J Braz Comput Soc (2012) 18:251-266
DOI 10.1007/s13173-011-0052-4

ORIGINAL PAPER

Package level cohesion measurement in object-oriented software

Varun Gupta - Jitender Kumar Chhabra

Received: 25 December 2010 / Accepted: 6 December 2011 / Published online: 22 December 2011

© The Brazilian Computer Society 2011

Abstract Packages are re-usable components for most
of object-oriented systems. To promote reuse in object-
oriented systems and to make deployment and maintenance
tasks easy, packages in object-oriented systems must be co-
hesive. Quantification of cohesion of packages can be very
useful in assessing their reusability, quality etc. In this pa-
per, a new measure for the measurement of package cohe-
sion is proposed. The cohesion of a package is measured in
terms of the degree of intra-package dependencies among
its elements. The hierarchical structure of packages has also
been taken into account during the measurement. The pro-
posed measure has been validated theoretically as well as
empirically. An empirical study has been conducted using
25 packages taken from six open-source software projects
developed in Java. The proposed package cohesion measure
is found to be a useful indicator of external quality factors
such as the reusability of packages. The proposed metric is
also established as a better predictor of code reusability than
the existing cohesion measures.

Keywords Cohesion - Metrics - Quality - Reusability -
Packages - Object-oriented software
1 Introduction

Major cost of a software system is devoted to its main-
tenance [49]. During maintenance, software professionals

V. Gupta (X) - J.K. Chhabra

Department of Computer Engineering, National Institute
of Technology, Kurukshetra 136119, India

e-mail: varun3dec @yahoo.com

J.K. Chhabra
e-mail: jitenderchhabra@rediffmail.com

spend at least half their time reading and analyzing software
in order to understand it [8, 28]. Classes contain abstrac-
tions of code elements that are essential for understanding
and maintaining the system. However, they are too small to
gain understanding of a system. Maintenance can be facili-
tated by organizing classes into highly modular groups, i.e.,
where the group contains only related classes and coupling
between groups is minimized. In such groups it is easier to
retrieve related items, and they facilitate understanding of
the system. Such groups are termed as packages in mod-
ern object-oriented systems [60]. Packages consist of ele-
ments such as classes or interfaces which are conceptually
interrelated to each other. The relations among elements of
a package determine the cohesion of a package [58]. Co-
hesive packages provide a modular structure in which fine-
grained classes can be assembled to provide coarse-grained
functionality and thus, ease the maintenance and promote
the reusability [59]. Packages are important because they
are units of organization for object-oriented software sys-
tems [51] and are widely used in object-oriented languages
such as Java [37], C# [64].

Packages should follow the basic principle of design-
maximum cohesion and minimum coupling. This paper
primarily targets measuring cohesion of a package, so as
to maximize it later, resulting in a better quality compo-
nent. ‘““You cannot control what you cannot measure” [31],
stresses the need of such measures. Thus a good maintain-
able and quality software system can be facilitated either by
reusing the existing packages or by organizing the newly de-
veloped classes into packages, where the packages contain
only interrelated classes and the cohesion of these packages
is maximized. Moreover, packages lacking cohesion con-
tain classes that independently perform numerous disjointed
functions. If such non-cohesive packages are made available
to the designers and programmers of the software, they will

@ Springer

mailto:varun3dec@yahoo.com
mailto:jitenderchhabra@rediffmail.com

252

J Braz Comput Soc (2012) 18:251-266

have to import classes from many packages to provide full
functionality, resulting into more efforts, and difficult main-
tenance. Another repercussion of this will be a more com-
plex deployment or re-deployment of application services
because multiple packages must be re-compiled, tested, and
distributed. Thus, a good system design should consist of
packages with high cohesion and low coupling among pack-
ages [63]. Still, only a few quantitative studies of the con-
crete use of cohesion and coupling have been conducted at
the package level. In this paper, a new metric is proposed for
measuring cohesion at the package-level in order to achieve
good quality packages.

This paper first provides some basic definitions and prop-
erties regarding object-oriented systems containing pack-
ages and then defines cohesion measure at package level for
object-oriented systems. While defining the metric for co-
hesion at package level, hierarchical structure of the pack-
ages has also been taken into consideration. The proposed
measure is validated theoretically using Briand et al.’s eval-
uation criteria [13] and usefulness of the proposed metric is
also established by correlating this metric with the external
quality factor-reusability. This paper is organized as follows.
In Sect. 2, the previous related works are reviewed and Sect.
3 provides the theoretical framework for package cohesion
measurement. Section 4 contains the definition of the pro-
posed measure and Sect. 5 presents the theoretical valida-
tion of the proposed measure. Section 6 validates the pro-
posed measure through experimental evaluation conducted
using open-source software projects and Sect. 7 presents the
conclusions and future work directions.

2 Related work

In literature, cohesion metrics have been defined for mod-
ules in structured programming and for classes in object-
oriented systems [10-12, 14, 23-26, 30, 32, 34, 40, 56,
57, 72, 73]. The metrics exist in literature for the measure-
ment of cohesion at the higher levels of abstraction also
[1, 3, 35, 38, 47, 50, 51, 54, 58, 63, 70, 74]. The approaches
taken to measure cohesiveness of procedural programs have
generally tried to evaluate cohesion on a procedure (func-
tion). Emerson proposed a measure to compute cohesion ap-
plicable to modules in the sense of Pascal procedures [34].
This measure was based on a graph theoretic property
that quantified the relationship between control flow paths
and references to variables. Bieman and Kang provided
intra-module cohesion measures for cohesion based on the
design-level information [11]. Another approach for mod-
ule cohesion measurement using the slice abstraction of a
program based on data slices was proposed by Bieman and
Oott [12].

@ Springer

Most existing approaches for class cohesion measure-
ment consider interactions between methods and/or at-
tributes in a class. Chidamber and Kemerer defined cohesion
of a class as the degree of similarity of its methods [25, 26].
They presented a measure for class cohesion named Lack
of Cohesion in Methods (LCOM), improved by Henderson-
Sellers’s LCOM™ [39]. Eder et al. [32] adapted the existing
frameworks for cohesion in the procedural and object-based
paradigm to the specifics of the object-oriented paradigm.
They distinguished between three types of cohesion in an
object-oriented system: method, class and inheritance cohe-
sion and various degrees of cohesion were defined for each
type of cohesion. Ott et al. adapted the approach of module
cohesion measurement based on data slices for the cohesion
measurement of a class in object-oriented systems [56, 57].
Bieman and Kang measured cohesion for classes using the
number of pairs of methods in a class that access common
instance variables [10]. They defined Tight Class Cohesion
(TCC) and Loose Class Cohesion (LCC) measures based on
the concept of direct and indirect common attribute usage by
the public methods of the class. Bansiya and Davis came up
with another metric, Cohesion Among Methods of Classes
(CAMC) which evaluated the relatedness of methods in the
interface of a class using the parameter lists defined for the
methods [4, 5]. A significant advantage of the CAMC met-
ric over other traditional metrics was that the new metric
was not dependent on the implementation of the methods
of a class and thus could be used during the design phase
to measure the cohesiveness of methods in a class. Using a
different approach, Counsell et al. proposed a metric based
on the Hamming distance to demonstrate problems in cohe-
sion measurement and concluded that cohesion and coupling
measurement are interrelated [29]. Briand et al. defined a
cohesive interaction graph to represent the design-level in-
teractions and proposed a cohesion metric suite based on the
graph [16, 73].

Metrics have been proposed for the measurement of co-
hesion at the higher levels of abstraction such as package,
sub-systems and systems levels. Music measured the cohe-
sion of a package as an external property of a module [52]
and claimed that the internal organization of a module is not
enough to determine its cohesion. Morris followed this line
by computing module cohesion considering the fan-in of the
contained objects [54]. Similarly, Anquetil and Lethbridge
proposed Modularization Quality (MQ) [2] which used the
dependencies between modules of two distinct subsystems
and the ones between the modules of the same subsystem to
determine the cohesion of clusters. Also, Brito e Abreu and
Gouldo [19] used cluster analysis techniques to obtain better
modularization solutions as far as coupling and cohesion are
concerned.

