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Abstract This is an account of Jayme’s contributions to
graph theory and computer science. Due to restrictions in
length, it is not possible to provide an in-depth coverage of
every aspect of Jayme’s extensive scientific activities. Thus,
I describe in detail only some of his principal contributions,
touch upon some, and merely list the other articles.

I found it easier to write the article in the first person, as
though it is an account of a previously given lecture.

Keywords Graph theory · Computer science · Computer
science in Latin America

1 Mucho Gusto en Conocerlo

According to Marisa Gutierrez, this is the way people say
“nice to meet you” in Argentina.

The first time I heard of Jayme was back in 1974. At that
time, I was a graduate student at the University of Waterloo,
in Canada. In those days, I used to become quite upset with
the general lack of knowledge about Brazil. The standard
joke among the Brazilian students was that every foreigner
thought that Buenos Aires was the capital of our country.

A friend of mine came by my office and showed me
a copy of one of Jayme’s articles, a joint paper with
Knuth [30]; a very nice paper. However, my friend’s inten-
tion was not to contribute to my education, but to irritate me
with the title page of the article. It showed Jayme’s name,

The author is currently at Facom-UFMS, MS, Brazil, with email
address lucchesi@facom.ufms.br.

C.L. Lucchesi (�)
Institute of Computing, UNICAMP, C. P. 6176, 13083-970
Campinas, SP, Brazil
e-mail: lucchesi@ic.unicamp.br

followed by the affiliation, and I quote: Universidade Fed-
eral do Rio de Janeiro, Argentina.

I must say that the elegance and simplicity of the pa-
per was worth the irritation. There was also the added plea-
sure of seeing a Brazilian publishing a paper with Knuth. As
you know, Knuth is one of the most illustrious researchers
in computer science. Almost 20 years later, in 1992, Knuth
wrote a book entitled Literate Programming [29]. Chapter 3
of this book contains a reproduction of the original article.

This paper was one of Jayme’s first contributions to make
Brazil better known abroad. Since then, Jayme has pro-
duced a significant number of papers, some of which, like
the paper mentioned above, are milestones in the history of
Brazilian science. Jayme’s activity has also helped to fos-
ter the integration of the scientific community in our coun-
try. He also has an important role in the integration of the
Latin American scientific communities, through collabora-
tion with many researchers from different countries. And
that includes colleagues from Argentina, of course.

Exercise 1 Determine the list of Latin American researchers
who are coauthors of Knuth.

2 A Universidade do Brasil

As many of you know, the Universidade Federal do Rio de
Janeiro is actually the Universidade do Brasil. Jayme par-
ticipated in the creation of the three departments in that
university where most of the research in computer science
and graph theory takes place: (i) the Núcleo de Computação
Eletrônica, created in 1970, (ii) the Department of Com-
puter Science, created in 1971, part of the Institute of Math-
ematics, and (iii) the Systems Engineering and Computer
Science Program, created in 1971.
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Jayme taught the first computer science undergraduate
course at the Universidade do Brasil, “Introduction to Com-
puting,” to undergraduate Physics students, back in 1971.

He has supervised 16 Master’s students and 15 Ph.D. stu-
dents, from several regions of Brazil and Latin America,
who are today university professors in these regions.

Jayme’s influence extends to more than one generation
of students and was enhanced by two textbooks, one on data
structures [55], a joint work with Markenson, the other on
graphs and algorithms [42].

He has also written three comprehensive surveys: (i) a
joint work with Villanueva, a survey on chordal graphs [60],
(ii) a joint work with Figueiredo, a survey on matchings in
graphs [18], and (iii) a survey on clique graphs [50].

3 Theorems × algorithms

Jayme’s work seems to be characterized by the search of
mathematical properties that help in determining efficient al-
gorithms for solving problems, or that help in showing that
the problem is probably computationally intractable. That is
clearly the case of most of his papers, particularly the afore-
mentioned paper with Knuth [30].

There are occasions, however, in which the opposite di-
rection seems to have been followed. There is a very nice
little note that he published [46], on the closure of a graph,
as defined by Bondy and Chvátal in [9], in the search of suf-
ficient conditions for a graph to be Hamiltonian. Whenever
one reads that note, it immediately comes to mind the simi-
larity involving the technique used by the closure algorithm
and the technique used to enumerate the topological sort-
ing arrangements in [30]. Indeed, Jayme calls the reader’s
attention to that similarity at the end of the note, and takes
advantage of that similarity in order to define a duality that
relates mathematically the two situations, so obviously sim-
ilar from the algorithmic point of view.

Having studied the many facets of his work, it is un-
clear to me whether Jayme views his mathematical activity
as a vehicle for finding efficient algorithms or he uses the
search for efficient algorithms as a means for discovering
nice mathematical properties. It might be both. But what-
ever his guiding principle might be, it is clear that these two
aspects of his work enrich each other.

Let us examine now some of Jayme’s work. The standard
definitions in graph theory and in algorithm complexity may
be found in classical books such as [10] and [21].

4 Topological sorting

Let us now take a look at the joint work with Knuth [30]
on topological sorting arrangements, mentioned at the be-
ginning of this lecture.

A topological sorting of a directed graph G is an enumer-
ation T := (v1, v2, . . . , vn) of the n vertices of G such that
for each edge (vi, vj ) of G, i < j .

The authors give a very nice backtracking algorithm for
generating all topological sortings of a directed graph. There
are two fundamental ideas behind the algorithm. The first
observation is that any subsequence S := (v1, v2, . . . , vr )

(0 ≤ r < n) of consecutive terms of T is a topological sort-
ing of G[S]; the subgraph of G spanned by the vertices in S.
The second observation is that vertex vr+1 must be a source
of G − S, the subgraph of G spanned by the vertices not in
S; that is, vr+1 must have in-degree zero in G − S.

With these two observations in mind, it is easy to under-
stand the algorithm for enumerating all topological sortings
of G. The algorithm is recursive. It receives (i) a sequence
S := (v1, v2, . . . , vr ) (0 ≤ r < n) that is a topological sort-
ing of G[S], (ii) a vector d on n entries such that for each
vertex v of G, the entry d[v] is equal to zero if v lies in S,
otherwise d[v] is the in-degree of v in G − S, and (iii) a
linked list L of vertices of G− S that have in-degree zero in
G − S.

