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Abstract In this paper we review branch and bound-based
algorithms proposed for the exact solution of the maximum
clique problem and describe them under a unifying concep-
tual framework. As a proof of concept, we actually imple-
mented eight of these algorithms as parametrized versions
of one single general branch and bound algorithm.

The purpose of the present work is double folded. In
the one hand, the implementation of several different algo-
rithms under the same computational environment allows
for a more precise assessment of their comparative perfor-
mance at the experimental level. On the other hand we see
the unifying conceptual framework provided by such de-
scription as a valuable step toward a more fine grained anal-
ysis of these algorithms.

Keywords Maximum clique · Exact solution · Branch and
bound

1 Introduction

The Maximum Clique problem (MC) is the problem of find-
ing a clique of maximum size on a given graph.

There are a number of proposed algorithms for the ex-
act solution of MC which are reported to effectively solve
instances of practical interest (some of them of considerable
size) in several domains [3, 9, 17]. Among these, branch and
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bound-based schemes stand out in the literature as one of the
best approaches in practice.

More often than not, these algorithms are published from
an experimental standpoint, where running times for several
testing benchmarks are given and commented upon, but lit-
tle or no analytic results are given in support of the verified
performance. On the other hand the currently available re-
sults on the asymptotic behavior of algorithms for MC seem
to leave a considerable gap between the worst case perfor-
mance and the one actually reported by experimental results.

In this paper we review eight of these algorithms and de-
scribe them under a unifying conceptual framework. Besides
surveying some of the best performing algorithms published
to date, we aim to contribute with some perspective on the
subject of branch and bound algorithms for MC from both,
conceptual and experimental standpoints.

The unified framework introduced in the following sec-
tions invites to an implementation in which each of the al-
gorithms discussed becomes a particular variation of a gen-
eral branch and bound algorithm for MC. We actually imple-
mented each of them in this way and present experimental
results on their performance under the same computational
environment, something which is not available in the litera-
ture to the best of our knowledge.

The text is organized as follows. In Sect. 2 we review
some theoretical and experimental results on the solution
of MC. In Sect. 3 we focus on a certain class of these al-
gorithms, namely, branch and bound approaches based on
the enumerating algorithm of Bron–Kerbosch [4]. We state
Bron–Kerbosch’s algorithm in a form that highlights its
main idea and then convert it into a general branch and
bound algorithm from which many of the previously pro-
posed algorithms can be easily derived. In Sect. 4 we focus
on eight particular algorithms and discuss their implemen-
tation as particular instances of the general algorithm stated
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in Sect. 3, and we present comparative experimental results
from our implementation, all obtained under the same com-
putational environment. In Sect. 5 we discuss some imple-
mentation details and make our concluding remarks. In the
Appendix, we include the unabridged version of the experi-
mental results presented in Sect. 4.

1.1 Definitions and notation

Given a set S and an integer k we denote by
(
S
k

)
the set of

subsets of S of size k.
A graph G is a pair (V (G),E(G)) where V (G) is a finite

set and E(G) ⊆ (
V (G)

2

)
. The elements of V (G) and E(G)

are called vertices and edges of G, respectively. Two vertices
u and v are said to be neighbors in G if {u,v} is an edge
in G. The neighborhood of a vertex v in G is the set of
its neighbors in G and is denoted ΓG(v). The degree of a
vertex v in G is the size of its neighborhood in G. Given a
set S ⊆ V (G) the common neighborhood of S in G is the
set of vertices in G which are neighbors to all vertices in
S and is denoted Γ ∩

G(S). It will be convenient to adopt the
convention that Γ ∩

G(∅) = V (G).

A graph G is said to be complete if E(G) = (
V (G)

2

)
. I S ⊆

V (G), the subgraph of G induced by a set S ⊆ V (G) is the
graph G[S] = (

S,
(
S
2

) ∩ E(G)
)

and G−S denotes the graph
G[V (G) − S]. A clique in G is a set of vertices of G that
induces a complete graph. The size of a maximum clique in
G is denoted ω(G).

Given an integer k, a k-coloring of G is a surjective func-
tion γ :V (G) → {1, . . . , k} satisfying γ (u) �= γ (v) for every
{u,v} ∈ E(G). The value of γ (v) is called the color of v and
the integer k is called the number of colors in γ . A coloring
of G is a k-coloring of G for some integer k. We note that
ω(G) ≤ k for any graph G and any k-coloring of G.

A list of vertices of G is a sequence L = (v1, . . . , vn) of
distinct vertices of G with n = |V (G)|. A coloring γ of G

is greedy with respect to the list L if the color of each vertex
vi : 1 ≤ i ≤ n is the minimum not in {γ (vj ): 1 ≤ j < i}.

In the use of the notation above, we omit subscripts and
superscripts whenever this can be done without ambiguity.

2 Exact solution of the maximum clique problem

The Maximum Clique problem (MC) is the problem of find-
ing a clique of maximum size on a given graph. More pre-
cisely, an instance to MC is a graph G and a solution to in-
stance G is a clique of maximum size in G. The problem is
NP-hard [7] and cannot even be approximated in polyno-
mial time up to a factor of |V (G)|1/3 [1].

Several approaches have been proposed to the exact so-
lution of MC. A nice survey can be found in [3]. Concerning
the actual implementation of exact solutions for MC targeted

at general (as opposed to particular classes of) instances,
branch and bound-based approaches stand out with respect
to the verified performance, besides being relatively easy to
implement. In a sense that will be made more precise in
Sect. 3, the majority of branch and bound algorithms for MC
can be seen as based on the algorithm of Bron–Kerbosch
[4] for enumerating all maximal cliques of a graph. We will
refer to such algorithms as BK-based algorithms.

A graph on n vertices can have as much as 3n/3 differ-
ent maximal cliques [11]. Therefore, any algorithm which
enumerates all maximal cliques of a graph on n vertices
must have worst case running time of Ω(3n/3). An algo-
rithm matching this lower bound with worst case running
time of O(3n/3) was introduced in [19].

On the other hand, finding the maximum clique of a
graph does not require to actually examine all of its max-
imal cliques. Along the search among the maximal cliques
of the graph, some non-maximal cliques can be discarded as
soon as they are identified as not contained in a clique larger
than another already known. That the number of discarded
cliques in such a strategy can be significant is shown in [15]
which introduces an algorithm for MC with worst case run-
ning time of O(2n/3). This bound was later improved to
O(20.304n) [8] and further to O(20.276n) [13]. Presently the
value of this bound is set to O(20.249n) [14].

Reports from the “experimental front”, however, sug-
gest that worst case estimates do not tell the whole story.
Indeed, several authors who implemented BK-based algo-
rithms for MC report running times which may be surpris-
ing when confronted to the best known worst case estimates
(besides [5, 6, 9, 16–18] which are discussed below, see also
[10, 12]).

Experimental results for MC in the literature are usually
obtained using two main classes of instances, namely,

random graphs: sets of graphs generated according to the
Gn,p model [2], for different values of the parameters n

(number of vertices) and p (edge probability).
DIMACS graphs: a set of 66 graphs from the DIMACS Sec-

ond Implementation Challenge.1

Many of these algorithms are published with the focus on
the benchmarking, while little (if any at all) concern is given
to the analysis of the proposed algorithm. Explaining the gap
between the disheartening worst case estimates and what has
actually already been achieved in practice seems to be an
interesting challenge. With this long term goal in mind, in
the next section we reframe the BK-based algorithms in a
unifying form.