Patel et al. [58] employed the concept of document simi-
larity to measure the similarity between subprograms by us-
ing the shared data types and the cohesion is computed to

J Braz Comput Soc (2012) 18:251-266

253

be the average of the similarity measures over distinct pairs
of subprograms of Ada programs. Xu et al. [70] also pro-
posed cohesion measures for packages in language Ada95.
Martin proposed a package level metric set including Re-
lational Cohesion (RC) which is defined as the ratio of the
number of data relations in a package to the number of com-
ponents in the package [51]. Using the package level met-
rics given by Martin, Atole and Kale assessed the quality
of object-oriented design [3]. As opposed to counting, Allen
et al. proposed an information-theory-based metric to eval-
uate module cohesion [1]. They first used a graph to rep-
resent the relations between elements in a module. Then,
they regarded such a graph as an information source and
modeled the pattern of edges incident to each node as a
random variable. Finally, module cohesion was defined as
excess entropy (EEC) [1]. It is easy for EEC to be applied
to package, since it only requires intramodule-edges graph.
However, both RC and EEC only consider intra-package
data dependences, thereby not being adapted to the pack-
ages not having such kind of dependence. Lee and Liang
proposed a cohesion measure, Information-based cohesion,
(ICH) for a set of classes based on information flow through
method invocations within classes [47]. They defined cohe-
sion of a set of classes as the sum of the cohesion of the
classes in the set. Using a similar approach, Gui and Scott
[38] proposed system level cohesion measures for evalua-
tion of component reusability and defined cohesion of the
system as mean cohesion of all the classes of the system.
Further, Tagoug [63] proposed cohesion measures for sub-
jects (which are quite similar to the packages) and defined
subject cohesion on the basis of interactions among classes
within a subject. However, the author did not consider the
hierarchy of subjects while defining the cohesion measure.
Besides this, Ponisio et al. proposed an approach to measure
package cohesion based on client usage rather than explicit
dependencies within a package [59, 60]. Following a similar
approach, Zhou et al. proposed a new measure called SCC
for measuring semantic cohesion of a package by consider-
ing the fact that two components of a package are related
tightly if they have similar contexts [73].

Software cohesion metrics proposed for object-oriented
software do not cover the abstractions and complexity di-
mensions introduced by the aspect paradigm. As a conse-
quence, some measures [20, 21, 36, 46, 61, 71] have been
proposed for cohesion measurement for aspect-oriented
software systems. Zhao and Xu approach [71] is the first
proposal in the field of aspect cohesion measurement. It is
based on a dependency model for aspect-oriented software
that consists of a group of dependency graphs. According to
the Zhao and Xu approach, cohesion is defined as the de-
gree of relatedness between attributes and modules. Zhao
and Xu presented an approach for measuring aspect cohe-
sion based on inter-attributes, inter-modules and module-
attribute dependencies. However, Sant’ Anna et al. proposed

in [61] an extension of the well-known LCOM (Lack of Co-
hesion in Methods) metric [26]. The proposed metric LCOO
(Lack of Cohesion in Operations) measures the amount of
method/advice pairs that do not access to the same instance
variables. This metric measures the lack of cohesion of a
component. Afterwards, Gélinas et al. proposed an approach
for aspect cohesion measurement based on dependencies
analysis [36]. They introduced several cohesion criteria tak-
ing into account aspects’ features and capturing various de-
pendencies between their members. They also proposed new
aspect cohesion metric and compared it with other existing
aspect cohesion metrics.

The proposed package level cohesion metrics in this pa-
per define cohesion of a package in terms of the degree of
intra-package dependencies among its classes not as the sum
of the cohesion of the classes in the package as done by
the existing measures such as ICH metric proposed by Lee
and Liang [47] and metrics given by Gui and Scott [38].
Moreover, the hierarchical structure of a package has also
been taken into account during cohesion measurement of the
package which has been ignored by the existing cohesion
measures such as metrics proposed by Tagoug [63]. Further,
in Sect. 6.6, the proposed metric has been compared exper-
imentally with the existing cohesion metrics LCOM [25,
26], LCOM* [39], TCC [10], CAMC [4, 5], RC [51], EEC
[1], ICH [47], and SCC [74] using Karl Pearson correlation
method [27, 45] to compute the correlation coefficients be-
tween the package reusability ratings given by a team of de-
velopers (as given in Table 4) and the values produced by the
various cohesion measures. From the results of the study,
it is found that the proposed measure produced the high-
est magnitude of correlation with the package reusability in
comparison to the various cohesion measures. These results
suggest that the proposed package level cohesion measure
is a better indicator of reusability than the existing cohesion
measures.

3 Theoretical framework for measurement

In this section, we provide basic definitions and properties
related to packages, which are required to lay foundation of
arigorous framework for measurement of package cohesion.
First, definitions related to the concept of packages are given
and then, relationships between elements of a package are
defined.

3.1 Definition of packages
For the purpose of cohesion measurement, a package is de-
fined as a set of elements (classes, interfaces or packages)

and relations between elements. The presence of package
within a package leads to the hierarchical organization of

@ Springer

254

J Braz Comput Soc (2012) 18:251-266

the package. A package at hierarchical level i can be repre-
sented as p' = (E'*!, Ri*1) where Ei*! represents the set
of elements of a package p' at level i + 1, which may be
classes, interfaces or packages, and R**! is a set of relations
on E'*! at hierarchical level i + 1i.e. Rit! C Eitl x Eit+],
The relations on set of elements represent binary directed
connections or relations between pairs of elements of the
package. A package is used “to group elements and to pro-
vide a namespace for the grouped elements” [55].

Subpackage: For any package p' in a system, subP(p')
denotes an element of p’ which is a package itself and is
present at level i + 1 in the hierarchy. A package p’Jrl =
(E’+2 R’+2> is said to be a subpackage of package p) =
(E“rl R’+1> if pitl e Eilie., pi™! = subP(pl). The top
level in the package hlerarchy in a software system consists
of packages, which are not subpackages of any other pack-
age and the lowest level is occupied by the atomic members,
which do not contain any subpackages.

Disjoint packages: All packages of a system are struc-
tured into a number of non- overlapplng hierarchical levels,

such that for any two packages pj, p2 at the same level i,

EtT N ESY! = ¢, Then, packages p! and ph are said to be
disjoint packages. Thus, packages defined at the same hi-
erarchical level are always disjoint. This means, packages
defined at the same level never share classes (or interfaces)
among them. In other words, a single class (or interface) al-
ways belongs to a single package at a particular level of the
package hierarchy.

Empty package: A package having no elements, and hence
no relations, is termed an empty package. It is represented
as (0, 0).

3.2 Definitions of relations

The relation between a pair of elements of a package can be
of the type inheritance relation, aggregation relation, refer-
ence relation, etc. [15]. This type of relation between a pair
of elements e1 and e, of a package present at hierarchical
level i is represented by r(el, ‘32)- The presence of a rela-
tion between these elements is also denoted by (¢}, €5) =1
or ej — e5. These relations are asymmetric in nature i.e.
e} — e, does not imply that e, — e}. The presence of dif-
ferent types of element in a package such as classes, in-
terfaces or subpackages causes different types of relation
among package elements. However, interfaces are quite sim-
ilar to abstract classes in structure as well as in behavior,
as far as package level cohesion measurement is concerned.
Thus, in this paper, interfaces have been treated just as a
special type of class. By following the above discussion, the
possible types of relation among package elements are de-
scribed as follows.

@ Springer

Class—Class relation: This type of relation exists between
a pair of classes (or interfaces) of a package due to the pres-
ence of different types of relation between them such as ag-
gregation, inheritance, reference relations etc. [15]. This re-
lation between a pair of elements of a package, p' (p' =
(ET+1 RI*1) where r(el™!, eft) € R7T! & el'H At e
E*1) is represented as r(e’Jrl ’+1) = 1|(r(c’+1 ’+1) =
1A c'+1 = ellJrl A c’;l = e'2+1) or it can be said that if
there is a relation between two classes of a package, then

there exists a relation between package elements i.e. c’i“ —

"H = e’l+l — e’2+1 where (c"H = e’1+1 A cé‘H = eé“).
The relations of the type Interface—Class, Class—Interface or
Interface—Interface are covered in Class—Class relation as in-
terfaces have been considered as a special type of class dur-

ing package cohesion measurement.