The initial call to this algorithm passes as arguments the
empty sequence S, the vector d of in-degrees of each vertex
in G, and the list of sources of G.

The algorithm then recursively extends the sequence re-
ceived, in all possible ways. For this, it must extend the se-
quence with a source of G − S: it does that by extracting
from the list L its first element, say v. It is then easy to
update vector d , by subtracting one from d[w], for each ver-
tex w such that (v,w) is an edge of G. For each such w, if
the new value of d[w] is zero then w is added at the end of
list L. The algorithm is then ready to call itself recursively.
On the return from the recursive call, vector d is restored
to its original value, by adding one to d(w), for each edge
(v,w) in G. Each vertex added at the end of L, in the set of
sources of G − S − v that are not sources of G − S, is re-
moved from L. Vertex v is removed from S and added back
to the end of list L. The algorithm then proceeds with the
next source of G − S, until the complete list L is scanned
and the first vertex v is again the first vertex in the list. At
this point, the algorithm returns.

Whenever the algorithm completes a sequence of length
n, it prints the sequence as output. So after the return to the
first call to the algorithm, the complete enumeration of all
topological sortings has been printed.

Every effort is made in order to avoid any unnecessary
searching in the graph. The list L is a very efficient way of
having the sources ready for use, without the need to scan
vector d . The first vertex v in L is added to S and removed
from L. This requires constant time. Vector d is then up-
dated in time linear with respect to the out-degree of v in G.
So, too, is list L, which must now contain the sources of
G − S − v. On the return from the recursive call, a reverse
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procedure, also linear in the out-degree of v, restores the ini-
tial values for L and d , except that v is now at the end of L.

It is thus easy to see that the time required for each topo-
logical sorting is linear on the size of G. Therefore, the algo-
rithm has complexity O((m + n)α), where m is the number
of edges of G and α the number of distinct topological sort-
ing arrangements of G.

The authors even have a very elegant way of avoiding re-
peating the printing of the common prefix S, for each topo-
logical sorting arrangement that starts with S. For example,
in an acyclic directed graph on 5 vertices, the output could
look like this:

1 2 3 4 5
4 3 5

3 2 4 5
2 1 3 4 5

4 3 5
3 1 4 5

3 1 2 4 5
2 1 4 5

By the way:

Exercise 2 Reconstruct graph G, given the topological sort-
ings of G.

5 The closure of a graph

Bondy and Chvátal proved the following nice result [9].

Theorem 1 Let G be a simple graph on n vertices, v and
w two nonadjacent vertices of G such that the sum d(v) +
d(w) of the degrees of v and w in G is at least n. Then G is
Hamiltonian if and only if G + vw is Hamiltonian.

The proof of this result is an application of the pigeonhole
principle. If G is Hamiltonian, then clearly so is G+vw. For
the converse, get a Hamiltonian circuit C of G + vw. If C

does not use edge vw, then it is a Hamiltonian circuit of G

itself. If C uses edge vw, then C − vw has a path P := (v =
v1, v2, . . . , vn = w) that is a Hamiltonian path in G; more-
over, by the pigeonhole principle, there exists i such that
1 < i < n−1, vi is adjacent to w and vi+1 is adjacent to v. In
that case, (v = v1, vi+1, vi+2, . . . , vn = w,vi, vi−1, . . . , v1)

is a Hamiltonian circuit of G.
We may repeatedly add edges satisfying the inequal-

ity stated in the assertion of the theorem, until addition is
no longer possible, thereby getting a sequence of graphs
G = G0,G1, . . . ,Gr = c(G) such that either each graph in
the sequence is Hamiltonian or no graph in the sequence
is. Moreover, although the sequence is not unique, the last
graph c(G) of the sequence, called the closure of G, is
unique. If c(G) is the complete graph, clearly a Hamiltonian
graph, then G is also Hamiltonian.

It is not difficult to have a polynomial algorithm of com-
plexity O(n4) steps, which computes c(G), given G: for
each pair {v,w} of vertices of G, determine whether v and
w are nonadjacent and d(v) + d(w) ≥ n. If v and w pass
both tests, add vw to G and repeat the algorithm. This ver-
ification may be done in time O(1) for each pair, whence
the determination of the next graph in the sequence takes
O(n2). The length of the sequence is O(n2), therefore, the
algorithm has complexity O(n4).

Let us now see how Jayme was able to reduce the com-
plexity to O(n3) in [46], by making the computation of each
new graph in the sequence linear. In the initialization phase,
compute the adjacency matrix A of G, and the deficiency
matrix D, an n × n matrix such that for each pair {v,w} of
distinct nonadjacent vertices of G, D[v,w] := max{0, n −
(d[v]+d[w])}. Compute also a list L of pairs {v,w} of non-
adjacent vertices v and w of G such that D[v,w] = 0. All
this can be clearly done in time O(n2).

Let me now describe one step of the iteration phase, in
which a new graph in the sequence is obtained in time O(n),
or, alternatively, the algorithm concludes that G = c(G) in
time O(1).

If the list L is empty, then G = c(G). If L is nonempty,
remove from it a pair {v,w}, add vw to G. Update A in time
O(1). For each vertex x of G− v −w, such that x is not ad-
jacent to v and D[v, x] > 0, subtract one from D[v, x]. If
D[v, x] becomes equal to zero, add the pair {v, x} to the list
L. Repeat this, with w in the role of v. One step of the iter-
ation phase can certainly be done in time O(n). Therefore,
the computation of c(G) can be done in time O(n3).

The similarity between the idea of having a deficiency
matrix dynamically computed in this algorithm and the idea
of having an in-degree vector dynamically computed in
the algorithm of topological sorting enumeration prompted
Jayme to observe a duality involving the two problems,
which I will describe in a moment.

The line graph L(G) of G is the intersection graph of
the edges of G. That is, the set of vertices of L(G) is the
set of edges of G and two vertices e1 and e2 of L(G) are
adjacent if and only if edges e1 and e2 are adjacent in G.
Jayme expressed the duality in the following statement.