1These instances are publicly available from http://dimacs.rutgers.edu/
Challenges.

http://dimacs.rutgers.edu/Challenges
http://dimacs.rutgers.edu/Challenges
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3 A general branch and bound algorithm

In this section we focus on algorithms for MC based on the
enumerating algorithm of Bron–Kerbosch [4], which we call
BK-based algorithms. We start by stating Bron–Kerbosch’s
algorithm in a form that highlights its main idea. The Bron–
Kerbosch’s algorithm is not an algorithm for MC. Rather,
it solves the related problem of enumerating all maximal
cliques of a given graph. We proceed to a straightforward
conversion of our statement of Bron–Kerbosch algorithm
into a non-recursive algorithm for MC and thence to a gen-
eral branch and bound algorithm from which BK-based al-
gorithms can be easily derived.

Let G be a graph and consider the Algorithm
BK(G,Q,N) below, where Q is a clique in G and N ⊆
V (G) − Q.

BK(G,Q,N)

If Γ ∩
G(Q) = ∅1

Return {Q}2

If Γ ∩
G(Q) − N ⊆ ΓG(v) for some v ∈ N3

Return ∅4

v ← a vertex from Γ ∩
G(Q) − N5

Return BK(G,Q ∪ {v},N) ∪ BK(G,Q,N ∪ {v})6

Algorithm BK makes explicit the enumeration scheme
proposed in [4]. The idea of the algorithm is clear once we
notice that if G is a graph, Q is a non-empty clique in G and
N ⊆ V (G)−Q, then BK(G,Q,N) is the set of all maximal
cliques of G containing Q which do not intersect N .

Algorithm BK can be converted into algorithm
MAXCLIQUE below in a straightforward way as follows.

MAXCLIQUE(G)

C ← ∅1

S ← {(∅,V (G))}2

While S �= ∅3

(Q,K) ← pop(S )4

While K �= ∅5

v ← remove(K)6

S ← push(Q,K)7

(Q,K) ← (Q ∪ {v},K ∩ Γ (v))8

If |C| < |Q|9

C ← Q10

Return C11

In Algorithm MAXCLIQUE we have the following.

1. At any given point of the execution, the set C stores the
maximum clique in G found up to that point of the exe-
cution.

2. The set S is a stack (“last in first out”) data structure,
implementing the recursion in Algorithm BK.

3. The statement v ← remove(K) means that some vertex
is removed from set K and left in variable v.

4. Each pair (Q,K) corresponds to the pair of sets
(Q,Γ ∩

G(Q) − N) in Algorithm BK.

In order to convert Algorithm MAXCLIQUE into a branch
and bound algorithm for MC, we add a bounding scheme
which allows us to discard a pair (Q,K) from the stack S
if we detect that this pair cannot possibly lead to a clique
larger than C. We also add some pre and post-processing
routines which will be discussed in the sequel.

MAXCLIQUEBB(G)

(C,S ) ← pre-process(G)1

While S �= ∅2

(Q,K) ← pre-process-state(G,pop(S ),C)3

While K �= ∅ and |C| < |Q| + bound(G,Q,K)4

v ← remove(K)5

S ← push(G,Q,K)6

(Q,K) ← pre-process-state(G,Q ∪ {v},7

K ∩ Γ (v),C)

If |C| < |Q|8

(C,S ) ← update(G,C,S ,Q)9

Return post-process(G,C)10

In Algorithm MAXCLIQUEBB we have the following.

1. pre-process(G) returns the initial values of C and S .
2. pre-process-state(G,Q,K,C) returns a state (Q′,K ′)

where Q′ −Q ⊆ K −K ′. Note that this includes the case
(Q′,K ′) = (Q,K).

3. bound(G,Q,K) returns an integer b ≥ ω(G[K]).
4. remove(K) is as in MAXCLIQUE.
5. update(G,C,S ,Q) returns the clique Q and updates

stack S .
6. post-process(G,C) returns C.

In the sequel, we refer collectively to these six routines
as the custom routines of Algorithm MAXCLIQUEBB.

As the name suggests, branch and bound schemes of op-
timization own their performance in great measure to the
choice of the branching and the bounding steps. In the
reference frame provided by Algorithm MAXCLIQUEBB,
the branching step corresponds to remove(K) and the
bounding step corresponds to bound(G,Q,K). The rou-
tines pre-process(G), pre-process-state(G,Q,K,C) and
update(G,C,S ,Q) serve the purpose of creating and up-
dating data structures to aid the branching and bounding
steps. We refer to these as the branching and bounding
strategies, respectively. The vertex v returned by remove(K)
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is often called the pivot of the branching step and, accord-
ingly, branching strategies are often called pivoting strate-
gies in this context, emphasizing the fact that the branching
strategy reduces to the strategy for choosing the pivot.

It is usual to picture branch and bound schemes as the
process of transversing of a tree, often referred to as the
search tree. In Algorithm MAXCLIQUEBB the search tree
can be viewed as one in which the nodes are the pairs
(Q,K). Each branching step corresponds to choosing a
pivot v ∈ K and then adding the nodes (Q,K − {v}) and
pre-process-state(G,Q ∪ {v},K ∩ Γ (v),C) as children of
node (Q,K). We will call these the right and left child of
the node (Q,K), respectively.

Each round of the main loop of Algorithm
MAXCLIQUEBB can then be described as follows. Visit the
leftmost unvisited leaf of the search tree and examine the
pair (Q,K) which constitutes this leaf and either attach new
children to this leaf (branch) or mark it as visited (bound).
The overall running time of the algorithm is then the time
spent while visiting each node of the tree summed over all
nodes of the tree.

4 Eight branch and bound algorithms for MC

In this section we select eight BK-based algorithms and
discuss them as particular variations of Algorithm
MAXCLIQUEBB. The chosen algorithms, to which we will
refer collectively as “MCBB algorithms”, are the following.

cp: the algorithm MAXCLIQ as described in [5].
chi: the algorithm χ as described in [6].
df: the algorithm DF as described in [6].
chi + df: the algorithm χ + DF as described in [6].
mcq: the algorithm MCQ as described in [17].
mcr: the algorithm MCR as described in [16].
mcs: the algorithm MCS as described in [18].
dyn: the algorithm MAXCLIQUEDYN as described in [9].

The diagram in Fig. 1 displays the publishing timeline for
the MCBB algorithms. An arrow in the diagram means that
the author of the latter work explicitly builds upon the work
of the former.

We actually implemented Algorithm MAXCLIQUEBB
and the variations corresponding to each of the MCBB algo-
rithms in order to effect a comparative experimental analysis
of their performance under the same computational environ-
ment. For details on this implementation as well as on the
computational environment in which the experimental data
presented were gathered, we refer the reader to Sect. 5.

4.1 The basic algorithm

We begin by pointing out that Algorithm MAXCLIQUE cor-
responds to the variation of Algorithm MAXCLIQUEBB
where

Fig. 1 Publishing timeline of the MCBB algorithms

pre-process(G): returns the pair (G, {(∅,V (G))}),
pre-process-state(G,Q,K,C): returns the pair (Q,K),
bound(G,Q,K): returns the value of |K|,
remove(K): removes (and returns) a vertex from K ,
update(G,C,S ,Q): returns the pair (Q,S ),
post-process(G,C): returns the set C.