Package—Package relation: This type of relation exists be-
tween two subpackages of a package. Such types of rela-
tion are recursively defined. One package is said to have a
relation with the other package if elements of one package
have got one or more relations with the elements of the other

package. This type of relation between a pair of elements
1+1 1+1

of a package p' (p' = (E'*1, RIT1) where r(e]) e
R+l & ’1“ e’2+] Ei*tly is given as r(e‘+l e’;l) =
1|r(c>1+2’ 2>l+2) — 1A c121+2 c ell+1 A 62>l+2 c 612-‘,-1 A

= subP(p') A 6‘2+1 = subP(p'). In other words, if

classes (or interfaces) present at next or higher levels be-
longing to a pair of subpackage elements of a package are
related, then these subpackage elements of package are also
related i.e. ¢ zit2 c2>’+2 = e’lJrl — e’;rl where (c—'+2

l'H /\czl+2 € e’2+1 /\ell+1 = subP(p')/\el'H = subP(p)).

t+1
€

Subpackage—Class relation: This type of relation origi-
nates from a subpackage to a class (or interface) of a pack-
age at the other end. A subpackage (at level i + 1) of a
package (at level i) is said to be related to a class (or in-
terface) at level i 4 1 of the package, if any class or inter-
face (present at i 4+ 2 or higher levels) of the subpackage
has got a relation with the class or interface of the package.
This type of relation in a package p' (p' = (E'*!, Ri+1)
where r(e”rl ’+1) e Rt & e’l+l,e;+1 E't1) can be
denoted as r(el+1 A =1 T =1 A T e

’I'H A c’2+1 = ’2‘H N e'ﬁl = subP(p') A e'+1 € E"H This

type of relation can also be represented as ¢ 2it2_, sz+1 =

’1+1 — el;l where (c>’+2 € e’l+1 A c';l = e’;rl A e’lJrl

subP(p') A et e Eit1).

Class—Subpackage relation: A Class—Subpackage relation
exists due to relation from a class (or interface) to a sub-
package of a package. The class is said to be connected
to the subpackage, if there exists a relation from class
(or interface) at level i + 1 to any class (or interface) at

J Braz Comput Soc (2012) 18:251-266

255

i+2or higher levels of the subpackage (at level i + 1) of
the package p' (p' = (E'*T!, R™*1) where r(e’+1 z+1) c

R & el it e Ei+1). This type of relation can be

denoted as r(e’+1 Ay =1t T =1 At =

11+1 A Cz_ Ze e’2+1 A ell+1 € EitI A e’2+1 = subP(p'). Al-
ternatively, this type of relation can be specified as c’l‘H
>’+2 = e'l'H — e’2+1 where (c'+1 = e'1+1 /\c2>l+2 € e’2+1

l'H € Eit! /\6’2"H = subP(p")).

A

4 Package cohesion measurement

As defined above, a package is a set of classes, interfaces
and subpackages leading to a hierarchical structure of the
object-oriented system. At a particular hierarchical level, a
package can be viewed as a set of elements (classes, inter-
faces or subpackages) and relations between pairs of these
elements at the next hierarchical level. Different possible
types of these relations have already been described in the
previous section. These relations among elements of a pack-
age lead to the intra-package dependency in a package and
this dependency among elements of a package can effec-
tively represent cohesion of the package. During measure-
ment of cohesion of a package, we consider only the co-
hesiveness among its elements (classes, interfaces or sub-
packages) present at next hierarchy level and do not take
into account the individual cohesions of the elements. The
count of above described relations among package elements
determine how much cohesive a package is. The degree of
cohesiveness among elements of a package is measured as
the ratio of the actual number of relations between ordered
and unique pairs of package elements and maximum possi-
ble number of relations between ordered and unique pairs
of elements of a package. Thus, cohesion of a package p’

(p' = (E'!, R'*1)) present at hierarchical level ‘i* having
n elements is defined as
0 if (n = 0)
i Z;: Zryl;l/\. xr(exi+l,€y[+1) .
PCoh(p’) = sl s it (n> 1)
1 if (n=1)

where n is the number of elements (classes, interfaces
or subpackages) at hierarchical level i + 1 in a package
pl(p' = (E'F!, R*1)) defined at level i and e/*! and
e;“ together make a pair of elements of package p'. As
discussed earlier, relations between these elements is de-
noted by r(eit!, ’“) where r(elt!, i“) € R'*! and
eitl e ;“ € Eitl. Also, r(ex’“,ey‘“)represents a rela-
tion (as defined above) between a pair of package elements.
Two package elements are said to be related only if there
exists at least one relation between them and the relations

can be one of the types as explained in the previous section.
Yo Zy Inyse F(ex' ! eyt represents number of bi-
nary directed relations (at hierarchical level i 4 1) between
all ordered and unique pairs of n elements of the package
p', where r(ex!t!, eyit1) denotes a relation between a pair
of package elements at level i 4+ 1 and also in accordance
with the above discussions, r(ex!*!, ey'*!) may or may not
be equal to r(ey’t!, ex!t!). Further, cohesion of a pack-
age p' (p' = (E™1, R'*1Y), PCoh(p') has been defined
in terms of relations between its elements i.e. e/*! € Ei*!
and e/ € E'*!. Thus, /! and /! are siblings present at
the same hierarchical level. Hence, for calculating cohesion
of a package, elements of a package which are siblings and
present only at immediate next hierarchical level are consid-
ered and belong to the same tree structure.

There are a total of n elements in a package and each el-
ement of the package may be at the most connected to all
other n — 1 elements of the package. Thus the maximum
possible number of relations among n elements is n*(n — 1),
which represents count of maximum possible intra-package
dependency for a package. The ratio of the number of bi-
nary relations and the maximum possible number of binary
relations gives us a normalized value for the proposed mea-
sure [18]. The cohesion value for a package will be 0, if
there is no relation among its elements and 1 if every ele-
ment of the package is related to all other elements. Here O
represents the minimum and 1 indicates the maximum co-
hesion. The value of our proposed measure will always lie
between a baseline value, 0 and a ceiling value, 1. This nor-
malized value of the measure makes the proposed package
cohesion metric independent of the size of the package for
which cohesion is to be measured and allows meaningful
comparisons between the cohesions of the packages of dif-
ferent sizes.

Other cases: If n = 0, there is no element and hence no
relation is possible in package p’. Thus, package p’ is an
empty package(#, ¥)and the value of cohesion measure for
an empty package is always zero. Thus, PCoh(p') =0

If n = 1, it means package p' contains a single element
then, cohesion of package p’ with only one element is 1,
because it contains all the relations it can possibly contain
i.e. PCoh(p') = 1.

Relation between package cohesion and package ele-
ments coupling: Packages should be designed with the ob-
jective of high level of cohesion and a low level of coupling
between them. If we observe inside the package: relations
among package elements are modeled via coupling between
package elements (classes or interfaces). Two package ele-
ments are coupled when they have some relation between
them. If we observe the package from outside: relations
among package elements are modeled via package cohesion.

@ Springer

256

J Braz Comput Soc (2012) 18:251-266

Illustration of package cohesion measurement:

package myshapes;

public interface Drawable {
public void draw(Graphics g);
}

class Line implements Drawable {
public void draw(Graphics g) {
.../ do something — presumably,
draw a line

}

... // other methods and variables

package myshapes.round;
import myshapes.Drawable;
public class Circle {
public void findArea() {
.../l find area of circle
}
... /] other methods and variables
}
Class FilledCircle extends Circle implements
Drawable({
public void draw(Graphics g) {
... // do something — draw a filled Circle
}
void findArea() {
... // find area of filled circle

}

... // other methods and variables

A package is cohesive when its elements have high number
of relations among them. Thus, cohesion of a package can
be defined in terms of coupling among elements of the pack-
age.

The above example of code can be represented using a
UML diagram [55] as shown in Fig. 1. The relations in this
diagram are shown as directed arrows from one element to
the other.