Theorem 2 Let G be an undirected graph. Then c(G) is
complete if and only if there is an acyclic orientation of the
line graph L(G) of the complement G of G in which the in-
degree of each vertex {v,w} of L(G) is at least the deficiency
D[v,w] of the pair {v,w} in G.

6 Hamiltonian paths in grid graphs

Speaking of Hamiltonian paths and circuits, let me talk now
about another very important result of Jayme, in a joint work
with Alon Itai and Christos Papadimitriou [26].
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Let G∞ denote the infinite graph whose vertices are the
points in the plane having integral coordinates and in which
two vertices are adjacent if and only if the Euclidean dis-
tance between them is equal to one.

A grid graph is a finite vertex-induced subgraph of G∞.
Thus, a grid graph is completely specified by its set of ver-
tices. For each vertex v, let vx and vy denote the coordinates
of v. The parity of v is the parity of the sum vx + vy of its
coordinates. Thus, v is even if vx + vy is even, and is odd
otherwise. All grid graphs are bipartite, with the edges con-
necting an even vertex to an odd vertex.

Denote by R(m,n) the grid graph whose set of vertices
is {v : 1 ≤ vx ≤ m, 1 ≤ vy ≤ n}. A rectangular graph G is a
grid graph that is isomorphic to R(m,n), for some integers
m and n, called the dimensions of G. Note that the dimen-
sions of a rectangular graph completely specify the graph,
up to isomorphism.

Let s and t be distinct vertices of a grid graph G. The
Hamilton path problem (G, s, t) consists in determining
whether there is in G a Hamiltonian path from s to t .

The problem of determining whether or not an instance
(G, s, t) of a Hamilton path problem has a solution is NP-
complete. This result was proven by Jayme and his coau-
thors in the paper I just mentioned. This result is the most
important known NP-complete restriction of the Traveling
Salesman Problem. Indeed, the book The Traveling Sales-
man Problem [31], edited by Lawler et al., contains a chap-
ter written by Johnson and Papadimitriou where the authors
mention the importance of the NP-completeness result and
transcribe its proof as originally published in [26].

The proof of the NP-completeness is too technical to be
presented here. But it uses grid graphs G that have “holes,”
that is, G∞ − G is not connected. In the paper, the authors
indicate that it is not known whether or not the Hamilton
path problem is NP-complete for grid graphs without holes.

The paper also presents a very nice positive result
for rectangular graphs: for every rectangular graph G :=
R(m,n), there is an algorithm of complexity O(mn) that
either determines that the instance (G, s, t) of the Hamilton
path problem has no solution or determines a solution. As
usual, the algorithm is a by-product of the proof of theo-
rems. I will not present the details here, but let me at least
tell you the characterization of the instances that do have a
solution.

Consider a rectangular graph G of dimensions m and n.
We have seen that G is bipartite. If m and n are both odd,
then the number mn of the vertices of G is odd, one of the
parts of the bipartition has one vertex more than the other
part. In that case, every Hamiltonian path in G must start
and end in vertices that lie in the majoritarian part. On the
other hand, if at least one of m and n is even, then G has an
even number of vertices, and each part of the bipartition of G

has precisely half of the vertices of G. In that case, every

Hamiltonian path has its origin and terminus in distinct parts
of the bipartition.

Without loss of generality, let us assume that G =
R(m,n), m ≥ n. A necessary condition for (G, s, t) to have
a solution is that the parities of s and t coincide if and only
if (i) mn is odd and (ii) each of s and t is even. The authors
call this the color compatibility condition of the (G, s, t)

problem.
The color compatibility condition is not sufficient in gen-

eral. It is sufficient for “large” rectangles, in which both di-
mensions are at least four. It is also sufficient for rectan-
gles in which m is odd and n = 3 (under the hypothesis that
m ≥ n).

The problems appear when either n ≤ 2 or when n = 3
and m is even. If n = 1, then the problem has a solution if
and only if

{sx, tx} = {1,m}. (1)

If n = 2, then the problem has a solution if and only if

sx �= tx or sx = tx ∈ {1,m}. (2)

The description of the necessary and sufficient condition for
the case in which n = 3 and m is even is more elaborate: We
have seen that the color compatibility condition implies that
in this case one of s and t must be even, the other odd; adjust
the notation so that s is odd and t is even. The additional
condition is then the following.

Under the hypothesis that m is even, n = 3, s is odd and
t is even, the instance (G, s, t) has a solution if and only if

sx ≥ tx − 1, with equality only if ty �= 2. (3)

In sum, the color compatibility condition is necessary. As-
sume that m ≥ n. The condition is sufficient for the cases in
which n ≥ 4. It is also sufficient for the case in which n = 3
and m is odd. For the cases in which (i) n = 1, or (ii) n = 2,
or (iii) n = 3 and m is even, the condition has the additional
requirement of (1), (2), and (3), respectively.

As I said, there are too many details to describe the proof
and the algorithm here. The following exercises may prompt
you to try to prove the result.

Exercise 3 Assume that sx, tx ≤ m − 2. Let G′ := R(m −
2, n). Show that if the problem (G′, s, t) has a solution then
so too does (G, s, t). Prove also that if n = 3 and (G, s, t)

has a solution then (G′, s, t) has a solution.

Exercise 4 Prove that the additional conditions (1), (2),
and (3) are necessary for small rectangles.
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7 Optimal multiway search trees

The most popular data structure used in large databases is
the B-tree, or a variation thereof. B-trees were invented by
Bayer and McCreight in 1971 [5], in order to minimize the
number of input operations in secondary storage. In fact, in
the worst case, this number is the height of the tree, and
a B-tree may hold millions of keys with a height equal to
three. This means that in order to find a key in a database of
that size it suffices to perform at most three input operations
from disk.

I am now going to describe a solution found by Jayme
to an open problem posed by McCreight himself. That solu-
tion was published in 1984 [43]. I shall also describe some
related work published in that same paper. For this, we need
some definitions.

