INIT messages by time
T + 4, start round r — 1 (resp. view v — 1) and send an
INIT message for round r (resp. view v). This message
takes at most § time to be received by all correct pro-
cesses. Therefore, all correct processes receive at least
2t 4+ 1 INIT messages by time t + 2§, and start round r
(resp. view v). The complete proof is given by Lemma 5.

2. If a correct process p starts round r (view v) at time T,
it will start round r + 1 the latest by time t + 36 + I (v).
By item 1, all correct processes start round r, by time
T 4 26. Then they wait for the timeout of round r, which
is I'(v). Therefore, by time t 4 2§ + I"(v) all correct
processes timeout for round r, and send an INIT message
for round r + 1, which takes § time to be received by
all correct processes. Finally, the latest by time t + 3§ +
I' (v), process p receives 2¢ + 1 INIT messages for round
r + 1 and starts round r + 1. The complete proof is given
by Lemma 6.

We can make the following additional observation:

(3) A timeout I'(v) > 36 for round r (view v) ensures that
if a correct process starts round r at time T, it receives

@ Springer

36

J Braz Comput Soc (2012) 18:29-42

Table 2 Summary of different strategies

Strategy A B C

') vl i, 2l

all round r messages from all correct processes before
the expiration of the timeout (at time T 4 38). By item 1,
all correct processes start round r, by time t + 25. The
message of round r takes an additional § time. There-
fore, a timeout of at least 3§ ensures the stated property.
The complete proof is given by Lemma 7.

4.3 Parameterizations of Algorithm 5

We now discuss different adaptive strategies for the time-
out value I"(v,). First, we consider the approach of [7]: in-
creasing the timeout linearly (whenever the view changes).
We will refer to this parameterizations by A. Then we con-
sider the approach used by PBFT [4]: increasing the timeout
exponentially (whenever the view changes). We will refer
to this parameterization by B. Finally, we propose another
strategy, which consists of increasing the timeout exponen-
tially every ¢ + 1 views. In the context of leader-based al-
gorithms, this strategy ensures that, if the timeout is large
enough to terminate the started consensus instances, then a
Byzantine leader will not be able to force correct processes
to increase the timeout. We will refer to this last parameter-
izations by C. These three strategies are summarized in Ta-
ble 2, where v represents the view number and I denotes
the initial timeout.

4.4 Correctness proofs of Algorithm 5

In the sequel, let 7 denote the first time that the actual end-
to-end transmission delay & is reached. All messages sent
before tg are received the latest by time tg + 8. Let vg de-
note the largest view number such that no correct process
has sent a START message for view vy by time tg, but some
correct process has sent a START message for view vy — 1.
Let ro denote the largest round number such that no cor-
rect process has sent a START message for round rg by time
TG, but some correct process has sent a START message for
round ry — 1. We prove the results related to the view num-
ber, similar results hold for round numbers:

Lemma 1 Letr p be a correct process that sends message
(START, —, v, —, p) at some time T, then at least one cor-
rect process q has sent message (INIT,v,—,q) at time
7T <1.

Proof Assume by contradiction that no correct process g
has sent message (INIT, v, —, ¢). This means that a correct

@ Springer

process can receive at most ¢+ messages (INIT, v, —, —) in
line 28. Therefore, no correct process executes line 32, and
no correct process starts view v because of line 35, which is
a contradiction. O

Lemma 2 Let all correct processes p send message
(INIT, v, —, p) at some time Tto, then all correct pro-
cesses p will send message (START,—,v,—, p) by time
max{tg, TG} + 6.

Proof If all correct processes p send message (INIT, v, —, p)
at some time 7, then all correct processes are in view v — 1
at time tq by lines 45-47. A correct process ¢ in view v — 1,
receives at least n — ¢t > 2t 4+ 1 messages (INIT, v, —, p) by
time 79 + 6 if 79 > 75, or by time tg + § if 79 < tG. From
lines 35 and 36, ¢ starts view v by time max{zg, tg} + 6. U

Lemma 3 Every correct process p sends message (START,
—, V0 — 17 > P) by time TG + 28.