According to the definitions of packages in Sect. 3, pack-
age ‘myshapes’ has got three elements and two relations
between different pairs of its elements. These elements in-
clude interface ‘Drawable’, class ‘Line’ and subpackage
‘round’. There exists one relation from class ‘Line’ to inter-
face ‘Drawable’, because class ‘Line’ implements interface
‘Drawable’ and the other relation is between subpackage
‘round’ and interface ‘Drawable’ due to the existence of a
relation between class-element ‘FilledCircle’ of subpackage
‘round’ and interface ‘Drawable’. If package ‘myshapes’
is supposed to be at the hierarchical level 0, then its ele-
ments are at hierarchical level 1. Thus, package ‘round’ is
at level 1 and its elements and relations among its elements
are at level 2, which are encapsulated within the package
‘round’ and are not visible outside. Thus, during measure-
ment of cohesion of a package ‘myshapes’, the relation be-
tween ‘FilledCircle’ (element of subpackage ‘round’) and
interface ‘Drawable’ (element of package ‘myshapes’) is
considered as the relation between subpackage ‘round’ and
interface ‘Drawable’.

According to the definition of the measure, n = 3 and

Dohm1 Doyl Ayx rex™! eyt =2.

@ Springer

Thus, Cohesion of the package ‘myshapes’ at hierarchi-
cal level 0 is given by the proposed measure as

PCoh(myshapes®) = =0.334

2
T3x(3-1)

5 Theoretical validation of package cohesion measure

The purpose of this section is to provide the theoretical
soundness to the proposed measure, i.e., the fact that it really
measures the software characteristic it is supposed to mea-
sure, which is an obvious prerequisite for its acceptability
and use [13, 67]. The proposed measure is evaluated the-
oretically by using the four properties given by Briand et
al. [13]. We reviewed different validation frameworks avail-
able in literature before choosing Briand et al. validation
framework. Weyuker’s framework [68] has been defined and
mainly used for evaluation of complexity measures. Some
other evaluation frameworks such as Zuse framework [75]
and Tian & Zelkowitz [66] axioms are also used for valida-
tion of complexity measures. The four cohesion properties
defined by Briand et al. framework are one of the more re-
cent proposals to characterize cohesion in a reasonably in-
tuitive and rigorous manner. While these properties are not
sufficient to say that a measure which fulfills them all will
be useful, it is likely that a measure which does not fulfill
them all is ill-defined.

Property 1 Non-Negativity and Normalization.

J Braz Comput Soc (2012) 18:251-266

257

Fig. 1 Graphical representation
for the above example

[<<intertace>> |
Drawable

Daraw()

I.Ir‘w

Ddraw()

According to the above given definition of the proposed
measure, cohesion of a package p' in an object-oriented sys-
tem belongs to a specified interval i.e. PCoh(pi) € [0, 1].
Thus, the value of package cohesion given by the proposed
measure will always be non-negative and normalized.

Property 2 Null Value and Maximum Value.

As discussed above, if a package, p' = (E'*T! RI*1) is
empty i.e. p' = (f, #) means if there is no element and no
relation within a package i.e. E'*! =@ and R'*! =@, then
cohesion of package p', PCoh(p') =nullie. p' = (9, 0) =
PCoh(p') =0 (Null value).

Cohesion of a package, p' = (Ei*!, R'*!) where num-
ber of elements, Eit! is n and number of relations, Ri*!
is n % (n — 1) i.e. each element of package p’ is connected
to each other element of the package, then PCoh(p') =1 or
in case package p’ contains single element (n = 1), then
as discussed above, PCoh(p') =1 ie. n =1 or Rt =
nxn—1) = PCoh(pi) = 1 (maximum value).

The proposed measure has got the null value and the
maximum value of cohesion for a package in well defined
situations. Thus, the proposed measure satisfies Property 2.

Property 3 Monotonicity.

As per Briand et al.’s framework, cohesion Property 3 of
monotonicity requires that adding relationships must not de-
crease cohesion [13]. This property requires addition of re-
lations not the elements to prove its compliance.

Let p be a package with relations R in an object-oriented
system. Package p is modified to form a new package p’
with relations R’, which is identical to p except that R C R’,
i.e., some relations are added in p. Then, according to the
above given definition of the measure, the numerator value
will only increase or will remain the same but will never
decrease.

For package p = (E, R) and p’ = (E, R').

myshapes

m.y'hapn.round
| Circle

l VlindArea()

[FitedCircle |

Ddravw()
VfindArea()

If R C R’ then PCoh(p) < PCoh(p’).

Thus, the proposed measure satisfies this property as
well. The additional internal relations in a package will
never decrease its cohesion.

Property 4 Merging of Unconnected Packages.

This property states that merging of two unconnected pack-
ages must not increase cohesion of the resulting package.
When two or more packages having no relations between
them are merged, cohesion should not increase because ap-
parently unrelated elements are being encapsulated together
in a single package.

Let p1 and p, be two packages in an object-oriented sys-
tem S. Let p’ be the package, which is the union of p;
and p,. Let S’ be the object-oriented system, which is identi-
cal to S except that packages p; and p; are replaced by p’. If
no relations exist between packages p; and p», then accord-
ing to the above given definition of the measure, increase
in value of the numerator will be less in comparison to the
value of the denominator as unified package will contain el-
ements as well as relations of both packages. Thus, cohe-
sion of unified package may decrease i.e. max{PCoh(p1),
PCoh(p3)} = PCoh(p).

Hence, the proposed measure satisfies this property very
well.

6 Experimental validation of proposed measure

The ISO/IEC 9126-1 standard [41] on software product
quality states that internal product measures should be re-
lated to external quality attributes in order to be useful and
meaningful. In this section, we attempt to assess experimen-
tally whether the proposed package cohesion metric is a use-
ful indicator of external quality attribute of packages such
as reusability. This would help us to evaluate the proposed
package cohesion metric as a quality indicator.

@ Springer

258

J Braz Comput Soc (2012) 18:251-266

6.1 Experiment goal

The goal of this experimental study is to analyze experi-
mentally the proposed metric for the purpose of evaluat-
ing whether or not this metric is useful for indicating the
reusability of the packages. We used the Goal/Question/
Metric (GQM) paradigm [6, 7, 17, 62] which provide a tem-
plate as well as guidelines to define measurement goals in
a systematic manner. The measurement goal of our experi-
mental study is defined as follows:

e Object of study: package.

e Purpose: analysis.

Quality focus: effort required to reuse a package (Package
Reusability).

Viewpoint: software developer.

Environment: open-source software projects developed in
Java.

These five goal dimensions have a direct impact on the
remaining steps of the experimental validation of the mea-
sure [17]. The object of study helps to determine the soft-
ware artifacts that must be modeled so that they are ana-
lyzable. It also helps in defining the hypotheses that may
be relevant because they are directly related to the object of
study. The purpose helps to determine the type and amount
of data to be collected. The quality focus facilitates in deter-
mining the dependent attribute(s) against which the defined
metric is going to be experimentally evaluated. The view-
point assists to determine the point in time at which analysis
should be carried out. The environment helps to determine
the context in which the study is being carried out.

6.2 Empirical hypotheses

An empirical hypothesis is a statement believed to be true
about the relation between one or more attributes of the ob-
ject of study and the quality focus [17]. In this case, the
hypotheses are about the relationship between cohesion of
a package (object of study) and reusability of the package
(quality focus).

The analysis is based on the hypotheses:

Hy : p =0 (Null hypothesis)—There is no significant cor-
relation between the proposed package cohesion metric and
package reusability.

Hy : p # 0 (Alternative hypothesis)—There is significant
correlation between the proposed package cohesion metric
and package reusability.