This is the most basic variation of Algorithm
MAXCLIQUEBB in the sense that each of the operations
above performs trivial processing in time Θ(1). We refer
to this particular variation of Algorithm MAXCLIQUEBB
as the “basic algorithm”, and include it into the collective
“MCBB algorithms”.

Down to implementation level, leaving the pivoting strat-
egy unspecified (or underspecified) amounts to having a piv-
oting strategy where the order of the vertices is induced by
the data structure representing the graph. It is worth noting
that the data structure representing the graph, for its turn, is
sensitive to the way the input data are organized and parsed.

The tables in the following sections show the number of
search tree nodes and the overall execution time for the basic
algorithm confronted with the same values for executions of
the other MCBB algorithms for 21 of the DIMACS instances.
These instances were selected because they were the ones
for which each of the MCBB algorithms ran to completion
within the time limit of three hours (10800 seconds). Com-
plete tables, showing these values for all of the 66 DIMACS
instances, are presented in the Appendix.

4.2 Non-trivial branching: cp

Among the MCBB algorithms, cp is the first to explore a
non-trivial pivoting strategy, which is to privilege low de-
gree vertices as pivots. The intuitive idea behind this strat-
egy is that low degree vertices are “unlikely” to be part of a
maximum clique and so should be examined and discarded
as soon as possible.

Viewed as a variation of Algorithm MAXCLIQUEBB, cp
is obtained when pre-process(G) orders V (G) into a list
L = (v1, . . . , vn) where v1 is the vertex of minimum de-
gree in G, v2 is the vertex of minimum degree in G − {v1},
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Table 1 Number of search tree nodes and execution time for basic and
cp

Instance # Search tree nodes Time (s)

basic cp basic cp

brock200_2 655863 454569 8.06 5.48

brock200_3 9025785 3610663 108.50 45.76

brock200_4 29071199 15103689 375.90 191.39

c-fat200-1 847 515 0.03 0.03

c-fat200-2 2373 2405 0.06 0.06

c-fat500-1 2419 1187 0.11 0.19

c-fat500-2 9775 4227 0.23 0.22

c-fat500-5 812265 32215829 22.61 772.37

hamming6-2 62239 61479 1.10 1.05

hamming6-4 1949 1657 0.01 0.02

hamming8-4 50630977 34762759 668.19 459.77

johnson8-2-4 721 571 0.01 0.00

johnson8-4-4 160555 83555 1.95 1.02

johnson16-2-4 29897217 23319913 277.13 217.54

keller4 13347251 8588277 148.24 96.35

MANN_a9 5194193 1247265 54.00 13.41

p_hat300-1 127783 96531 1.62 1.15

p_hat300-2 218320753 10212863 3333.80 164.79

p_hat500-1 1192121 776357 15.19 9.94

p_hat700-1 4405187 3067767 58.24 38.60

sanr200_0.7 122475879 54201495 1597.00 714.08

v3 is the vertex of minimum degree in G − {v1, v2}, and
so on, and remove(K) returns the lowest indexed vertex
in K according to L. Moreover, if G is a “dense” graph,
then pre-process-state(G,Q,K,C) recomputes this list re-
stricted to G[K]. A precise definition of “dense” is not given
by the authors of [5]. In our implementation of cp we do
not treat differently graphs according to their density leav-
ing pre-process-state(G,Q,K,C) the same as in the basic
algorithm.

In Table 1 we show the number of search tree nodes and
the overall execution time for the basic algorithm confronted
with the same values for executions of cp on the selected DI-
MACS instances. These values show clearly that the branch-
ing strategy in cp substantially reduces the number of search
tree nodes with respect to the basic algorithm. Indeed, ex-
cepting the extreme cases on both ends of the sample, we
see that the number of search tree nodes for basic is 1.65
larger than the number of search tree nodes for cp (with
a standard deviation of 0.43). The running times, for their
turn, show clearly that the overhead imposed by the pre-
processing does not compromise the overall performance of
the algorithm.

A word seems to be due with respect to instance
c-fat500-5, whose data seem to be so discrepant with re-
spect to the other c-fat* instances. The reason for this is the
fact that the maximum clique found by the algorithm for
this instance is formed by vertices of maximum degree in
the graph and, as explained above, such vertices are the last
ones to be considered by the algorithm. The reader will ob-
serve the same phenomenon for other instances of the “c-fat*
family” in the Appendix.

4.3 Non-trivial branching and bounding: df, chi and chi + df

While cp explores the impact of a non-trivial pivoting strat-
egy in the performance of maximum clique searching, the
algorithms df, chi and chi + df explore the comparative im-
pact of non-trivial bounding strategies. These are the first
among the MCBB algorithms to explore the idea of using an
estimate on the chromatic number of the graph as an upper
bound on the size of the maximum clique.

In all three of them, pre-process(G) orders V (G) into
a list L = (v1, . . . , vn). No details are given by the author
about this ordering, as its only purpose is to keep the ver-
tices easily indexable so that remove(K) returns the lowest
indexed vertex in K according to L. In our implementation
we use the trivial pre-process(G) of the basic algorithm.

In Algorithm chi the bounding step is performed by com-
puting four colorings of G[K] and returning the number
of colors of the one which uses the least number of col-
ors. These four colorings are obtained using two different
greedy coloring algorithms. Each of these coloring algo-
rithms work by choosing at each step the next vertex to be
colored. Different colorings are obtained by changing the
policy for choosing the next vertex to be colored. As a vari-
ation of Algorithm MAXCLIQUEBB, Algorithm chi is the
one obtained when the routine bound(G,Q,K) performs
this computation and all other custom routines are as in the
basic algorithm.

Algorithm df explores what the author of [6] calls do-
main filters. The idea is to “clean-up the graph” before each
branching step. More precisely, when at node (Q,K) in the
search tree, every vertex of degree less than |C| − |Q| in
G[K] is removed from K , since such vertices cannot be part
of a clique larger than C in G. Then, every vertex of degree
|K|−1 in (the resulting) G[K] is moved to Q. This amounts
to collapsing several branching steps in one, because when
a vertex of degree |K| − 1 is chosen as the pivot at node
(Q,K), both children of this node will be equal or, equiv-
alently, this node will have only one child. Algorithm df is,
thus, the variation of Algorithm MAXCLIQUEBB obtained
when the routine pre-process-state(G,Q,K,C) performs
the above described processing, and all other custom rou-
tines are as in basic.
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Table 2 Number of search tree nodes for basic, chi, df and chi + df

Instance basic df chi chi + df

brock200_2 655863 55853 8451 10515

brock200_3 9025785 606435 82721 61131

brock200_4 29071199 2475297 127653 160001

c-fat200-1 847 19 33 19

c-fat200-2 2373 65 145 11

c-fat500-1 2419 67 97 27

c-fat500-2 9775 163 169 27

c-fat500-5 812265 269 397 27

hamming6-2 62239 10577 151 131

hamming6-4 1949 343 237 227

hamming8-4 50630977 3167847 20413 21049

johnson8-2-4 721 137 59 77

johnson8-4-4 160555 14125 253 219

johnson16-2-4 29897217 5228329 1379359 1614925

keller4 13347251 1187295 63271 65453

MANN_a9 5194193 772459 1347 1323

p_hat300-1 127783 10025 4879 4397

p_hat300-2 218320753 9604633 78333 74219

p_hat500-1 1192121 85221 31901 30143

p_hat700-1 4405187 285863 90371 93259

sanr200_0.7 122475879 9945037 397241 386685

Algorithm chi + df is simply the union of the bounding
strategy of Algorithm chi and the branching strategy of Al-
gorithm df into a single algorithm.