Proof We assume that there is a correct process p with v, =
vop — | at time 7. This means that p has received at least
2t + 1 messages (INIT, vg— 1, —, —) (line 35). Or at least t +
1 correct processes are in view vp — 2 and have sent a mes-
sage (INIT, vg — 1, —, —). These messages will be received
by all correct processes the latest by time 7 + 8. Therefore,
all correct processes in view < v — 1 receive at least 7 + 1
messages (INIT,vg — 1, —, —) by time 7 + 8, start view
vo — 2 (line 31) and send a message (INIT,vo — 1, —, —)
(line 32). These messages are received by all correct pro-
cesses by time tg + 26. Because n — ¢ > 2t, all correct pro-

cesses receive at least 2¢ 4+ 1 messages (INIT, vg — 1, —, —)
by time 7g + 28 (line 35), start view vg — 1 (line 36), and
send a message (START, —, vp — 1, —, —) (line 16). O

Lemmad4 Let p be the first (not necessarily unique) correct
process that sends message (START, —, v, r, p) with v > vy
at some time T > 1G. Then no correct process sends message
(START, —, v + 1, —, —) before time t + I' (v). Moreover,
no correct process sends message (INIT, v+2, —, —) before
time T 4+ I'(v).

Proof For the START message, assume by contradiction
that process ¢ is the first correct process that sends mes-
sage (START,—,v + 1,1, g) before time t + I"(v). Pro-
cess g can send this message only if it receives 2r + 1
messages (INIT,v + 1, —, —) (line 35), This means that at
least ¢+ + 1 correct processes are in view v and have sent
(INIT,v + 1, —, —). In order to send (INIT,v + 1, —, —),
a correct process takes at least 1" (v) time in view v (line 19).
So message (START, —, v + 1, —, g) is sent by correct pro-
cess ¢ at the earliest by time t + I"(v). A contradiction.
For the INIT message, since no correct process starts view
v + 1 before time t + I"(v), no correct process sends mes-
sage (INIT, v 42, —, g) before time t + I"(v). O

J Braz Comput Soc (2012) 18:29-42

37

Lemma 5 Let p be the first (not necessarily unique) correct
process that sends message (START, —, v, —, p) with v > vg
at some time T > tg. Then every correct process q sends
message (START, —, v, —, q) by time T + 26.

Proof Note that by the assumption, all view v > vy mes-
sages are sent at or after 7, and thus they are received by all
correct processes § time later. By Lemma 4, there is no mes-
sage (START, —, v/, —, —) with v’ > v in the system before
T + I'(v). Process p sends message (START, —, v, —, p) if
it receives 2t + 1 messages (INIT, v, —, —) (line 35). This
means that at least 7 4 1 correct processes are in view v — 1
and have sent message (INIT, v, —, —), the latest by time .
All correct processes in view <uv receive at least r 4+ 1 mes-
sages (INIT, v, —, —) the latest by time t + §, start view
v—1 (line 31) and send (INIT, v, —, —) (line 32) which is re-
ceived at most § time later. Because n —t > 2t, every correct

process g receives at least 2¢ + 1 messages (INIT, v, —, —)
by time 7 + 26 (line 35), start view v (line 36), and send
message (START, —, v, —, g) (line 16). O

Following two lemmas hold for round numbers.

Lemma 6 If a correct process p sends message
(START, —, v, r, p) at time T > 1g, it will send message
(START, —, v, r + 1, p) the latest by time T 4+ 35 + " (v).

Proof From Lemma 5 (similar result for round number), all
correct processes g send message (START, —,v,r,q) the
latest by time 7 + 2§. Then they wait for the timeout of
round r which is I"(v) (lines 17 and 19). Therefore, by time
T 4+ 28 + I'(v) all correct processes timeout for round r,
and send (INIT, v, r + 1, g) message to all (line 20), which
takes & time to be received by all correct processes. Fi-
nally, the latest by time 7 + 3§ + I"(v), process p receives
n —t > 2t + 1 messages (INIT, v, r + 1, —) and starts round
r + 1 (line 36). O

Lemma 7 A timeout I'(v) > 3§ for round r ensures that
if a correct process p sends message (START, —,v,r, p)
to all at time t > 1, it will receive all round messages
(START, —, v, r, q) from all correct processes q, before the
expiration of the timeout (at time T + 36).

Proof From Lemma 5 (similar result for round number), all
correct processes ¢ send message (START, —, v, r, q) to all
the latest by time t + 28. The message of round r takes an
additional § time. Therefore a timeout of at least 3§ ensures
the stated property. U

Therefore, we have the following theorem.

Theorem 1 Algorithm 5 with n > 3t ensures the existence
of round rq such that ¥r > ro : Peyne(r).