6.3 Experimental environment

Open-source software projects are widely available on web
for both use and research. These projects offer a diverse set

@ Springer

of solutions which encourage a collaborative, consensus-
based development process under open software licenses.
The sample used for this experimental study was taken from
six open-source software projects whose source code was
readily available for use. The major reason behind selection
of these projects was that these software projects were de-
veloped in Java and were organized using packages. The
presence of packages in these projects made it possible to
apply package level metrics on them. Twenty-five pack-
ages taken from six open-source projects were used in or-
der to experimentally evaluate the proposed metric. Out
of these six projects, four belonged to the Apache soft-
ware foundation and eighteen packages belonging to these
four projects were downloaded from Apache Jakarta web-
site [65]. The Apache project Byte Code Engineering Li-
brary (BCEL) is intended to give users a convenient pos-
sibility to analyze, create, and manipulate Java class files,
and classes are represented by objects which contain all
the symbolic information of the given class like methods,
fields and byte code instructions [22]. The Apache project
Bean Scripting Framework (BSF) is a set of Java classes
which provides scripting language support within Java ap-
plications, and access to Java objects and methods from
scripting languages. BSF allows one to write JSPs in lan-
guages other than Java while providing access to the Java
class library [9]. The Apache project Jakarta-ORO is a set
of text-processing Java classes that provide Perl5 compati-
ble regular expressions, AWK-like regular expressions, glob
expressions, and utility classes for performing substitutions,
splits, filtering filenames, etc. [42]. The Apache project El-
ement Construction Set (ECS) is a Java API for generat-
ing elements for various markup languages such as HTML
4.0 and XML and can easily be extended to create tags for
any markup language [33]. The XGen Source Code Gen-
erator [69] creates a Java source code from a simple XML
document. Its primary function is to generate JDBC com-
pliant beans that allow object level persistence to relational
databases. The other project used in this study is JUnit [43]
which is a simple framework to write repeatable tests. It is
an instance of the xUnit architecture for unit testing frame-
works. Table 1 shows the projects and the corresponding
packages used from these projects for experimental study
in this work. This table also provides general details about
each package used in the experimental study in terms of size
(in LOC) and the total number of classes contained in the
package.

6.4 Analysis methodology

A statistical analysis is performed to correlate the proposed
package cohesion metric with package reusability i.e. ef-
fort required to reuse a package. Correlation is a common

J Braz Comput Soc (2012) 18:251-266

259

Table 1 Description of packages used in the study

Sr. No. Project name Package name Size (LOC) Total No. of classes
1 Byte Code Engineering Library (BCEL) org.apache.bcel.verifier 12244 48
2 org.apache.bcel.verifier.exc 641 14
3 org.apache.bcel.verifier.statics 3425 9
4 org.apache.bcel.verifier.structurals 6289 14
5 org.apache.bcel.util 3906 20
6 Bean Scripting Framework (BSF) org.apache.bsf.util.event 1790 21
7 org.apache.bsf.util.event.generator 1110 4
8 org.apache.bsf.util 5835 54
9 org.apache.bsf.util.type 239

10 org.apache.bsf.util.cf 570

11 Jakarta-ORO org.apache.oro.io 494 4

12 org.apache.oro.text 14715 50

13 org.apache.oro.text.awk 3383 17

14 org.apache.oro.text.perl 1477

15 org.apache.oro.util 991 7

16 Element Construction Set (ECS) org.apache.ecs.jsp 1834 15

17 org.apache.ecs.storage 452 3

18 org.apache.ecs.xml 786 3

19 XGen Source Code Generator workzen.xgen.ant.legacy 1193

20 workzen.xgen.engine 426

21 workzen.xgen.loader 1009

22 JUnit junit.samples 541

23 junit.samples.money 390

24 junit.tests 1583 36

25 junit.tests.extensions 248 5

research method for empirically validation of the metrics.
For example, Kabaili et al. [44] used this statistical method
to evaluate cohesion metrics as changeability indicators.
Mitchell and Power [53] used this method to examine the
usefulness of the run time coupling metrics. Li and Henry
[48] examined correlations between various metrics in order
to determine their usefulness.

Correlation is measured using the standard Karl Pear-
son Product-Moment correlation coefficient r, which mea-
sures the degree and direction of the linear relationship be-
tween the two variables. Karl Pearson’s coefficient is the
most widely used method of measuring correlation. This
method assumes that there is a linear relationship between
two variables and one of the variables is independent while
the other is dependent. Karl Pearson’s coefficient of correla-
tion is given by [45]:

XX —X)(Yi—Y)
"= n*xoxX*xoy

where X; = ith value of X variable, Y; = ith value of Y
variable, X = mean of X, Y = mean of Y, n = number of
pairs of observations of X and Y, o, = standard deviation
of X, oy = standard deviation of Y.

The value of correlation coefficient (r) lies between —1
and +1 through 0, where 1 represents a perfect positive cor-
relation between the variables; —1 denotes a perfect nega-
tive correlation; and O indicates that there is no linear rela-
tionship between the variables. The degree of the correlation
is determined by the magnitude of the coefficient. Adjective
ratings of correlation strength follow the definitions devel-
oped by Cohen [27]:

(0.1 “Trivial”

0.1 to 0.3 “Minor”

0.3 to 0.5 “Moderate”

0.5 to 0.7 “Large”

0.7 to 0.9 “Very large”
0.9 to 1 “Almost perfect”.

@ Springer

260

J Braz Comput Soc (2012) 18:251-266

Table 2 Package cohesion measurement

Sr. No. Package name No. of elements No. of relations Package cohesion metric (PCoh)
1 org.apache.bcel.verifier 14 56 0.30
2 org.apache.bcel.verifier.exc 14 10 0.15
3 org.apache.bcel.verifier.statics 9 1 0.013
4 org.apache.bcel.verifier.structurals 14 10 0.054
5 org.apache.bcel.util 20 10 0.026
6 org.apache.bsf.util.event 18 0.60
7 org.apache.bsf.util.event.generator 4 0.33
8 org.apache.bsf.util 20 30 0.078
9 org.apache.bsf.util.type 2 1 0.50

10 org.apache.bsf.util.cf 2 1 0.50

11 org.apache.oro.io 4 3 0.25

12 org.apache.oro.text 15 34 0.16

13 org.apache.oro.text.awk 17 41 0.15

14 org.apache.oro.text.perl 3 0 0

15 org.apache.oro.util 7 11 0.26

16 org.apache.ecs.jsp 15 14 0.067

17 org.apache.ecs.storage 3 3 0.50

18 org.apache.ecs.xml 3 2 0.33

19 workzen.xgen.ant.legacy 4 3 0.25

20 workzen.xgen.engine 2 1 0.50

21 workzen.xgen.loader 7 7 0.167

22 junit.samples 4 1 0.08

23 junit.samples.money 4 9 0.75

24 junit.tests 5 4 0.20

25 junit.tests.extensions 5 4 0.20

Any relationship between two variables should be assessed
for its strength as well as its significance. The significance
of the correlation results is assessed by the p-value. The p-
value corresponds to the probability that the measured cor-
relation could be due to purely random effects. The smaller
the p-level, the more significant is the relationship between
the variables.

However, correlation study can only establish a relation-
ship between two variables (in our case, package cohesion
and package reusability) but could not establish a cause-
effect relationship between the two.

6.5 Analysis of experimental results

Table 2 shows the number of elements (present at the next
hierarchical level) and the number of relations among el-
ements of each package and the corresponding values of
the package cohesion metric (PCoh) for each package un-
der study.

In Fig. 2, we show the measured values of the Package
cohesion metric for all 25 packages graphically. In this fig-

@ Springer

Table 3 Descriptive statistics of the analyzed package cohesion metric

Statistical parameter Package cohesion metric (PCoh)

Maximum value 0.75
Minimum value 0

Median 0.20
Mean 0.26
Standard deviation 0.20

ure, Packages Sr. Nos. as given in Table 2 are taken on the
X-axis and their corresponding package cohesion values are
plotted on the Y -axis.

Table 3 provides common descriptive statistics of the
metric distributions across all the packages used in the ex-
perimental study. This table shows that package cohesion
metric (PCoh) has enough variance to distinguish the pack-
ages. Thus, the proposed measure is effective to be used in
analysis procedure.