Let E := (e1, . . . , en) be a sequence of elements called
keys. Associated with each key ei there is its size si and its
value, an integer yi . We assume that y1 < y2 < · · · < yn.

A multiway search tree for E is an ordered rooted tree T

such that each key e in E is assigned to exactly one node
x(e) of T , while each node x keeps a subset E(x) of keys
that satisfies the following properties:

(i) E(x) is empty if and only if x is a leaf of T .
(ii) Each nonleaf x of T has exactly |E(x)| + 1 sons.

(iii) If y is the kth son of x in the ordering of T and ej is
an arbitrary key of E(y), then exactly k − 1 keys ei of
E(x) satisfy the inequality yi < yj .

The n + 1 leaves of T are called gaps and denoted g0, g1,

. . . , gn. Each gap gi corresponds to the interval Ii := {y :
yi < y < yi+1}, where y0 := −∞ and yn+1 := +∞.

Let x be a node of T . The size s(x) of x is the sum of the
sizes of the keys of E(x). The height h(x) of x is the number
of nodes in the path from the root to x. The height of T is
the maximum height of the non-leaves of T . The space of T

is the number of nonleaf nodes.
Let L be any integer. We say that T has page limit L if

s(x) ≤ L, for each node x of T .
Let L1 and L2 be integers such that 0 < L1 ≤ L2. A weak

B-tree of limits (L1,L2) is a multiway search tree T of page
limit L2 such that:

(i) s(x) ≥ L1, for each non-leaf node x of T distinct from
the root of T .

(ii) All leaves of T have the same height.

A B-tree is a weak B-tree of limits (�L2/2	,L2).
Suppose that there are associated with each key ei a prob-

ability pi and with each interval Ii a probability qi such that
∑n

i=1 pi + ∑n
i=0 qi = 1.

In a search for a value y, pi is the probability that y = yi

and qi is the probability that y ∈ Ii . The cost for determining
whether a given value y is the value associated with some

key is equal to h(x(ei)) if y = yi for some key ei ; otherwise,
the cost is h(gi) − 1, where y ∈ Ii . As you see, the cost is
the number of input operations from disk that are necessary
in order to have the answer to the problem “does there exist
a key ei such that y = yi?” Taking into account the proba-
bilities mentioned earlier, we deduce that the average search
cost of T , or simply, the cost of T , is the sum

n∑

i=1

pih
(
x(ei)

) +
n∑

i=0

qi

(
h(gi) − 1

)
.

One of the problems is to minimize the cost of a tree,
given the limit L, in the generic case of multiway trees, or
the limits (L1,L2), in the case of a weak B-tree.

There is a particular case of the problem that is solvable
in polynomial time, using standard dynamic programming
techniques. It is the case in which the sizes of the keys are
equal (see [22, 25]).

In the paper I mentioned, Jayme showed that the general
problem of optimizing the cost of a tree, given the keys, the
probabilities and the page limit, is NP-hard. More precisely,
he proved the following result.

Theorem 3 Deciding whether there exists a multiway
search tree for E having limit L and cost at most C is
NP-complete. It remains so even if all gap probabilities are
equal to zero and each key probability is proportional to the
size of the key.

He also proved another similar result in that paper, which
implies the previous one.

Theorem 4 Deciding whether there exists a weak B-tree for
E having limits (L1,L2) and cost at most C is NP-complete.
It remains so even if all gap probabilities are equal to zero
and each key probability is proportional to the size of the
key.

Both proofs use a reduction of the partition problem, an
NP-complete problem [21]. Given a set A := {a1, a2, . . . , an}
of integers, the partition problem consists in determining
whether or not there exists a partition of A in two blocks
such that the sums of the elements in each block coincide.

Jayme also gave pseudopolynomial algorithms for the
problems considered in Theorems 3 and 4, using dynamic
programming. His algorithm determines a cost optimal mul-
tiway tree in time O(n3L) and a cost optimal weak B-tree
in time O(n3L2). He also gave polynomial algorithms for
minimizing either the height or the space of a multiway tree.

Let us get now to the problem posed by McCreight and
solved by Jayme. The problem is the following: given a se-
quence E, and limits (L1,L2), give an efficient algorithm
for determining a weak B-tree that has height two, precisely
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M keys in the root and minimum root size. As usual, we
are assuming that 0 < L1 ≤ L2. We are also assuming that
∑

si > L1, otherwise there is no reason for a tree of height
two.

Let us first show how Jayme solved a simpler problem:
solve McCreight’s problem relaxing the condition on the
number of keys in the root. That is, the root may have any
number of keys, subject to the upper limit condition on its
size.

Here is a description of the very elegant solution for this
simpler problem. Define a complete, acyclic directed graph
D on the set {v0, v1, . . . , vn+1} of vertices, in which for ev-
ery pair (i, j) such that 0 ≤ i < j ≤ n + 1, an edge leaves
vertex vi , enters vertex vj and the cost of that edge is d[i, j ],
defined as follows:

d[i, j ] :=
{

sj , if L1 ≤ ∑
i<k<j sk ≤ L2

∞, otherwise,

where sn+1 := 0.
Let the cost of a directed path P be the sum of the costs of

its edges. For each directed path P from v0 to vn+1 of cost
at most L2, the set of vertices V (P ) gives a (possibly not
optimal) solution to the simplified problem: the set of keys
in the root is precisely the set {ei : vi ∈ V (P ) − v0 − vn+1}
and the size of the root is the cost of P . If, in addition, the
cost of P is minimum, then the tree has minimum root size.

Thus, Jayme reduced the simplified version of the prob-
lem to that of finding in D a path of minimum cost from v0

to vn+1. A straightforward implementation of a minimum
cost path algorithm in D takes time O(n2). Well, Jayme dis-
covered a structure in the costs in the graph that allowed him
to decrease the complexity of the algorithm to O(n logn).

Let us now see how to solve the original problem, in
which we would like to have not only minimum root size,
but also precisely M keys in the root. The solution described
here seems simpler than that originally given by Jayme in
the paper, but is somewhat equivalent. In terms of the com-
plete acyclic directed graph D defined above, the problem is
equivalent to that of finding in D, among all directed paths
of length M + 1 from v0 to vn+1, one that has minimum
cost.