Table 3 Parameters for algorithms MA and CL

Fault-free case Worst case

o B o B
MA-D t+2 0 t+2 0
MA-L 4 0 4 t
CL-D t+3 0 t+3 0
CL-L 5 0 5 t

5 Timing analysis

In this section, we analyze the impact of the strategies A,
B and C on our four consensus algorithms. We start with
the analysis of the round implementation. Then we use
these results to compute the execution time of k consecu-
tive instances of consensus using the four algorithms MA-L,
MA-D, CL-L, and CL-D.

First, for each strategy A, B, C, we compute the best case
and worst-case execution time of k instances of repeated
consensus, based on two parameters « and f: The param-
eter « is the one used in Algorithm 5. It denotes the num-
ber of rounds per phase of an algorithm, i.e., the number
of rounds needed to decide in the best case. Thus, o gives
also the length of a view in case a process does not decide.
The parameter 8 denotes the number of consecutive views
in which a process might not decide although the timeout is
already set to the correct value. This might happen when a
faulty process is the leader. Table 3 shows the values for «
and g for our algorithms.

5.1 Best case analysis

In the best case we have Iy = § and there are no faults. Pro-
cesses start a round at the same time and a round takes 2§
(8 for the timeout and & for the INIT messages), and pro-
cesses decide at the end of each phase (= « rounds). There-
fore, the decision for k consecutive instances of consen-
sus occurs at time 2§ak. Obviously, the algorithm with the
smallest « (that is, the leader-based or the decentralized with
t <2) performs in this case the best.

5.2 Worst case analysis

We compute now tx(k,c, B), the worst-case execution
time until the kth decision when using the strategy X €
{A, B, C}. Based on item 3 in Sect. 4.2 (and Lemma 7),
the first decision does not occur until the round timeout is
larger or equal to 35. We denote below with vy the view that
corresponds to the first decision (k = 1).

@ Springer

38

J Braz Comput Soc (2012) 18:29-42

5.2.1 Strategy A

With strategy A, the timeout is increased in each new view
by Iy until vIj > 36, i.e., until v = [36/15]. Then the time-
out is increased for the next 8 views. Therefore, we have
vo = [38/19] + B. To compute the time until a decision, ob-
serve that a view v lasts I"(v) (timeout for view v) plus the
time until all INIT messages are received. It can be shown
that the latter takes at most 3§ (see item 2 in Sect. 4.2).
Therefore, we have for the worst case:

vo

(Lo, p) =) a(I'(v) +39)

v=1

)
=a) WH+38) =«

v=1

1
(71}0(1)024_) Iy + 35v0>

—a((rsarmit +)(139/7 4 541

L 35(138/T0] + ﬂ)) (M)
and for k > 1,

tA(k$av ﬁ) = 7:A(k -],Ol, IB) +C((UOF0 +33)
=14k —1,a,8)
+a([38/I01T0 + BTy + 38). ()

5.2.2 Strategy B

With strategy B, the timeout doubles in each new view un-
til 2Y~1 1 > 35. In other words, the timeout doubles until
reaching view v = [log, 16_—?)]. Including B, we have vg =

[log, ?—‘3] + B, and:
vo

(1o, f) =Y a(I'(v)+30)

v=1

v
=a) (2" ' +35)

v=1

= ot((Z”O - 1)Fo + 351)0)

_ a((zﬂogz %TJrﬂ . I)Fo

oo]15)

38
_ O{(zﬂogz r012/3+1F0 -

36
138 [mgz —W 135+ 38ﬂ> 3)
Iy

@ Springer

and for k > 1,
tpk, @, B) = tp(k — 1,, B) + (27" I + 36)

— w5k — Lo, f) + (22 128 17 1 35). (4)
5.2.3 Strategy C

Finally, for strategy C, the timeout doubles in each new view
until 2';+;11 Iy > 36. In other words, the timeout doubles until
reaching view v = 1 + (¢ 4 1) [log, %1; then it remains the
same for the next B views. Therefore, we have and: vy =
(t + 1)[log, %f)w + B+ 1, and:®

tc(l,a, B)

v—l_
t+1 1

:a((t +1) Z (' +38) + (B+ 1)(2?%‘F0 + 35))
=0

v—1 v—1
=a(+ 1|27y —Tp+36——
a(t+)(o—1Ip+ t—|—1>

+a(B+ 1)(25 I +33)
3 35
= ol + 1)(2“"gz By —ry+38 ’710g2 FD
0

38
+a(B+ D22 4 35) (5)

and for k > 1,

tek, o, B) = ek — 1,a, B) + (257 Ty +38) (B + 1)
=t1ctk—1,0a,8)
+a(@™ R +38) 8+ 1). ©6)

Note that strategy C makes sense only for leader-based al-
gorithms.