Table 2 shows side by side the number of search tree
nodes in the execution of the same instances as in Table 1.

As was the case in the discussion of algorithm cp, the val-
ues for the “c-fat* family” are remarkable when compared to
the others. Indeed the author of [6] himself observes that
these instances “are quite easy to solve using domain filter-
ing”.

Table 3 shows the running times corresponding to the val-
ues in Table 2. Here the improvement, when there is im-
provement, is much less pronounced than what one sees
when comparing the number of search tree nodes. The con-
clusion is that, differently from what we observed about cp,
the overhead incurred in the more elaborate strategies of
branching and bounding is not negligible and can be such as
to actually increase the overall running time when compared
to the basic algorithm. This is not completely surprising if
we keep in mind the complexity of the processing which
takes place at each branching and bounding step. Besides, as
discussed in Sect. 5, it may be the case that some of the im-
plementation details contribute to make this overhead even
more pronounced.

Table 3 Running time (s) for basic, chi, df and chi + df

Instance basic df chi chi + df

brock200_2 8.06 13.40 170.98 189.73

brock200_3 108.50 152.46 1262.22 1065.25

brock200_4 375.90 701.33 2803.73 3302.96

c-fat200-1 0.03 0.04 0.62 0.96

c-fat200-2 0.06 0.08 1.59 0.67

c-fat500-1 0.11 0.29 5.96 6.21

c-fat500-2 0.23 0.44 9.70 8.92

c-fat500-5 22.61 1.43 24.68 18.85

hamming6-2 1.10 6.26 0.72 0.99

hamming6-4 0.01 0.06 0.81 0.72

hamming8-4 668.19 973.37 1172.32 1244.42

johnson8-2-4 0.01 0.01 0.11 0.14

johnson8-4-4 1.95 2.93 2.87 2.99

johnson16-2-4 277.13 363.29 4068.67 4460.17

keller4 148.24 192.10 958.69 984.13

MANN_a9 54.00 66.18 9.19 9.35

p_hat300-1 1.62 2.58 103.97 103.22

p_hat300-2 3333.80 5108.47 4018.11 3976.74

p_hat500-1 15.19 26.16 1088.94 1022.10

p_hat700-1 58.24 95.80 3922.90 3934.76

sanr200_0.7 1597.00 3003.31 8052.30 8458.74

As we shall see in the sequel, there are ways to benefit
from the idea of coloring-based bounding at a less demand-
ing cost in execution time.

4.4 Color-based branching and bounding: mcq, mcr, mcs
and dyn

The algorithms discussed above (among others) showed ex-
perimental evidence that the use of non-trivial branching and
bounding strategies were worth the processing time over-
head per node of the search tree.

The algorithm mcq goes one step further, using the idea
of coloring the vertices of the graph not only as a bounding
strategy but also as a branching strategy. The idea is that the
coloring of the graph will not only provide a bound on the
size of the maximum clique, but also serve as an ordering of
the vertices guiding the choice of the pivot at each branching
step.

This is done as follows. First, the vertices of the graph are
initially ordered into a list L = (v1, . . . , vn) where the ver-
tices are in non-increasing degree order. This corresponds to
the routine pre-process(G) in Algorithm MAXCLIQUEBB.

At each branching step, the routine pre-process-state(G,

Q,K,C) computes a greedy coloring of G[K] with respect
to the list L and then returns (Q,K).
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Table 4 Number of search tree nodes and execution time for basic and
mcq

Instance # Search tree nodes Time (s)

basic mcq basic mcq

brock200_2 655863 8649 8.06 0.94

brock200_3 9025785 33359 108.50 5.21

brock200_4 29071199 127691 375.90 19.26

c-fat200-1 847 437 0.03 0.03

c-fat200-2 2373 487 0.06 0.06

c-fat500-1 2419 1045 0.11 0.12

c-fat500-2 9775 1093 0.23 0.19

c-fat500-5 812265 1245 22.61 0.79

hamming6-2 62239 127 1.10 0.03

hamming6-4 1949 257 0.01 0.01

hamming8-4 50630977 29529 668.19 7.85

johnson8-2-4 721 103 0.01 0.00

johnson8-4-4 160555 433 1.95 0.06

johnson16-2-4 29897217 707187 277.13 26.75

keller4 13347251 31597 148.24 3.64

MANN_a9 5194193 191 54.00 0.02

p_hat300-1 127783 4301 1.62 0.32

p_hat300-2 218320753 19535 3333.80 6.23

p_hat500-1 1192121 22457 15.19 2.62

p_hat700-1 4405187 68671 58.24 8.83

sanr200_0.7 122475879 365773 1597.00 60.72

The routine remove(K) returns a vertex of maximum
color from this coloring and the routine bound(G,Q,K)

just returns the number of colors in this coloring. All other
custom routines are as in the basic algorithm.

There are two noteworthy differences in the use of color-
ing in mcq with respect to algorithms chi and chi + df. First,
only one coloring is computed at each branching step, in-
stead of the four in algorithms chi and chi + df. Second, the
way the pivot is chosen at the branching step is such that
the coloring does not need to be recomputed for the right
child of each node. As the pivot v is chosen so that it is col-
ored with the maximum color in K and has a neighbor of
each color less than its own color, this coloring restricted to
K − {v} preserves these properties.

Table 4 shows the number of search tree nodes and the
overall execution time for the basic algorithm confronted
with the same values for executions of mcq. Differently from
what happens with algorithms chi, df and chi + df, the reduc-
ing of the number of search tree nodes reflects directly in the
running time, and the differences are even more pronounced.

The algorithms mcr, mcs and dyn are improvements on
mcq. The first two are proposed by some of the same authors
of mcq.

The only difference between mcq and mcr is in the pre-
processing of the graph, before the actual branch and bound
is executed. In Algorithm mcr the set V (G) is ordered into a
list L = (v1, . . . , vn) where vn is the vertex of minimum de-
gree in G, vn−1 is the vertex of minimum degree in G−{vn},
vn−2 is the vertex of minimum degree in G−{vn−1, vn}, and
so on. Ties are broken in such a way that if vi−1 and vi have
the same degree, then the sum of the degrees of the neigh-
bors of vi in G−{vi+1, . . . , vn} is less or equal than the sum
of the degrees of the neighbors of vi−1 in G − {vi, . . . , vn}.
Everything else proceeds as in mcq.

Algorithm mcs further improves pre-process(G) by
modifying the adjacency matrix representing the graph so
that the order of the neighbors of each vertex is compatible
with the order of the vertices in the initial list L.

Besides that, pre-process-state(G,Q,K,C) computes a
coloring γ of G[K] similar to the one computed by mcq,
but with the following difference. If a vertex v has neighbors
colored with all the lowest |C|−|Q| colors, then a color with
only one neighbor u is searched for and the algorithm tries
to recolor v and u so that both vertices stay on the lowest
|C| − |Q| colors.

At the end, post-process(G,C) undoes the modification
in the adjacency matrix made in pre-process(G).