So, it is easy to solve: define an (n + 1) × (n + 1) matrix
A, initialized with ∞ everywhere, except at entry A[0,0],
which is initialized with zero. Then

for r = 1, . . . ,M + 1

for i = 0, . . . , n

for j = i + 1, . . . , n + 1

let A[j, r] := min
{
A[j, r],A[i, r − 1] + d[i, j ]}.

Of course, A[i, r] is the cost of the minimum cost path from
v0 to vi that has length r . In particular, if A[n+ 1,M + 1] ≤

L2, then A[n + 1,M + 1] is the size of the root of a weak
B-tree for E with limits (L1,L2) having precisely M keys
in the root and minimum root size. A straightforward imple-
mentation of this algorithm takes time O(n2M). Jayme was
able to lower the complexity to O(nM logn).

8 Iterated clique graphs with increasing diameters

Let us now examine a result proved by Jayme and Born-
stein [12]. The result answered a question that had been open
for 12 years, it was posed in two articles and also in the book
Graph Dynamics, by Prisner [35].

Let G be a graph. A clique of G is a set of pairwise ad-
jacent vertices of G. A clique of G is maximal if it is not a
proper subset of some other clique of G. The clique graph
K(G) of G is the intersection graph of the family of maxi-
mal cliques of G. That is, the set of vertices of K(G) is the
set of maximal cliques of G, and two vertices k1 and k2 of
K(G) are adjacent if and only if the cliques k1 and k2 of G

intersect.
For each nonnegative integer i, define Ki(G) := G if

i = 0 and Ki(G) := K(Ki−1(G)), if i > 0. Likewise, for
each nonnegative integer i, define Li(G) := G if i = 0 and
Li(G) := L(Li−1(G)), if i > 0, where L(G) denotes the
line graph of G. For each vertex k of K(G), and each posi-
tive integer i, the ith inverse image K−i (k) of k is the clique
k of G if i = 1, otherwise it is

⋃
v∈K−1(k) K

−(i−1)(v).
The diameter diam(G) of G is the maximum distance

between any two vertices of G. That is, if d(v,w) de-
notes the distance between v and w in G, then diam(G) :=
max{d(v,w) : v,w ∈ V (G)}. A pair of vertices of G is dia-
metrical if their distance is equal to the diameter of G.

Hedman [24] showed that

diam(G) − 1 ≤ diam
(
K(G)

) ≤ diam(G) + 1.

The proof of the above inequalities is not difficult. In fact, if
you want to warm up for this subject, here is a nice problem.

Exercise 5 Let G be a connected graph with at least one
edge. Let F be a family of nonnull cliques of G such that
for every edge e of G, both ends of e lie in some member of
F . Let I denote the intersection graph of G induced by F ,
that is the set of vertices of I is F , two vertices f1 and f2

of I are adjacent if and only if the cliques f1 and f2 of G

intersect. Prove that

diam(G) − 1 ≤ diam(I ) ≤ diam(G) + 1.

Prove also that diam(I ) = diam(G) + 1 if and only if there
exist two cliques k1 and k2 in F such that for each vertex
v1 of k1 and each vertex v2 of k2, vertices v1 and v2 are
diametrical in G.
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Note that the inequality proved by Hedman is a particular
case of Exercise 5. It suffices to define F to be the family of
maximal cliques of G: graph I will be the clique graph of
G in that case. Another application of Exercise 5 is to define
F to be set of pairs of vertices of G that are adjacent: in that
case, graph I will be the line graph of G. The inequality for
line graphs was proved by Knor et al. [28].

Hedman also described a family of graphs G for which
diam(K(G)) = diam(G) + 1, and asked if graphs G exist
with diam(Ki(G)) = diam(G) + i for each positive integer
i ≥ 2.

The existence of such graphs G for i = 2 was estab-
lished by Balakrishnan and Paulraja [2] and independently
by Peyrat, Rall, and Slater [34], who also proved the exis-
tence in the cases i = 3 and i = 4.

Jayme and Claudson were able to prove the existence of
such a G for all positive integers i. In order to do that, they
defined a graph H(d,G), where d is a positive integer and
G is a graph. Graph H(d,G) was defined as follows: (i) take
two copies G′ and G′′ of G; (ii) take a new vertex v, and join
it to each vertex of each of G′ and G′′ by a path of length d .
Then they showed the following result.

Theorem 5 Let G be a graph whose diameter is at most
2d , v1 and v2 two vertices of Ki(H(d,G)). If the inverse
ith images of v1 and v2 are contained in G′ and G′′, re-
spectively, then v1 and v2 are diametrical with distance
diam(H(d,G)) + i.

Thus, Hedman’s problem was reduced to finding a suit-
able graph G. They were able to use a relatively compli-
cated argument to show that Li(Kn) is a good choice. More
specifically, they proved the following result.

Theorem 6 Let i, d and n be positive integers such that
2d > i + 2, n ≥ 4 and i ≤ 
n/2� − 1. Let G be the graph
H(d,Li(Kn)). Then

diam
(
Ki+1(G)

) = diam(G) + i + 1.

With the above theorem, they solved completely the
question, which had remained open for 12 years.

9 Clique graphs of directed path graphs and of rooted
path graphs

Let us now examine another important contribution of
Jayme. It is a joint work with Prisner [36]. The paper was
selected to be part of the Editors’ Choice 1999 of the Dis-
crete Applied Mathematics, an indication that it was one the
best articles published by the periodical in 1999.

In that paper, the authors characterize the clique graphs
of two families of graphs, the directed path graphs, and the
rooted path graphs.

A directed path graph (or a DV graph) is the intersection
graph of the family of directed paths of a directed tree. A du-
ally directed path graph (or dually DV graph) is a graph G

that admits a spanning directed tree T such that, for each
edge (v,w) of G, T contains a directed v − w path or a
directed w − v path whose vertices form a clique in G.

In order to describe their characterization of a dually DV
graph, we need some definitions.

A family F of sets has the Helly property if, for every
nonnull subcolletion G of F , either G contains two disjoint
sets or all the sets in G have a common element. A graph is
clique-Helly if its family of maximal cliques has the Helly
property.