5.2.4 Comparison

Table 3 gives o and B for all algorithms we discussed. For
the worst case analysis, we distinguish two cases: the worst
fault-free case, which is the worst case in terms of the timing
for a run without faulty process; and the general worst-case
that gives the values for a run in which ¢ processes are faulty.

We compare our results graphically in Figs. 2—4 for algo-
rithms MA and CL. The execution time for each algorithm
and strategy is a function of k, 7, and the ratio §/ 1. In the
sequel, we fix two of these variables and vary the third.

We first focus on the first instance of consensus, that is,
we fix Kk =1 and assume § = 10y which gives

SNote that from v =1+ (r + 1)[log, %] it follows that ;’_'_;ll is an
integer.

J Braz Comput Soc (2012) 18:29-42

39

[1004]
10
9
8 . L+C
7 -~ - L+A
= L+A
5
4
3
o |-~ D+B
1 L+B
0 t
1 2 3 4 5 6 7

(a) MA

D+B

1 L+B

Fig. 2 Comparison for k = 1. The dotted curve represents the fault-free case and the dashed curve represents the worst case. The filled curve

represents both the fault-free case and the worst case

.
[1006]
8

7 - TIITULA4A
6

(a) MA

T ___ L+A
[1006] ey 2
7 [onie D+A
6 /

5
4
3
2
0 k
1 2 3 4 5 6 7
(b) CL

Fig. 3 Comparison for t = 1. The dotted curve represents the fault-free case and the dashed curve represents the worst case. The filled curve

represents both the fault-free case and the worst case

[log,(36/I0)] =9, i.e., the transmission delay is estimated
correctly after five times doubling the timeout. The result
is depicted in Fig. 2. We first observe, as expected, that the
fault-free case and the worst-case are the same for the de-
centralized versions (curves D + A and D + B). For the—in
real systems relevant—cases t < 3, for each strategy, the
decentralized algorithm decides even faster in the worst-
case than the leader-based version of the same algorithm in
the fault-free case. For larger ¢, the leader-based algorithms
with strategy B, are faster in the fault-free case (L + B dotted
curves), but less performant in the worst-case (L 4+ B dashed
curves). In the worst case, the execution time of leader-
based algorithms with strategy B grows exponentially with

the number of faults. This shows the interest for strategy C
(L + C dashed curves) in the worst case.

One can also observe that the behavior of different algo-
rithms shown in Fig. 2 could not be derived from Table 1,
although the main results match. This means that the per-
formance of different algorithms in terms of the number of
rounds does not completely predict the performance of those
algorithms in terms of execution time. Even the same algo-
rithm with different timeout strategies has different perfor-
mance. This confirms the need for a detailed timing analysis.

Next, we look how the algorithms perform for multi-
ple instances of consensus. To this end, we depict the to-
tal time until & consecutive instances decide in Fig. 3, for

@ Springer

40

J Braz Comput Soc (2012) 18:29-42

(a) MA

-
L+A .
1005
[1009] LAA D+A/ e
3 ! /
;! [L+C
I 1
' L+B
2
L+B
D+B
1
0 log, %
0 1 2 3 4

Fig. 4 Comparison of different strategies with k = 1 and t = 1. The dotted curve represents the fault-free case and the dashed curve represents
the worst case. The filled curve represents both the fault-free case and the worst case

the most relevant case ¢t = 1. Again, we assume 6 = 1075.
Here, the decentralized algorithm is always superior to the
leader-based variant using the same strategy, in the sense
that even in the worst case it is faster than the correspond-
ing algorithm in the fault-free case. In absolute terms, the
decentralized algorithms with strategy B perform the best.

Finally, we analyze the impact of the choice of I on the
execution time (Fig. 4). This is relevant only for the first
decision, i.e., k = 1. We look at the case r = 1 and vary
log, %—‘; Again, the decentralized version is superior for each
strategy. However, it can be seen that strategy A is not a
good choice, neither with a decentralized nor with a leader-
based algorithm, if log, % is too large. From this perspec-
tive, strategy B is the best.