In Algorithm dyn the branching step keeps track of the
sizes of the set Q′ in each node (Q′,K ′) visited in the search
tree. More precisely, the routine pre-process-state(G,Q,

K,C) computes the number of nodes (Q′,K ′) of the search
tree visited so far satisfying |Q′| ≤ |Q|. Whenever this num-
ber is less than 2.5% of the number of search tree nodes vis-
ited so far, the vertices in K are ordered into a list as the
one computed in mcq and a coloring of G[K] with the same
properties as the one in the pre-processing of mcq is recom-
puted. This coloring, however, has the additional property
of keeping the relative order of all vertices of color less or
equal |C| − |Q|.

Table 5 shows the number of search tree nodes in the ex-
ecution of basic, mcr, mcs and dyn. These values show that
each of these algorithms effectively reduces the size of the
search tree with respect to mcq.

On the other hand, differently from the observed with
respect to algorithms df, chi and chi + df, the processing
overhead incurred because of the non-trivial branching and
bounding computation needed at each step does not cancel
out the gain obtained by reducing the size of the search tree,
as can be seen in Table 6, which shows the running times
corresponding to the entries in Table 5.

Moreover, the size of the search tree for mcs is further
reduced with respect to mcr for most instances. When this is
not the case and both search trees have the same size, then
both consume about the same processing time.

We note that it is to be expected that the number of nodes
in the search tree of mcr and mcs is the same for some in-
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Table 5 Number of search tree nodes for basic, mcr, mcs and dyn

Instance basic mcr mcs dyn

brock200_2 655863 7825 4937 7183

brock200_3 9025785 30619 15927 25821

brock200_4 29071199 142077 64799 94351

c-fat200-1 847 377 377 437

c-fat200-2 2373 353 353 487

c-fat500-1 2419 973 973 1045

c-fat500-2 9775 949 949 1093

c-fat500-5 812265 873 873 1245

hamming6-2 62239 135 129 127

hamming6-4 1949 153 153 257

hamming8-4 50630977 16899 9707 25765

johnson8-2-4 721 59 59 103

johnson8-4-4 160555 247 171 393

johnson16-2-4 29897217 533629 474647 1264845

keller4 13347251 23995 11749 17625

MANN_a9 5194193 75 57 191

p_hat300-1 127783 4209 3091 4267

p_hat300-2 218320753 15677 6957 15039

p_hat500-1 1192121 21635 16079 21821

p_hat700-1 4405187 65849 43751 56061

sanr200_0.7 122475879 325415 132903 211053

stances. This is because mcs can be viewed as an improve-
ment over mcr which “may or may not be triggered” depend-
ing on the instance. The same is true for dyn with respect to
mcq.

The conclusion is that the use of coloring as an aid for
both, the branching and the bounding strategies yields al-
gorithms that perform better than the ones discussed in the
previous sections. This is because, (i) the coloring algorithm
is simple; (ii) the choice of the pivot based on the coloring is
a good pivoting strategy and (iii) colorings can be inherited
and reused along some branches of the search tree.

5 Implementation details and concluding remarks

The implementation of Algorithm MAXCLIQUEBB to
which our experimental results refer was made in the Python
language using the framework provided by the module Net-
workX. The running times were taken in a GNU/Linux sys-
tem running on a 2.4 GHz, 32-core machine with 128 GB
of memory. Each process was allowed to run for a maxi-
mum processing time of three hours (10800 seconds). The
machine was not dedicated to these experiments.

Since Python is an interpreted language, its programs will
run substantially slower than the equivalent in a compiled

Table 6 Running time (s) for basic, mcr, mcs and dyn

Instance basic mcr mcs dyn

brock200_2 8.06 0.90 0.74 1.35

brock200_3 108.50 4.88 3.23 5.67

brock200_4 375.90 20.35 12.47 19.47

c-fat200-1 0.03 0.05 0.05 0.04

c-fat200-2 0.06 0.07 0.07 0.06

c-fat500-1 0.11 0.25 0.26 0.14

c-fat500-2 0.23 0.33 0.34 0.24

c-fat500-5 22.61 0.80 0.77 0.95

hamming6-2 1.10 0.02 0.03 0.03

hamming6-4 0.01 0.00 0.01 0.01

hamming8-4 668.19 4.64 3.03 9.47

johnson8-2-4 0.01 0.01 0.00 0.01

johnson8-4-4 1.95 0.03 0.03 0.06

johnson16-2-4 277.13 19.84 18.28 64.38

keller4 148.24 2.82 1.73 3.36

MANN_a9 54.00 0.00 0.01 0.02

p_hat300-1 1.62 0.37 0.34 0.39

p_hat300-2 3333.80 4.92 2.76 5.63

p_hat500-1 15.19 2.73 2.21 2.99

p_hat700-1 58.24 8.86 6.97 13.81

sanr200_0.7 1597.00 53.26 29.67 50.90

language. This is to note that the running times in the ex-
perimental data presented are to be taken mainly as a qual-
itative assessment. Indeed, implementations geared toward
maximum efficiency are reported to run the same algorithms
discussed here in time orders of magnitude smaller, even
in computational environments less powerful than the one
available here. For the purpose of this work, however, the
language is very suitable in the flexibility it offers to the pro-
grammer.

The primary goal of this work is the introduction of a
unified conceptual framework which may serve as a starting
point toward more fine grained analysis of such algorithms,
and thus contributing to closing the gap between known the-
oretical bounds and observed experimental performance. As
a consequence our presentation and discussion of experi-
mental results does not aim at more than giving the reader
a “sense of proportion” between the different approaches to
the problem and their practical impact as well as a modest
historical perspective on the evolution of ideas toward the
solution of MC. Our experimental data are in agreement with
the experimental data available from the papers where each
of the MCBB algorithms was originally proposed. While the
values are of course different, their qualitative relationship
is the same. The reader interested in a more focused discus-
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sion of the experimental results is encouraged to refer to the
respective references.

Finally, even under the limitations above pointed, the ex-
perimental data presented here seem to be enough to select
mcs and dyn as the best algorithms for MC among the MCBB
algorithms. Indeed, mcs is the one algorithm which shows
more consistently the lowest values for the number of nodes
in the search tree and processing time. By a different count,
however, dyn is the one algorithm which solved the largest
number of instances in the prescribed time, as shown in the
Appendix.
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Appendix: Unabridged experimental data

In this appendix we present the experimental data obtained
for each of the MCBB algorithms on each of the DIMACS
instances.

Table 7 shows the names, the number of vertices, the
number of edges and the size of a maximum clique for each
of the instances. Where the size of the maximum clique is
shown as “≥ k”, this indicates that the exact value is only
known to be at least k.

Table 8 shows the number of search tree nodes and the
overall execution time for the basic algorithm confronted
with the same values for executions of cp. In other words,
Table 8 is the unabridged version of Table 1.

In this and the following tables, an entry marked “–” in
the column “time” means that the corresponding execution
was aborted after three hours of processing (“time-out”). In
such cases, the value presented as the number of search tree
nodes is to be understood as the number of nodes examined
up to that point in the processing.

Table 9 shows the number of search tree nodes and the
overall execution time for the basic algorithm confronted
with the same values for executions of mcq. Table 9 is the
unabridged version of Table 4.

Table 10 shows the number of search tree nodes in the
execution of df, chi and chi + df. Table 10 is the unabridged
version of Table 2.

Table 11 shows the running times in the execution of df,
chi and chi + df. Table 11 is the unabridged version of Ta-
ble 3.

Table 12 shows the number of search tree nodes in the
execution of basic, mcr, mcs and dyn. Table 12 is the
unabridged version of Table 5.