For any graph G, let G′ denote the graph obtained from
G by adding, for each vertex v of G, a new vertex v′ and a
new edge joining v to v′.

Here is the characterization of dually DV graphs.

Theorem 7 A graph G is a dually DV graph if and only if
G is clique-Helly and K(G′) is a DV graph.

The authors also derive an algorithm of complexity
O(|E(G)|4) to determine whether a given graph G is du-
ally DV.

Let us now describe their characterization of clique
graphs of rooted path graphs. A rooted tree is a directed tree
having precisely one vertex with in-degree zero (a rooted
tree is sometimes called a branching). A rooted path graph
(or RDV graph) is the intersection graph of the family of
directed paths of a rooted tree. A dually rooted path graph
(or dually RDV graph) is a graph G that admits a spanning
rooted tree T such that, for each edge (v,w) of G, T con-
tains a directed v − w path or a directed w − v path whose
vertices form a clique in G.

A chordal graph is a graph that contains no induced cycle
of length four or greater. A strong chord of a cycle of a graph
is a chord that joins two vertices of the cycle with an odd
distance in the cycle. A strongly chordal graph is a graph in
which every cycle on six or more vertices contains a strong
chord.

Here is the characterization for dually RDV graphs.

Theorem 8 The following statements are equivalent for a
graph G:

(i) G is a dually RDV graph.
(ii) G is clique-Helly and K(G′) is an RDV graph.

(iii) G is strongly chordal and K(G′) is an RDV graph.

The authors also derive an algorithm O(|V (G)2.38|) to
determine whether or not a given graph G is dually RDV.
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10 Other results

We now examine very briefly other results obtained by
Jayme.

10.1 Comparability graphs

Let D be an acyclic orientation of a graph G. Then D is
transitive if, for each pair (u, v) and (v,w) of edges of D,
edge (u,w) also lies in D. A graph is a comparability graph
if it admits a transitive orientation.

For any two vertices v and w of D, let 〈v,w〉 denote the
set consisting of those vertices that are simultaneously de-
scendants of v and ancestors of w. Orientation D is locally
transitive if G[〈v,w〉] is transitive, for each edge (v,w) of
D. Graph G is local comparability if it admits a locally tran-
sitive orientation.

A graph G is P4-comparability if it admits an orienta-
tion D such that the restriction of D to the subgraph of G

spanned by the set of vertices of each path of length three is
transitive.

A circle graph is the intersection graph of chords of a
circle, in which no two chords have a common point in the
circle.

A pair {v,w} of vertices of G is even if every induced
path from v to w has even length. A pair {v,w} is odd if v

and w are nonadjacent and each induced path from v to w

has odd length.
There are four papers on this subject that should be men-

tioned. In the first one [48], Jayme introduces the concept
of local comparability graphs, as a generalization of com-
parability graphs. The class of local comparability graphs
includes the comparability graphs and the circle graphs.

The first main result in that paper is that every local com-
parability graph is a difference of two comparability graphs.
The second main result is that the class of local comparabil-
ity graphs of dimension 1 is precisely the class of connected
interval graphs that correspond to a set of totally noncom-
parable intervals of the real line. Circle graphs are similarly
but less concisely characterized.

The next three papers show a beautiful evolution of
thought, culminating with a nice characterization of source
and sink sets, and also a characterization of even and odd
pairs in a comparability graph.

The first of these three papers considers the problem of
determining whether a comparability graph has a transitive
orientation with specified sources and sinks. It is a joint
work with Mello and Figueiredo [58]. They consider clique
partitions of a comparability graph and determine some nec-
essary conditions for the existence of a solution to the prob-
lem. This condition turns out to be sufficient for graphs with
at most three maximal cliques. In particular, if only sources
are specified, then the set is a source set if and only if each

pair of vertices in S is an even pair and each vertex of S is a
source of some transitive orientation.

In the second paper of the series, a new author joins the
team: Gimbel [19]. The authors find a condition that is nec-
essary and sufficient for the problem to have a solution. For
a specified set S of sources and a specified set T of sinks,
the authors construct a graph G(S,T ) that is trivially ob-
tained from G, S, and T and has size linear on the size of
G. Then they show that the problem has a solution if and
only if G(S,T ) is a comparability graph. So, not only they
solve the problem from a mathematical point of view, but
they also give a polynomial algorithm for deciding whether
the problem has a solution.

Finally, in the third paper of the series [20], they char-
acterize even and odd pairs in comparability and in P4-
comparability graphs. The characterizations lead to sim-
ple algorithms for deciding whether a given pair of ver-
tices forms an even or odd pair in these classes of graphs.
The complexities of the proposed algorithms are O(n + m)

for comparability graphs and O(n2m) for P4-comparability
graphs. The former represents an improvement over a recent
algorithm of complexity O(nm).

10.2 Cliques

There is an enormous number of significant results involving
cliques. Some of these have already been described. Here are
some more.

10.2.1 Clique graphs free of K3 and K4

This is joint work with Protti [37]. The authors characterize
the graphs whose clique graphs are free of triangles in terms
of forbidden induced subgraphs: K1,3, the 4-fan and K4. The
4-fan is the graph obtained from the 4-wheel by deleting an
edge from the rim. They give a similar characterization for
graphs whose clique graphs are free of K4.

10.2.2 Clique-inverse graphs of bipartite graphs

This is also joint work with Protti [39]. The authors charac-
terize the families of graphs whose clique graphs are bipar-
tite, in terms of forbidden configurations. The clique graph
of a graph G is bipartite if and only if G is free of induced
subgraphs in the following list: K1,3, the 4-fan, the 4-wheel,
C2n+5 (n ≥ 0). They also characterize two more classes:
(i) those graphs whose clique graphs are chordal bipartite
graphs and (ii) those graphs whose clique graphs are a tree.