In all graphs, algorithm MA performs better than algo-
rithm CL, since it requires less number of rounds, as shown
in Table 1. But both algorithms have similar behaviors.

6 Discussion

There are two important additional issues that we would like
to emphasize before concluding the paper: the choice of the
partial synchronous system model and the possibility to get
a hybrid algorithm.

6.1 System model issue

The first issue is related to the round implementation. As we
already mentioned, we consider a partially synchronous sys-
tem where the end-to-end transmission delay is unknown.
There are two variants in this model: (i) GST = 0, or
(ii) GST > 0, where GST refers to the Global Stabiliza-
tion Time after which the bounds on the message transmis-
sion delay and process speed hold. In the first case, there

@ Springer

without resetting

with resetting

39

Io

0 v (view number)
1 3 5 7 9 11

Fig. 5 Comparing different mechanisms for timeout

is no message loss, while in the second case there might be
message loss before GST. Our round implementation (Algo-
rithm 5) is correct in both system models. However, it would
not be efficient in the second model, since the timeout is in-
creased before GST, and is never decreased. For the timing
analysis in Sect. 5 we have considered the first model. To
obtain a more efficient round implementation in the second
model, we suggest the following modifications:

1. Each correct process increases its timeout according to
the timeout strategy until its first consensus decision.

2. Then the process asks to reset the timeout to I by send-
ing a reset message.

3. If a correct process receives 2f + 1 reset messages, it re-
sets the timeout to the initial timeout, i.e., .

4. If a correct process receives f + 1 reset messages, it sends
a reset message.

Using this protocol, the timeout is increased just enough
to decide for the consensus instance. However, each consen-

J Braz Comput Soc (2012) 18:29-42

-
[1000]
L+B
6 /
I
/
5
/
//
4
5 ____- H+B
) D+B
1 H+B
L+B
0 t
1 2 3 4 5 6 7
(a) MA

41
-
[1006] L+B
6
/
/
5 /
4 /
S ___-- H+B
3 S ///—"/'
e D+B
2 ’////
H4B
1 L+B
0 t
1 2 3 4 5 6 7
(b) CL

Fig. 6 Comparison of hybrid algorithm for k = 1 and strategy B. The dotted curve represents the fault-free case and the dashed curve represents
the worst case. The filled curve represents both the fault-free case and the worst case

Table 4 Parameters for the hybrid algorithms

Fault-free case Worst case

o B o B
MA-H 4 0 t+6 0
CL-H 5 0 t+8 0

sus instance will require the same time as the first instance.
In other words, we have the following formula for the worst-
case execution time until the kth instance:

x(k,a,B) =k-tx(1,a, B),

where tx(1,c, B) is given by the same formulas as in
Sect. 5.2.

Figure 5 compares the previous timeout mechanism
(without resetting) with the mechanism presented in this
section (with resetting). Assuming that GST holds at view
number 5, the former keeps a larger timeout comparing to
the latter.

6.2 Hybrid algorithm issue

The second issue is related to the leader-based versus de-
centralized WIC round implementation. The leader-based
version has better performance in the best case, while the
decentralized version performs better in the worst case. By
combining two approaches, we can obtain an algorithm that
performs good in both cases. The idea is the following: in
the first phase (or view) run the leader-based algorithm, i.e.,
MA-L or CL-L. If the first view is not successful, i.e., if
there is a view change, then switch to the corresponding de-
centralized algorithm, i.e., MA-D or CL-D.

Table 4 shows the parameters for the hybrid algorithm
(H refers to the hybrid algorithms).

Figure 6 illustrates the results of the hybrid algorithms
for strategy B, and compares them with the leader-based and
decentralized algorithms. The hybrid algorithms are as good
as the leader-based algorithms in the best case. In the worst
case, the hybrid algorithms are much more efficient than the
leader-based algorithm (for ¢ > 2), but not as good as the
decentralized algorithms.

7 Conclusion

We compared the leader-based and the decentralized variant
of two typical Byzantine consensus algorithms with strong
validity in an analytical way using the same round imple-
mentation.

Our analysis allows us to better understand the trade-off
between the leader-based and the decentralized variants of
an algorithm. The results show a surprisingly clear prefer-
ence for the decentralized version. The decentralized vari-
ant of algorithms has a better worst-case performance for
the best strategy. Moreover, for the practically relevant cases
t <2, the decentralized variant is at least as good as the
fault-free case of the leader-based variant. Finally, in the best
case, for t <2, the decentralized variant is at least as good
as the leader-based variant.