J Braz Comput Soc (2012) 18:251-266

261

Fig. 2 Package cohesion values
for all packages

0.8

O Package Cohesion (PCoh)

0.7

0.6

0.5

0.4

0.3

0.2 1

package Cohesion (PCoh)

0.1 1

Fig. 3 Relationship between
PCoh and LOC
100000

7

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Package Number

—Pcoh ——LOC

0.8
0.7

10000 °\
1000

0.6
0.5

LoC

100

0.4

PCoh

0.3

10 A+

1 T

|'_'||-||n|

0.2
0.1

T T T r T r T T 0

123 456 7 8 91011121314151617 1819 202122232425

Fig. 4 Relationship between
PCoh and No. of classes (NOC)

Package No.

C—1Pcoh —#—NOC

100

10

0.8
0.7
0.6
0.5

]
—1

A

NOC

\

] Iﬂlﬁlrllnl 11

0.4
0.3

A
g

PCoh

0.1

00 Lo Ll0A0A

123 4567 8 91011121314151617 18 19 20 21 22 23 24 25

6.5.1 Relationship between package cohesion and package
size

Figure 3 shows the relationship between package cohesion
(PCoh) and package size in lines of code (LOC) for all 25
packages under study.

Figure 4 shows the relationship between cohesion of a
package (PCoh) and number of classes (NOC) in the pack-
age.

From Figs. 3 and 4, it can be easily observed that the
cohesion value measured by the proposed package cohe-

Package No.

sion metric (PCoh) has no association with the size of the
corresponding package measured in LOC and the number
of classes in the package. To strengthen the above obser-
vation, correlation coefficients are computed between pack-
age cohesion (PCoh) & LOC and PCoh & NOC for all 25
packages. For calculation of the correlation coefficients, the
Karl Pearson Product-Moment correlation method [27, 45]
is used. The value of correlation coefficient between PCoh
and LOC for 25 packages comes out to be 0.27 and correla-
tion coefficient between PCoh & NOC is 0.35 for 25 pack-

@ Springer

262

J Braz Comput Soc (2012) 18:251-266

Table 4 Ratings of reusability

assigned to each package Sr. No. Package name Rating of package reusability
1 org.apache.bcel.verifier 5
2 org.apache.bcel.verifier.exc 2
3 org.apache.bcel.verifier.statics 2
4 org.apache.bcel.verifier.structurals 2
5 org.apache.bcel.util 1
6 org.apache.bsf.util.event 8
7 org.apache.bsf.util.event.generator 6
8 org.apache.bsf.util 2
9 org.apache.bsf.util.type 8
10 org.apache.bsf.util.cf 7
11 org.apache.oro.io 9
12 org.apache.oro.text 2
13 org.apache.oro.text.awk 2
14 org.apache.oro.text.perl 1
15 org.apache.oro.util 2
16 org.apache.ecs.jsp 2
17 org.apache.ecs.storage 7
18 org.apache.ecs.xml 6
19 workzen.xgen.ant.legacy 4
20 workzen.xgen.engine 8
21 workzen.xgen.loader 3
22 junit.samples 1
23 junit.samples.money 7
24 junit.tests 4
25 junit.tests.extensions 3

ages. These low values of correlation coefficients indicate
that the proposed package cohesion measure (PCoh) is inde-
pendent of the size of the package (in terms of LOC as well
as NOC) for which cohesion is being measured. Thus, the
proposed measure (PCoh) allows meaningful comparisons
between cohesion values of different packages of different
sizes.

6.5.2 Relationship between package cohesion and package
reusability

An evaluation team consisting of five software developers
was assigned the task of evaluating the reusability of 25
packages. These software developers were computer engi-
neering graduates working in my organization. All software
developers had about three years of work experience in com-
mercial software development, and have been working on
development of many Java-based projects. The team of de-
velopers was required to use each package to complete an
unfinished application. The task of each developer was to
choose the required classes from a given package and inte-
grate them to the application. The team was free to mod-
ify these packages to reuse them. The team assessed the ef-

@ Springer

fort required to reuse the package and rated the reusability
of each package on a numerical scale from 1 (low) to 10
(high). The more the effort required reusing a package, the
less is the reusability of the package. A package with low
reusability rating such as 1 means the more effort required
to reuse the package, and a package with high rating such
as 10 means the less effort required to reuse the package.
To rate the reusability of a package, the team of developers
considered the following effort in reusing it:

e The effort to select the right classes from the package for
reuse.

The effort to modify the reused classes if needed.

The effort to find and integrate all required classes.

The effort to test the correctness of the integration.

Table 4 shows the ratings of reusability of each package
assigned by the team of software developers depending on
the effort required to reuse the corresponding package.

Figure 5 shows relationships between measured values
of package cohesion (as shown in Table 2) and package
reusability ratings (as depicted in Table 4) for each pack-
age. It can easily be seen that the package cohesion metric

J Braz Comput Soc (2012) 18:251-266

263

Fig. 5 Relationship between
package cohesion & package

I Package Cohesion (PCoh) —@— Package Reusability

reusability

1 2 3 4 5 6 7

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Table 5 Correlation values for

cohesion measures PCoh LCOM LCOM* TCC CAMC RC EEC ICH Scc
Correlation 0.69 -0.32 —0.34 0.41 0.29 0.31 0.43 0.12 0.27
coefficient
Significance 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
level

(PCoh) values have a strong positive correlation with the
package reusability ratings.

As stated above, the Karl Pearson Product-Moment cor-
relation method [27, 45] was used to quantify the correlation
between the proposed package cohesion metric and package
reusability as rated by the team of software developers. The
computed value of the correlation coefficient (r) between
the proposed metric and team’s reusability ratings comes
out to be 0.69 at the significance level 0.05. Such a high
value of correlation coefficient shows a strong positive cor-
relation between the proposed package cohesion metric and
the package reusability. Therefore, we reject the null hypoth-
esis and accept the alternative hypothesis (as stated above)
and conclude that there is a significant correlation between
the proposed package cohesion metric and package reusabil-
ity. The strong correlation between the proposed metric and
reusability signify that the proposed package cohesion met-
ric is a good indicator of the external quality attributes of the
package.

6.6 Comparison of proposed measure with existing
measures

The proposed metric was compared experimentally with the
related cohesion metrics reviewed in Sect. 2 using 25 pack-
ages listed above. For this purpose, we used Karl Pearson
correlation method [27, 45] to compute the correlation co-
efficients between the package reusability ratings given by
team of developers (as given in Table 4) and the values pro-
duced by the various cohesion measures such as LCOM

[25, 26], LCOM* [39], TCC [10], CAMC [4, 5], RC [51],
EEC [1], ICH [47], SCC [74]. The Lack of Cohesion in
Methods (LCOM) metric [25, 26] was proposed by Chi-
damber and Kemerer to measure lack of cohesion in a class
and LCOM* [39] metric was an improved version of LCOM
[25, 26] given by Henderson-Sellers. The Tight Class Co-
hesion (TCC) metric proposed by Bieman and Kang mea-
sures the percentage of pairs of the public methods of the
class which have direct common attribute usage [10]. The
Cohesion Among Methods of Classes (CAMC) metric was
proposed by Bansiya et al., which evaluated the relatedness
of methods in the interface of a class using the parameter
lists defined for the methods [4, 5]. The Relational Cohe-
sion (RC) metric proposed by Martin is defined as the ratio
of the number of data relations in a package to the number
of components in the package [51]. Allen et al. proposed
an information-theory-based metric named excess entropy
cohesion (EEC) metric [1]. Lee and Liang proposed a cohe-
sion measure, Information-based cohesion, (ICH) for a set
of classes based on information flow through method invo-
cations within classes [47]. They defined cohesion of a set
of classes as the sum of the cohesion of the classes in the set.
Zhou et al. [74] proposed a measure called SCC for measur-
ing semantic cohesion of a package by considering the fact
that two components of a package are related tightly if they
have similar contexts.

The results of this correlation study are given in Table 5.

From the results of the above study, it can easily be ob-
served that the proposed measure (PCoh) produced the high-

@ Springer

264

J Braz Comput Soc (2012) 18:251-266

est magnitude of correlation with the package reusability
among the various cohesion measures. Some of the cohe-
sion measures such as LCOM [25, 26] and LCOM* [39]
produced negative correlation coefficients as these metrics
measure lack of cohesion. These results suggest that the pro-
posed package level cohesion measure is a better indicator
of reusability than the other existing cohesion measures.