Table 13, shows the running times in the execution of
basic, mcr, mcs and dyn. Table 13 is the unabridged version
of Table 6.

Table 14 shows, for each of the MCBB algorithms, the
average number of search tree nodes examined per second.

Table 7 Instances from the DIMACS second implementation chal-
lenge

G |V (G)| |E(G)| ω(G)

brock200_1 200 14834 21

brock200_2 200 9876 12

brock200_3 200 12048 15

brock200_4 200 13089 17

brock400_1 400 59723 27

brock400_2 400 59786 29

brock400_3 400 59681 31

brock400_4 400 59765 33

brock800_1 800 207505 23

brock800_2 800 208166 24

brock800_3 800 207333 25

brock800_4 800 207643 26

c-fat200-1 200 1534 12

c-fat200-2 200 3235 24

c-fat200-5 200 8473 58

c-fat500-1 500 4459 14

c-fat500-2 500 9139 26

c-fat500-5 500 23191 64

c-fat500-10 500 46627 126

hamming6-2 64 1824 32

hamming6-4 64 704 4

hamming8-2 256 31616 128

hamming8-4 256 20864 16

hamming10-2 1024 518656 512

hamming10-4 1024 434176 ≥ 32

johnson8-2-4 28 210 4

johnson8-4-4 70 1855 14

johnson16-2-4 120 5460 8

johnson32-2-4 496 107880 ≥ 16

keller4 171 9435 11

keller5 776 225990 27

keller6 3361 4619898 ≥ 59

MANN_a9 45 918 16

MANN_a27 378 70551 126

MANN_a45 1035 533115 345

MANN_a81 3321 5506380 ≥1100

p_hat300-1 300 10933 8

p_hat300-2 300 21928 25

p_hat300-3 300 33390 36

p_hat500-1 500 31569 9

p_hat500-2 500 62946 36

p_hat500-3 500 93800 50

p_hat700-1 700 60999 11

p_hat700-2 700 121728 44

p_hat700-3 700 183010 62

p_hat1000-1 1000 122253 10
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Table 7 (Continued)

G |V (G)| |E(G)| ω(G)

p_hat1000-2 1000 244799 46

p_hat1000-3 1000 371746 68

p_hat1500-1 1500 284923 12

p_hat1500-2 1500 568960 65

p_hat1500-3 1500 847244 ≥ 56

san200_0.7_1 200 13930 30

san200_0.7_2 200 13930 18

san200_0.9_1 200 17910 70

san200_0.9_2 200 17910 60

san200_0.9_3 200 17910 44

san400_0.5_1 400 39900 13

san400_0.7_1 400 55860 40

san400_0.7_2 400 55860 30

san400_0.7_3 400 55860 22

san400_0.9_1 400 71820 100

san1000 1000 250500 15

sanr200_0.7 200 13868 18

sanr200_0.9 200 17863 42

sanr400_0.5 400 39984 13

sanr400_0.7 400 55869 21

Table 8 Number of search tree nodes and execution time for basic and
cp

Instance # Search tree nodes Time (s)

basic cp basic cp

brock200_1 760463351 251690269 10268.47 3502.69

brock200_2 655863 454569 8.06 5.48

brock200_3 9025785 3610663 108.50 45.76

brock200_4 29071199 15103689 375.90 191.39

brock400_1 781878631 781941457 – –

brock400_2 779146349 755850137 – –

brock400_3 744501333 715649169 – –

brock400_4 750841656 732504582 – –

brock800_1 773878067 776717005 – –

brock800_2 755264235 768571657 – –

brock800_3 745732597 763313958 – –

brock800_4 782408235 760254294 – –

c-fat200-1 847 515 0.03 0.03

c-fat200-2 2373 2405 0.06 0.06

c-fat200-5 197957 458462948 5.28 –

c-fat500-1 2419 1187 0.11 0.19

c-fat500-2 9775 4227 0.23 0.22

c-fat500-5 812265 32215829 22.61 772.37

c-fat500-10 222003341 298372854 – –

hamming6-2 62239 61479 1.10 1.05

hamming6-4 1949 1657 0.01 0.02

Table 8 (Continued)

Instance # Search tree nodes Time (s)

basic cp basic cp

hamming8-2 479589100 352543447 – –

hamming8-4 50630977 34762759 668.19 459.77

hamming10-2 477939325 402027810 – –

hamming10-4 799627648 778850521 – –

johnson8-2-4 721 571 0.01 0.00

johnson8-4-4 160555 83555 1.95 1.02

johnson16-2-4 29897217 23319913 277.13 217.54

johnson32-2-4 1124521577 1104958353 – –

keller4 13347251 8588277 148.24 96.35

keller5 788436558 834071065 – –

keller6 814607071 779038755 – –

MANN_a9 5194193 1247265 54.00 13.41

MANN_a27 1039572148 470689919 – –

MANN_a45 896111360 293734044 – –

MANN_A81 649082104 166411314 – –

p_hat300-1 127783 96531 1.62 1.15

p_hat300-2 218320753 10212863 3333.80 164.79

p_hat300-3 694764638 632946226 – –

p_hat500-1 1192121 776357 15.19 9.94

p_hat500-2 666419883 601945642 – –

p_hat500-3 627863675 603266182 – –

p_hat700-1 4405187 3067767 58.24 38.60

p_hat700-2 674310972 570261174 – –

p_hat700-3 575688852 578871234 – –

p_hat1000-1 25084283 16177539 327.15 204.89

p_hat1000-2 651274462 589428559 – –

p_hat1000-3 609819818 546143432 – –

p_hat1500-1 232906339 139624485 3473.86 2151.07

p_hat1500-2 577460315 556716701 – –

p_hat1500-3 609271041 542561068 – –

san200_0.7_1 1199510748 1285897159 – –

san200_0.7_2 1162303528 1040102008 – –

san200_0.9_1 712616501 857295178 – –

san200_0.9_2 580762880 708916119 – –

san200_0.9_3 788583024 702721963 – –

san400_0.5_1 1057751310 1072592630 – –

san400_0.7_1 1159107699 1093205907 – –

san400_0.7_2 1091551627 1289478422 – –

san400_0.7_3 1011697883 1037906517 – –

san400_0.9_1 868327833 818891530 – –

san1000 894222972 912859488 – –

sanr200_0.7 122475879 54201495 1597.00 714.08

sanr200_0.9 708848293 626288059 – –

sanr400_0.5 53900541 36182977 680.22 457.73

sanr400_0.7 791421504 749744630 – –
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Table 9 Number of search tree nodes and execution time for basic and
mcq