The results of our detailed timing analysis confirm the
fact that the number of rounds is not necessarily a good es-
timation of the performance of a consensus algorithm.

References

1. Amir Y, Coan B, Kirsch J, Lane J (2008) Byzantine replication
under attack. In: DSN’08, pp 197-206

@ Springer

42 J Braz Comput Soc (2012) 18:29-42
2. Ben-Or M (1983) Another advantage of free choice (ex- 9. KotlaR, Alvisi L, Dahlin M, Clement A, Wong E (2007) Zyzzyva:
tended abstract): Completely asynchronous agreement proto- speculative byzantine fault tolerance. Oper Syst Rev 41(6):45-58.
cols. In: PODC’83. ACM, New York, pp 27-30. doi:10.1145/ doi:10.1145/1323293.1294267
800221.806707 10. Lamport L (1998) The part-time parliament. ACMTCS
3. Borran F, Schiper A (2010) A leader-free byzantine consensus al- 16(2):133-169 .
gorithm. In: ICDCN. Lecture notes in computer science (LNCS). 11. Lamport L, Shostak R, Pease M (1982) The byzantine gen-
Springer, Berlin, pp 67-78 erals problem. ACM Trans Program Lang Syst 4(3):382-401.
T . . doi:10.1145/357172.357176
4. Castro M, Liskov B (2002) Practical Byzantine fault tolerance and 12. Martin JP, Alvisi L (2006) Fast Byzantine consensus.
proactive recovery. ACM Trans Comput Syst 20(4):398-461 IEEE Trans Dependable Secure Comput 3(3):202-215.
5. Chandra TD, Toueg S (1996) Unreliable failure detectors for reli- doi:10.1109/TDSC.2006.35
able distributed systems. J] ACM 43(2):225-267 13. Milosevic Z, Hutle M, Schiper A (2009) Unifying byzantine con-
6. Clement A, Wong E, Alvisi L, Dahlin M, Marchetti M (2009) sensus algorithms with weak interactive consistency. In: OPODIS,
Making Byzantine fault tolerant systems tolerate Byzantine faults. pp 300-314)
In: NSDI'09. USENIX Association, Berkeley, pp 153-168 14. Pease M, lfhostak R, La;“?fortl L ;19:8)1\/[1‘622170};“%2;%;;2-
t t! aults. : —. .
7. Dwork C, Lynch N, Stockmeyer L (1988) Consensus in the pres- gfil.l] 0 11ri 45 /gzzﬁrge;znzcze] 8;) aults @
ence of partial synchrony.] ACM 35(2):288-323 _ 15. Rabin M (1983) Randomized Byzantine generals. In: Proc sym-
8. Hutle M, SChlper A (2007) Communication predlCateS: a hlgh- posium on foundations of compu[er Science, PP 403—-409
level abstraction for coping with transient and dynamic faults. In: 16. Srikanth TK, Toueg S (1987) Optimal clock synchronization.

Dependable systems and networks (DSN 2007). IEEE Press, New
York, pp 92-100

@ Springer

J ACM 34(3):626-645. doi:10.1145/28869.28876

http://dx.doi.org/10.1145/800221.806707
http://dx.doi.org/10.1145/800221.806707
http://dx.doi.org/10.1145/1323293.1294267
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1109/TDSC.2006.35
http://dx.doi.org/10.1145/322186.322188
http://dx.doi.org/10.1145/28869.28876

	Timing analysis of leader-based and decentralized Byzantine consensus algorithms
	Abstract
	Introduction
	Roadmap

	Definitions and system model
	System model
	Round model
	Byzantine consensus

	Consensus algorithms
	Consensus algorithms with WIC rounds
	The MA algorithm
	The CL algorithm

	Implementation of a WIC round
	Leader-based implementation
	Decentralized implementation

	The four combinations

	Round implementation
	The algorithm
	Receive part
	Properties of Algorithm 5

	Timing properties of Algorithm 5
	Parameterizations of Algorithm 5
	Correctness proofs of Algorithm 5

	Timing analysis
	Best case analysis
	Worst case analysis
	Strategy A
	Strategy B
	Strategy C
	Comparison

	Discussion
	System model issue
	Hybrid algorithm issue

	Conclusion
	References