6.7 Threats to validity

As with other empirical experiments, there are threats to the
validity of this study. The build threat is the reuse effort may
not represent the quality of the package. The quality of a
package is dependent on many other factors such as under-
standability, maintainability. To reduce this threat in the fu-
ture, other measures of quality such as maintenance effort
could be used to validate the proposed metric. The internal
threat is the measurement of reuse effort. In our study, a team
of five developers worked on all packages. The number of
developers taking part in the experiment is very small which
is a threat to validity of the experiment and the ratings of
package reusability may depend on expertise and prior ex-
perience of software developers which is also a major threat
to its validity. To reduce these threats, various teams hav-
ing a specific number of software developers can be con-
structed and then average value of the ratings assigned by
these different teams can be taken to reduce the bias being
caused by the personal experiences of the software develop-
ers. The threats to external validity mainly include the sub-
ject software as these packages may not be representative
of other software products. Also, the number of packages
(25 no. packages) taken from open-source software used in
the current study is too small which is a threat to the va-
lidity of the experiment. To reduce these threats, a large set
of packages can be used in future studies and more stud-
ies can be conducted using commercial software systems.
Another threat to validity of this study is that correlation
analysis has been performed between package cohesion and
package reusability. However, correlation study is able to es-
tablish relationship between package cohesion and package
reusability but could not establish cause-effect relationship
between the two. Further, correlation study performed in the
paper requires a number of assumptions such as normality,
linearity, and homoscedasticity need to be verified.

7 Conclusions and future work

In this paper, we have proposed a new approach to mea-
sure the cohesion of packages based on formal definitions
and properties of the packages. The proposed measures are
based on the relations present between pairs of package ele-
ments, which can be classes, interfaces or subpackages. The

@ Springer

cohesion of a package is measured as the number of binary
directed relations between all ordered and unique pairs of
the package elements, divided by the maximum possible
number of relations between them. The hierarchical struc-
ture of packages has also been taken into consideration dur-
ing the measurement of package cohesion. The proposed
measure is validated theoretically with the help of the four
well-established properties given by Briand et al. [13] and an
experimental study has been conducted using 25 packages
taken from six open-source software projects developed in
Java. The usefulness of proposed measure is proved by em-
pirically validating the proposed measure as the indicator
of external quality attribute of packages such as reusability.
The proposed measure for package cohesion is also a bet-
ter predictor of code reusability than the existing cohesion
measures as shown in the experimental study.

The proposed package level cohesion measurement pro-
cess described in this research is an important step toward
designing high quality software. We believe that the study
presented herein should encourage other researchers and de-
velopers to adapt and use this metric in combination with
other design principles to develop more package level met-
rics for the measurement of other software quality attributes.
In addition, there is need of further empirical investigations
of the proposed package level metric in order to establish its
relations with other external software quality factors such as
maintainability, adaptability.

References

1. Allen E, Khoshgoftaar T, Chen Y (2001) Measuring coupling and
cohesion of software modules: an information theory approach.
In: Proceedings of the seventh international software metrics sym-
posium, 2001

2. Anquetil N, Lethbridge T (1999) Experiments with clustering as a
software remodularization method. In: Proceedings of WCRE *99
(6th working conference on reverse engineering), Louis Pasteur,
University of Ottawa, Ottawa, Canada, 1999, pp 235-255

3. Atole CS, Kale KV (2006) Assessment of package cohesion and
coupling principles for predicting the quality of object oriented de-
sign. In: Proceedings of the 1st international conference on digital
information management, Dec 2006, pp 1-5

4. Bansiya J, Davis C (1999) Class cohesion metric for object-
oriented designs. J Object-Oriented Program 11(8):47-52

5. Bansiya J, Davis C (2002) A hierarchical model for object-
oriented design quality assessment. IEEE Trans Softw Eng
28(1):4-17

6. Basili VR, Weiss D (1984) A methodology for collecting valid
software engineering data. IEEE Trans Softw Eng 10(11):728-
738

7. Basili VR, Rombach DH (1988) The tame project: towards
improvement-oriented software environments. IEEE Trans Softw
Eng 14(6):758-773

8. Basili VR (1997) Evolving and packaging reading technologies.
J Syst Softw 38(1):3-12

9. Bean Scripting Framework (BSF) (2011) http://jakarta.apache.
org/bsf/index.html

http://jakarta.apache.org/bsf/index.html
http://jakarta.apache.org/bsf/index.html

J Braz Comput Soc (2012) 18:251-266

265

10.

11.

12.

13.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

Bieman JM, Kang BK (1995) Cohesion and reuse in an object-
oriented system. In: Proceedings of the symposium on software
reusability (SSR’95), Seattle, WA, 1995, pp 259-262

Bieman JM, Kang BK (1998) Measuring design-level cohesion.
IEEE Trans Softw Eng 24(2):111-124

Bieman JM, Ott LM (1994) Measuring functional cohesion. IEEE
Trans Softw Eng 20(8):644—-658

Briand L, Morasca S, Basili V (1996) Property-based software en-
gineering measurement. IEEE Trans Softw Eng 22(1):68-86
Briand LC, Daly JW, Wust J (1998) A unified framework for co-
hesion measurement in object-oriented systems. Empir Softw Eng
3(1):65-117

Briand LC, Daly JW, Wust JK (1999) A unified framework for
coupling measurement in object-oriented systems. IEEE Trans
Softw Eng 25(1):91-121

Briand LC, Morasca S, Basili VR (1999) Defining and validating
measures for object-based high-level design. IEEE Trans Softw
Eng 25(5):722-743

Briand L, Morasca S, Basili V (2002) An operational process
for goal-driven definition of measures. IEEE Trans Softw Eng
28(12):1106-1125

Brito e Abreu F (1995) The MOOD metrics set. In: Proceedings of
the ninth European conf object-oriented programming workshop
metrics workshop on metrics, Aarhus, Denmark, 1995

Brito e Abreu F, Gouldo M (2001) Coupling and cohesion as mod-
ularization drivers: are we being over-persuaded? In: Proceed-
ings of the 5th European conference on software maintenance
and reengineering (CSMR’2001), Lisboa, Portugal, March 2001.
IEEE Computer Society Press, Los Alamitos

Bryton S (2008) Modularity improvements with aspect-oriented
programming. MSc Thesis (F. Brito e Abreu, supervisor), FCT/
UNL

Bryton S, Brito e Abreu F (2007) Towards paradigm-independent
software assessment. In: Proceedings of 6th international confer-
ence on the quality of information and communications technol-
ogy (QUATIC), 2007. IEEE Computer Society Press, Los Alami-
tos

Byte Code Engineering Library (BCEL) (2011) http://jakarta.
apache.org/bcel/index.html

Chae HS, Kwon YR, Bae DH (2000) A cohesion measure for
object-oriented classes. Softw Pract Exp 30(12):1405-1431

Chae HS, Kwon YR, Bae DH (2004) Improving cohesion met-
rics for classes by considering dependent instance variables. IEEE
Trans Softw Eng 30(11):826-832

Chidamber SR, Kemerer CF (1991) Towards a metrics suite for
object oriented design. In: Proceedings of OOPSLA’91, ACM
SIGPLAN Notices, 26 Nov 1991, pp 197-211

Chidamber SR, Kemerer CF (1994) A metrics suite for object ori-
ented design. IEEE Trans Softw Eng 20(6):476-493

Cohen J (1988) Statistical power analysis for the behavioral sci-
ences, 2nd edn. Lawrence Erlbaum, Mahwah

Corbi TA (1989) Program understanding: challenge for the 1990’s.
IBM Syst J 28(2):294-306

Counsell S, Mendes E, Swift S (2002) Comprehension of object-
oriented software cohesion: the empirical quagmire. In: Proceed-
ings of the 10th international workshop on program comprehen-
sion, 2002, pp 33-42

Counsell S, Swift S (2006) The interpretation and utility of three
cohesion metrics for object-oriented design. ACM Trans Softw
Eng Methodol 15(2):123-149

DeMarco T (1982) Controlling software projects. Yourdon Press,
New York

Eder J, Kappel G, Schre M (1992) Coupling and cohesion in
object-oriented systems. In: Proceedings of the conference on in-
formation and knowledge. ACM Press, New York

Element Construction Set (ECS) (2011) http://jakarta.apache.org/
ecs/index.html

34.