Instance # Search tree nodes Time (s)

basic mcq basic mcq

brock200_1 760463351 934071 10268.47 194.72

brock200_2 655863 8649 8.06 0.94

brock200_3 9025785 33359 108.50 5.21

brock200_4 29071199 127691 375.90 19.26

brock400_1 781878631 46078511 – –

brock400_2 779146349 48936847 – –

brock400_3 744501333 40736005 – –

brock400_4 750841656 36592912 – –

brock800_1 773878067 49759405 – –

brock800_2 755264235 50923139 – –

brock800_3 745732597 49157697 – –

brock800_4 782408235 50647778 – –

c-fat200-1 847 437 0.03 0.03

c-fat200-2 2373 487 0.06 0.06

c-fat200-5 197957 621 5.28 0.31

c-fat500-1 2419 1045 0.11 0.12

c-fat500-2 9775 1093 0.23 0.19

c-fat500-5 812265 1245 22.61 0.79

c-fat500-10 222003341 1493 – 19.16

hamming6-2 62239 127 1.10 0.03

hamming6-4 1949 257 0.01 0.01

hamming8-2 479589100 519 – 1.79

hamming8-4 50630977 29529 668.19 7.85

hamming10-2 477939325 2433 – 178.36

hamming10-4 799627648 38911002 – –

johnson8-2-4 721 103 0.01 0.00

johnson8-4-4 160555 433 1.95 0.06

johnson16-2-4 29897217 707187 277.13 26.75

johnson32-2-4 1124521577 286689139 – –

keller4 13347251 31597 148.24 3.64

keller5 788436558 21418630 – –

keller6 814607071 18188831 – –

MANN_a9 5194193 191 54.00 0.02

MANN_a27 1039572148 86157 – 919.57

MANN_a45 896111360 129263 – –

MANN_A81 649082104 13107 – –

p_hat300-1 127783 4301 1.62 0.32

p_hat300-2 218320753 19535 3333.80 6.23

p_hat300-3 694764638 5122669 – 2508.94

p_hat500-1 1192121 22457 15.19 2.62

p_hat500-2 666419883 1084401 – 566.91

p_hat500-3 627863675 16142732 – –

p_hat700-1 4405187 68671 58.24 8.83

p_hat700-2 674310972 8798091 – 7296.62

p_hat700-3 575688852 11194735 – –

Table 9 (Continued)

Instance # Search tree nodes Time (s)

basic mcq basic mcq

p_hat1000-1 25084283 406251 327.15 50.43

p_hat1000-2 651274462 13673923 – –

p_hat1000-3 609819818 16712232 – –

p_hat1500-1 232906339 2567285 3473.86 442.68

p_hat1500-2 577460315 13699588 – –

p_hat1500-3 609271041 14540018 – –

san200_0.7_1 1199510748 3551 – 1.53

san200_0.7_2 1162303528 3531 – 0.72

san200_0.9_1 712616501 453207 – 214.31

san200_0.9_2 580762880 2166287 – 1315.95

san200_0.9_3 788583024 1854567 – 1450.32

san400_0.5_1 1057751310 5601 – 3.00

san400_0.7_1 1159107699 174471 – 136.18

san400_0.7_2 1091551627 134609 – 119.02

san400_0.7_3 1011697883 895391 – 383.13

san400_0.9_1 868327833 83553153 – –

san1000 894222972 511507 – 1093.09

sanr200_0.7 122475879 365773 1597.00 60.72

sanr200_0.9 708848293 19847341 – –

sanr400_0.5 53900541 610909 680.22 75.05

sanr400_0.7 791421504 48382248 – –

Table 10 Number of search tree nodes for basic, chi, df and chi + df

Instance basic df chi chi + df

brock200_1 760463351 32933229 625739 485819

brock200_2 655863 55853 8451 10515

brock200_3 9025785 606435 82721 61131

brock200_4 29071199 2475297 127653 160001

brock400_1 781878631 35364477 419494 426556

brock400_2 779146349 33170085 461625 408386

brock400_3 744501333 34509290 404194 424708

brock400_4 750841656 32556199 421270 376092

brock800_1 773878067 37311293 295164 286255

brock800_2 755264235 36583861 296180 285318

brock800_3 745732597 32631672 291028 276027

brock800_4 782408235 39054988 310928 306408

c-fat200-1 847 19 33 19

c-fat200-2 2373 65 145 11

c-fat200-5 197957 127 229 127

c-fat500-1 2419 67 97 27

c-fat500-2 9775 163 169 27

c-fat500-5 812265 269 397 27

c-fat500-10 222003341 299 503 11

hamming6-2 62239 10577 151 131
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Table 10 (Continued)