10.2.3 Clique graphs with linear size

Another joint work with Protti [38]. Let G be a graph. By ex-
amining K(G), the authors describe some sufficient condi-
tions for the number of maximal cliques of G to be bounded
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by O(|V (G)|). These conditions are then applied to analyze
the complexity of recognizing clique-inverse graphs of var-
ious classes of graphs. In some cases, polynomial time al-
gorithms are obtained, such as in the case of K−1(Kr -free).
In other cases, the bound is used to show that certificates
may be verified in polynomial time, within a proof of NP-
completeness.

10.2.4 Clique-Helly graphs

In this paper [49], Jayme describes a characterization of
clique-Helly graphs, leading to a polynomial time algorithm
for recognizing them.

10.2.5 Clique-complete graphs

This is a joint work with Lucchesi and Mello [32]. At the
time, Mello had just completed her doctoral thesis, under
the supervision of Jayme. Some years prior to that, Mello
had written her Master’s dissertation under my supervision.
So, it was a very pleasant opportunity to be a coauthor with
Jayme and a former student of both of us.

For a natural number n, a graph G is n-convergent if
Kn(G) is isomorphic to K1, the one-vertex graph. A graph
G is convergent if it is n-convergent for some natural
number n. A 2-convergent graph is called clique-complete.
A universal vertex is a vertex adjacent to every vertex of the
graph.

The authors describe the family of minimal graphs which
are clique-complete but have no universal vertices. The min-
imality used there refers to induced subgraphs. In addition,
they show that recognizing clique-complete graphs is Co-NP
complete.

10.2.6 Clique convergent graphs

This is a joint work with Bornstein [11]. The index of a
convergent graph G is the smallest n such that G is n-
convergent, while its Helly defect is the smallest n such that
Kn(G) is clique-Helly. Bandelt and Prisner [3] proved that
the Helly defect of a chordal graph is at most one and asked
whether there is a graph whose Helly defect exceeds the dif-
ference of its index and diameter by more than one. In this
paper, an affirmative constructive answer to the above ques-
tion is given: for any arbitrary finite integer n ≥ 0 a graph is
exhibited in which the Helly defect exceeds by n the differ-
ence of its index and diameter.

10.2.7 Clique graphs of chordal graphs and of path graphs

Another joint work with Bornstein [52], where the authors
characterize the clique graphs of chordal graphs and the
clique graphs of path graphs.

10.2.8 Computing all maximal cliques distributedly

This is joint work with Protti and França [40]. The au-
thors present a parallel algorithm for generating all maxi-
mal cliques of a graph. The time complexity of the algo-
rithm is restricted to the induced neighborhood of a vertex
and the communication complexity is O(MΔ), where M is
the number of connections and Δ the maximum degree in
the graph.

10.2.9 Enumeration of maximal cliques of a circle graph

This is joint work with Barroso [51]. The authors apply
the notion of locally edge transitive orientations of an undi-
rected graph and obtain an algorithm for generating all max-
imal cliques of a circle graph G in time O(n(m+α)), where
n, m, and α are the number of vertices, edges and maximal
cliques of G. In addition, they show that the actual number
of such cliques can be computed in O(nm) time.

10.2.10 Maximal cliques in circle graphs

This is joint work with Cáceres and Song [14]. A Coarse
Grained Multicomputer (CGM) consists of a set of p pro-
cessors with O(N/p) local memory per processor and an
arbitrary communication network (or a shared memory).
A CGM algorithm consists of alternating local computation
and global communication rounds. At each communication
round, each processor sends and receives O(N/p) data.

In this paper, the authors present a parallel algorithm for
finding the maximal cliques of a circle graph using the CGM

model. The proposed algorithm requires O(logp) commu-
nication rounds. In a regular, sequential depth search, nor-
mally each edge is visited a constant number of times. The
authors devised a new technique, called the unrestricted
depth search, in which each edge may be visited an un-
bounded (but finite) number of times. The authors regard
this technique as the main contribution of the paper. The
three authors also have another paper on unrestricted depth
search in parallel [15].

10.3 Edge clique graphs

The edge clique graph Ke(G) of a graph G is the graph
whose set of vertices is the set of edges of G, two vertices of
Ke(G) are adjacent if and only if the corresponding edges
lie in a (common) clique of G.

An edge component of a graph G is a component of its
edge clique graph.

10.3.1 Characterization of edge clique graphs

This is joint work with Cerioli [16]. A k-labeling of a
graph G with n vertices is an assignment of a set l(v) ⊂
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{1,2, . . . , n} to each vertex v of G, such that |l(v)| = k and
all label sets are distinct. A set S of vertices is triangular if
|S| = (

r
2

)
for some integer r . A set S of vertices is strongly

triangular, with respect to a 2-labeling l, if |S| = (|l(S)|
2

)
.

The authors show that a graph G is an edge clique graph if
and only if it has a 2-labeling that satisfies the following two
properties: (i) every maximal clique is strongly triangular
and (ii) every strongly triangular set is a clique.

10.3.2 Starlike graphs

Denote by N(v) the set of vertices that are adjacent to v

in a graph G and by N [v] the set {v} ∪ N(v). A graph G

is starlike if there exists a partition C,D1, . . . ,Ds (s ≥ 0)

of the set of vertices of G such that C is a maximal clique
and, for u ∈ Di , v ∈ Dj , i �= j implies that {u,v} �∈ E(G),
whereas i = j implies that N [u] = N [v]. It follows that
each Di is included by precisely one maximal clique Ci ,
and Di = Ci − C. If, in addition, C ∩ Ci ⊂ C ∩ Ci+1 for
1 ≤ i < s, then G is a starlike-threshold graph.

A generalized starlike graph is a graph G such that pre-
cisely one of its edge components is a starlike graph, the
others complete graphs.

A generalized starlike-threshold graph is a graph G such
that precisely one of its edge components is a starlike-
threshold graph, the others complete graphs.

A split graph is a graph that admits a partition C,I of its
set of vertices such that C is a clique and I an independent
set of vertices. Thus, a split graph is a particular case of a
starlike graph, in which each Di is a singleton, for 1 ≤ i ≤ s.