35.

36.

37.

38.

39.

40.

41.

4.
43.
44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Emerson T (1984) A discriminant metric for module cohesion.
In: Proceedings of the 7th international conference on software
engineering (ICSE), 1984

Fenton N, Pfleeger SL (1996) Software metrics: a rigorous and
practical approach, 2nd edn. International Thomson Computer
Press, London

Gélinas JF, Badri M, Badri L (2006) A cohesion measure for as-
pects, J Object Technol 5:97-114

Gosling J, Yellin F (1996) The Java application programming in-
terface, Vol #1 (Core packages)/#2 (window toolkit and applets).
Addison-Wesley, Reading

Gui G, Scott PD (2006) Coupling and cohesion measures for
evaluation of component reusability. In: Proceedings of the in-
ternational workshop on mining software repositories, Shanghai,
China, 2006, pp 18-21

Henderson-Sellers B (1996) Object-oriented metrics: measures of
complexity. Prentice-Hall, New York

Hitz M, Montazeri B (1995) Measuring coupling and cohesion in
object-oriented systems. In: Proceedings of the third international
symposium on applied corporate computing (ISACC’95), Monter-
rey, Mexico, 1995, pp 25-27

ISO/IEC 9126-1 (2000) Software product quality, Part 1: Quality
model

Jakarta-ORO (2011) http://jakarta.apache.org/oro/index.html
JUnit (2011) http://sourceforge.net/projects/junit/

Kabaili H, Keller R, Lustman F (2001) Cohesion as changeabil-
ity indicator in object-oriented systems. In: Proceedings of IEEE
conference on software maintenance and reengineering (CSRM),
2001, pp 3946

Kothari CR (2007) Research methodology: methods & techniques,
revised second edn. New Age International, New Delhi, pp 139-
141

Kumar A, Kumar R, Grover PS (2008) Towards a unified frame-
work for cohesion measurement in aspect-oriented systems. In:
Proceedings of the 19th Australian conference on software engi-
neering (ASWEC *08), 2008

Lee YS, Liang BS (1995) Measuring the coupling and cohesion
of an object-oriented program based on information flow. In: Pro-
ceedings of the international conference on software quality, Mari-
bor, Slovenia, 1995, pp 81-90

Li W, Henry S (1993) Object oriented metrics that predict main-
tainability. J Syst Softw 23(2):111-122

Lientz B, Swanson B (1980) Software maintenance management.
Addison-Wesley, Boston

Mancoridis S, Mitchell BS, Chen Y, Gansner ER (1999) Bunch:
a clustering tool for the recovery and maintenance of software sys-
tem structures. In: Proceedings of ICSM *99 (international confer-
ence on software maintenance), Oxford, England, 1999

Martin R (2002) Agile software development, principles, patterns,
and practices. Prentice-Hall, New York

Misi¢ VB (2001) Cohesion is structural, coherence is functional:
Different views, different measures. In: Proceedings of the seventh
international software metrics symposium (METRICS-01), 2001.
IEEE Press, New York

Mitchell A, Power J (2004) An empirical investigation into the
dimensions of run time coupling in Java programs. In: Proceedings
of the 3rd international conference on principles and programming
in Java (PPPJ’04), Las Vegas, Nevada, 2004, pp 9-14

Morris K (1989) Metrics for object-oriented software development
environments. Master’s thesis, Sloan School of Management MIT
OMG Unified Modeling Language (OMG UML) (2011) Infras-
tructure, V2.1.1, p 158

Ott L, Bieman JM, Kang B, Mehra B (1995) Developing measures
of class cohesion for object-oriented software. In: Proceedings of
the annual Oregon workshop on software metrics (AOWSM’95),
1995

@ Springer

http://jakarta.apache.org/bcel/index.html
http://jakarta.apache.org/bcel/index.html
http://jakarta.apache.org/ecs/index.html
http://jakarta.apache.org/ecs/index.html
http://jakarta.apache.org/oro/index.html
http://sourceforge.net/projects/junit/

266

J Braz Comput Soc (2012) 18:251-266

57.

58.

59.

60.

61.

62.

63.

64.

66.

67.

Ott LM, Bieman JM (1998) Program slices as an abstraction for
cohesion measurement. Inf Softw Technol 40(11-12):691-699
Patel S, Chu WC, Baxter R (1992) A measure for composite mod-
ule cohesion. In: Proceedings of the 14th international conference
on software engineering, 1992, pp 3848

Ponisio L, Nierstrasz O (2006) Using contextual information to as-
sess package cohesion. Technical Report No. IAM-06-002, 2006,
Institute of Applied Mathematics and Computer Sciences, Univer-
sity of Berne

Ponisio L (2006) Exploiting client usage to manage program mod-
ularity. University of Berne, Ph.D. Thesis

Sant’ Anna C, Garcia A, Chavez C, Lucena C, von Staa A (2003)
On the reuse and maintenance of aspect-oriented software: an as-
sessment framework. In: XXIII Brazilian symposium on software
engineering, Manaus, Brazil, October 2003

Van Solingen R (2002) The goal/question/metric approach, ency-
clopedia of software engineering—2 volume set, pp 578-583
Tagoug N (2002) Object-oriented system decomposition quality.
In: Proceedings of 7th IEEE international symposium on high as-
surance systems engineering (HASE ’02), 2002, pp 230-235
Telles M (2001) C# Black Book, The Coriolis Group, Nov 2001

. The Apache Jakarta Project (2011) http://jakarta.apache.org

Tian J, Zelkowitz MV (1992) A formal program complexity model
and its application. J Syst Softw 17:253-266

Wang J, Zhou Y, Wen L, Chen Y, Lu H, Xu B (2005) DMC:
a more precise cohesion measure for classes. Inf Softw Technol
47(3):167-180

@ Springer

68.

69.

70.

71.

72.

73.

74.

75.

Weyuker EJ (1988) Evaluating software complexity measures.
IEEE Trans Softw Eng 14(9):1357-1365

XGen Source Code Generator (2011) http://sourceforge.net/
projects/xgen/

Xu B, Chen Z, Zhao J (2003) Measuring cohesion of packages in
Ada95. In: Proceedings of the 2003 annual ACM SIGAda interna-
tional conference on Ada: the engineering of correct and reliable
software for real-time & distributed systems using Ada and related
technologies, San Diego, California, USA, 2003, pp 62-67

Zhao J, Xu B (2004) Measuring aspect cohesion, presented at in-
ternational conference on fundamental approaches to software en-
gineering (FASE’2004)

Zhou Y, Wen L, Wang J, Chen Y (2003) DRC: a dependence
relationships based cohesion measure for classes. In: Proceed-
ings of the tenth Asia—Pacific software engineering conference
(APSEC’03), 2003, pp 215-223

Zhou Y, Lu J, Lu H, Xu B (2004) A comparative study of graph
theory-based class cohesion measures. Softw Eng Notes 29(2):13
Zhou T, Xu B, Shi L, Zhou Y, Chen L (2008) Measuring package
cohesion based on context. In: Proceedings of the IEEE interna-
tional workshop on semantic computing and systems, 2008, pp
127-132

Zuse H (1991) Software complexity: measures and methods.
de Gruyter, Amsterdam

http://jakarta.apache.org
http://sourceforge.net/projects/xgen/
http://sourceforge.net/projects/xgen/

	Package level cohesion measurement in object-oriented software
	Abstract
	Introduction
	Related work
	Theoretical framework for measurement
	Definition of packages
	Definitions of relations

	Package cohesion measurement
	Theoretical validation of package cohesion measure
	Experimental validation of proposed measure
	Experiment goal
	Empirical hypotheses
	Experimental environment
	Analysis methodology
	Analysis of experimental results
	Relationship between package cohesion and package size
	Relationship between package cohesion and package reusability

	Comparison of proposed measure with existing measures
	Threats to validity

	Conclusions and future work
	References