This is also joint work with Cerioli [17]. In this pa-
per, the authors show that the class of starlike (starlike-
threshold) graphs contains the class of edge clique graphs of
generalized starlike (starlike-threshold) graphs. In addition,
every starlike (starlike-threshold) graph which is an edge
clique graph is an edge clique graph of a generalized starlike
(starlike-threshold) graph. They also prove that a starlike-
threshold graph is an edge clique graph if and only if its
maximal cliques and intersections of maximal cliques are
triangular sets.

10.4 Directed graphs

Jayme published several papers related to efficient algo-
rithms for directed graphs. Let us take a brief look at each
one of them.

10.4.1 Enumeration of directed circuits

This is a joint work with Lauer [54]. The authors give an
O(n + mc) algorithm for enumerating all the directed cir-
cuits of a directed graph on m edges, n vertices, and c di-
rected circuits.

10.4.2 Enumeration of kernels

A kernel N of a directed graph D is an independent set of
vertices of D such that for every w ∈ V (D) − N there is an
edge from w to N . The existence of a kernel in an directed
graph with no odd directed cycles was proved by Richard-
son [41].

This is a joint work with Chaty [53]. The authors give
an algorithm for generating all distinct kernels in a directed
graph D with no odd directed circuits. The complexity of the
algorithm is O(nm(k + 1)), where n, m, and k are the num-
ber of vertices, edges, and kernels of D. Also, they show that
the problem of determining the number of kernels in a di-
rected graph D is #P -complete, even if the longest directed
circuit of D has length two.

10.4.3 A minimax equality

The problem of finding the minimum set of vertices that in-
tersects all circuits in a directed graph is NP-complete [21].
Jayme published a paper [47] in which he introduces the
class of connectively reducible digraphs and shows that it
contains two classes known to admit polynomial solutions:
the class of fully reducible subgraphs and the class of cycli-
cally reducible digraphs. He also describes an algorithm
O(n2(n + m)) that recognizes connectively reducible di-
rected graphs and determines a (minimum) set T of ver-
tices that intersects all directed circuits for those graphs and
a (maximum) vertex-disjoint set of directed circuits having
cardinality equal to that of T .

10.4.4 Orientations with single source and sink

This is joint work with Persiano and Oliveira [57]. Given
an undirected graph G, possibly with multiple edges, and
distinct vertices s and t of G, the authors consider several
orientations D of G. One of these orientations is acyclic and
has s and t as the only source and sink of D, respectively.
They show that this is possible if and only if graph G+ st is
2-connected. For each of the problems considered, they use
depth-first search to give linear time algorithms for finding
the orientations or determine that they do not exist.

10.4.5 Generation of acyclic orientations

This is joint work with Barbosa [4]. The authors describe
an algorithm for finding all the acyclic orientations of a
graph G in overall time O((n + m)α) and delay complex-
ity O(n(n + m)), where G has n vertices, m edges, and α

acyclic orientations. The space required is O(n + m).



J Braz Comput Soc (2012) 18:153–165 163

10.4.6 Rooted tree structure

A directed graph D = D(V,E) with a given root vertex s

is reducible if every depth-first search tree with root s has
the same set B of back edges. Thus, for a reducible directed
graph D, the associated dag (the subgraph with vertex set
V and edge set E −B) is uniquely defined. A tree reducible
graph is a reducible subgraph for which the transitive reduc-
tion (a smallest directed graph with the same reachability) of
the associated dag is an arborescence (outdirected tree) with
root s.

In this paper [44], Jayme gives the polynomial algorithm
for (1) recognizing, (2) finding isomorphisms between, and
(3) finding minimum equivalent directed graphs for tree re-
ducible graphs.

10.5 Split-indifference graphs

This is a joint work with Ortiz and Maculan [33]. An indif-
ference graph is an intersection graph on a set of unit in-
tervals on the real line. A split-indifference graph is a split
graph that is also an indifference graph. The authors give the
following characterization of split-indifference graphs.

Theorem 9 A connected graph G is split-indifference if and
only if

(i) G is complete, or
(ii) G is the union of two cliques G1 and G2 such that G1 −

G2 = K1, or
(iii) G is the union of three cliques G1, G2, G3 such that

G1 − G2 = K1, G2 − G3 = K1 and

V (G1) ∩ V (G3) = ∅ or V (G1) ∪ V (G3) = V (G).

Using that characterization, they determine the chromatic
index χ ′(G) of split-indifference graphs. In order to do that,
they construct an edge coloring of K2n, n ≥ 3, using 2n − 1
colors such that K2n has a perfect matching without color
repetitions.

The resulting algorithm is very simple. It determines in
linear time an optimum edge coloring of a split-indifference
graph.

10.6 Other results

There are many other results that I should describe, but
length restrictions force me to be very concise.

10.6.1 Task scheduling

Jayme has four papers in this area, three of them with
Błażewicz and Kubiak [6–8, 45].

10.6.2 Euler tours

A joint work with Cáceres, Deo, and Sastry [13] describes an
alternative implementation of Atallah and Vishkin’s parallel
algorithm for finding an Euler tour of a graph [1].

10.6.3 Search

I should mention here three papers. The first paper is a joint
work with Wilson, on ternary trees [56]. The second paper
is joint work with Navarro et al., on optimal binary search
trees with costs depending on the access paths [59].

The third paper is a joint work with Moscarini and Pe-
treschi, Node Searching and Starlike Graphs. It is a very in-
teresting paper. Let G be a graph whose vertices are contam-
inated. Assigning a searcher to a contaminated vertex makes
it become guarded. Removing the searcher of a guarded ver-
tex turns it clear. However, a clear vertex becomes contam-
inated again if it has a contaminated neighbor. The node-
search number of G is the least number of searchers needed
to clear all its vertices. Gustedt [23] has shown that the prob-
lem of determining the node search number of G is NP-hard
for uniform k-starlike graphs. These graphs are generaliza-
tions of split graphs, obtained when each vertex of the inde-
pendent set of the bipartition of the split graph is replaced by
a k-vertex clique. The authors describe necessary and suf-
ficient conditions for finding the node-search number of a
uniform k-starlike graph. The characterization described ex-
tends a corresponding result for split graphs by Kloks [27].
In addition, it leads to a new algorithm for finding the node-
search number for graphs of this class.
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