Instance basic df chi chi + df

hamming6-4 1949 343 237 227

hamming8-2 479589100 7705015 3973 1841

hamming8-4 50630977 3167847 20413 21049

hamming10-2 477939325 24989216 15841 15880

hamming10-4 799627648 34293269 147962 100629

johnson8-2-4 721 137 59 77

johnson8-4-4 160555 14125 253 219

johnson16-2-4 29897217 5228329 1379359 1614925

johnson32-2-4 1124521577 163763590 2158150 2374215

keller4 13347251 1187295 63271 65453

keller5 788436558 36800640 152609 158865

keller6 814607071 31790821 933 790

MANN_a9 5194193 772459 1347 1323

MANN_a27 1039572148 276077527 45063 73981

MANN_a45 896111360 247828444 2585 2332

MANN_A81 649082104 134484013 18 15

p_hat300-1 127783 10025 4879 4397

p_hat300-2 218320753 9604633 78333 74219

p_hat300-3 694764638 25445287 257474 267335

p_hat500-1 1192121 85221 31901 30143

p_hat500-2 666419883 19861603 168191 156518

p_hat500-3 627863675 26495825 148979 197406

p_hat700-1 4405187 285863 90371 93259

p_hat700-2 674310972 19704073 150286 124285

p_hat700-3 575688852 21204840 82150 115173

p_hat1000-1 25084283 1688731 273593 287859

p_hat1000-2 651274462 22031073 132626 142135

p_hat1000-3 609819818 20670410 90971 100185

p_hat1500-1 232906339 13776857 179966 186962

p_hat1500-2 577460315 21490388 60226 68721

p_hat1500-3 609271041 21103903 69038 44671

san200_0.7_1 1199510748 230612837 35959 999

san200_0.7_2 1162303528 139202470 20719 20585

san200_0.9_1 712616501 95545497 160730 189882

san200_0.9_2 580762880 22944996 58131 184741

san200_0.9_3 788583024 30003374 413304 371226

san400_0.5_1 1057751310 83927533 4029 3081

san400_0.7_1 1159107699 293738048 108630 173528

san400_0.7_2 1091551627 191488689 240064 200279

san400_0.7_3 1011697883 173777224 438690 243408

san400_0.9_1 868327833 106086764 104439 398631

san1000 894222972 31153745 20004 20194

sanr200_0.7 122475879 9945037 397241 386685

sanr200_0.9 708848293 33205279 360044 339146

sanr400_0.5 53900541 4214565 558533 544368

sanr400_0.7 791421504 36721656 432554 454927

Table 11 Running time (s) for basic, chi, df and chi + df

Instance basic df chi chi + df

brock200_1 10268.47 – – –

brock200_2 8.06 13.40 170.98 189.73

brock200_3 108.50 152.46 1262.22 1065.25

brock200_4 375.90 701.33 2803.73 3302.96

brock400_1 – – – –

brock400_2 – – – –

brock400_3 – – – –

brock400_4 – – – –

brock800_1 – – – –

brock800_2 – – – –

brock800_3 – – – –

brock800_4 – – – –

c-fat200-1 0.03 0.04 0.62 0.96

c-fat200-2 0.06 0.08 1.59 0.67

c-fat200-5 5.28 0.43 22.05 21.26

c-fat500-1 0.11 0.29 5.96 6.21

c-fat500-2 0.23 0.44 9.70 8.92

c-fat500-5 22.61 1.43 24.68 18.85

c-fat500-10 – 11.91 94.35 10.00

hamming6-2 1.10 6.26 0.72 0.99

hamming6-4 0.01 0.06 0.81 0.72

hamming8-2 – – 541.34 531.47

hamming8-4 668.19 973.37 1172.32 1244.42

hamming10-2 – – – –

hamming10-4 – – – –

johnson8-2-4 0.01 0.01 0.11 0.14

johnson8-4-4 1.95 2.93 2.87 2.99

johnson16-2-4 277.13 363.29 4068.67 4460.17

johnson32-2-4 – – – –

keller4 148.24 192.10 958.69 984.13

keller5 – – – –

keller6 – – – –

MANN_a9 54 66.18 9.19 9.35

MANN_a27 – – – –

MANN_a45 – – – –

MANN_A81 – – – –

p_hat300-1 1.62 2.58 103.97 103.22

p_hat300-2 3333.80 5108.47 4018.11 3976.74

p_hat300-3 – – – –

p_hat500-1 15.19 26.16 1088.94 1022.10

p_hat500-2 – – – –

p_hat500-3 – – – –

p_hat700-1 58.24 95.80 3922.90 3934.76

p_hat700-2 – – – –

p_hat700-3 – – – –

p_hat1000-1 327.15 539.14 – –
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Table 11 (Continued)

Instance basic df chi chi + df

p_hat1000-2 – – – –

p_hat1000-3 – – – –

p_hat1500-1 3473.86 5638.03 – –

p_hat1500-2 – – – –

p_hat1500-3 – – – –

san200_0.7_1 – – 968.54 41.62

san200_0.7_2 – – 686.48 1005.41

san200_0.9_1 – – – –

san200_0.9_2 – – 6522.12 –

san200_0.9_3 – – – –

san400_0.5_1 – – 276.68 198.35

san400_0.7_1 – – – –

san400_0.7_2 – – – –

san400_0.7_3 – – – –

san400_0.9_1 – – – –

san1000 – – – –

sanr200_0.7 1597 3003.31 8052.30 8458.74

sanr200_0.9 – – – –

sanr400_0.5 680.22 1050.91 – –

sanr400_0.7 – – – –

Table 12 Number of search tree nodes for basic, mcr, mcs and dyn

Instance basic mcr mcs dyn

brock200_1 760463351 813301 284689 466715

brock200_2 655863 7825 4937 7183

brock200_3 9025785 30619 15927 25821

brock200_4 29071199 142077 64799 94351

brock400_1 781878631 48146206 35069235 33124132

brock400_2 779146349 48813539 33430506 32451585

brock400_3 744501333 41982519 33296604 32832879

brock400_4 750841656 35973707 29794439 28115613

brock800_1 773878067 50773718 43825898 38468378

brock800_2 755264235 53435742 44837753 36531613

brock800_3 745732597 49566028 42160113 37270885

brock800_4 782408235 51112500 44532590 33801284

c-fat200-1 847 377 377 437

c-fat200-2 2373 353 353 487

c-fat200-5 197957 285 285 621

c-fat500-1 2419 973 973 1045

c-fat500-2 9775 949 949 1093

c-fat500-5 812265 873 873 1245

c-fat500-10 222003341 1 1 1493

hamming6-2 62239 135 129 127

hamming6-4 1949 153 153 257

Table 12 (Continued)

Instance basic mcr mcs dyn

hamming8-2 479589100 1207 1057 537

hamming8-4 50630977 16899 9707 25765

hamming10-2 477939325 23141 2497 2167

hamming10-4 799627648 37220492 15618125 19888977

johnson8-2-4 721 59 59 103

johnson8-4-4 160555 247 171 393

johnson16-2-4 29897217 533629 474647 1264845

johnson32-2-4 1124521577 288086577 282675611 236697572

keller4 13347251 23995 11749 17625

keller5 788436558 16911848 17475952 13452717

keller6 814607071 13800894 16179301 6555099

MANN_a9 5194193 75 57 191

MANN_a27 1039572148 29763 7615 86157

MANN_a45 896111360 129059 164086 94849

MANN_A81 649082104 12942 12942 9555

p_hat300-1 127783 4209 3091 4267

p_hat300-2 218320753 15677 6957 15039

p_hat300-3 694764638 3103461 523957 1257961

p_hat500-1 1192121 21635 16079 21821

p_hat500-2 666419883 627809 137045 379719

p_hat500-3 627863675 15527986 7860621 7118821

p_hat700-1 4405187 65849 43751 56061

p_hat700-2 674310972 5583275 700379 2195677

p_hat700-3 575688852 10991858 6126902 5211837

p_hat1000-1 25084283 398281 234723 339555

p_hat1000-2 651274462 12990532 8868752 7810188

p_hat1000-3 609819818 16924970 7386341 6864282

p_hat1500-1 232906339 2481911 1564723 2277359

p_hat1500-2 577460315 12680238 6257860 6025488

p_hat1500-3 609271041 14830728 4880291 5044208

san200_0.7_1 1199510748 7779 1739 2103

san200_0.7_2 1162303528 3145 1537 4603

san200_0.9_1 712616501 456721 47993 77603

san200_0.9_2 580762880 717197 26629 586527

san200_0.9_3 788583024 126665 7039 585453

san400_0.5_1 1057751310 4719 3023 4811

san400_0.7_1 1159107699 217471 48269 90853

san400_0.7_2 1091551627 42627 26811 18985

san400_0.7_3 1011697883 810445 248085 763393

san400_0.9_1 868327833 16184155 9529297 766201

san1000 894222972 426757 168419 251773

sanr200_0.7 122475879 325415 132903 211053

sanr200_0.9 708848293 19698991 6130061 12709733

sanr400_0.5 53900541 586913 329631 509701

sanr400_0.7 791421504 48490681 38355044 34153618
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Table 13 Running time (s) for basic, mcr, mcs and dyn

Instance basic mcr mcs dyn

brock200_1 10268.47 168.36 79.72 140.60

brock200_2 8.06 0.90 0.74 1.35

brock200_3 108.50 4.88 3.23 5.67

brock200_4 375.90 20.35 12.47 19.47

brock400_1 – – – –

brock400_2 – – – –

brock400_3 – – – –

brock400_4 – – – –

brock800_1 – – – –

brock800_2 – – – –

brock800_3 – – – –

brock800_4 – – – –

c-fat200-1 0.03 0.05 0.05 0.04

c-fat200-2 0.06 0.07 0.07 0.06

c-fat200-5 5.28 0.21 0.21 0.36

c-fat500-1 0.11 0.25 0.26 0.14

c-fat500-2 0.23 0.33 0.34 0.24

c-fat500-5 22.61 0.80 0.77 0.95

c-fat500-10 – 1.57 0.68 10.29

hamming6-2 1.10 0.02 0.03 0.03

hamming6-4 0.01 0.00 0.01 0.01

hamming8-2 – 4.24 4.67 2.46

hamming8-4 668.19 4.64 3.03 9.47

hamming10-2 – 3269.93 190.30 195.95

hamming10-4 – – – –

johnson8-2-4 0.01 0.01 0.00 0.01

johnson8-4-4 1.95 0.03 0.03 0.06

johnson16-2-4 277.13 19.84 18.28 64.38

johnson32-2-4 – – – –

keller4 148.24 2.82 1.73 3.36

keller5 – – – –

keller6 – – – –

MANN_a9 54.00 0.00 0.01 0.02

MANN_a27 – 302.00 63.32 1280.38

MANN_a45 – – – –

MANN_A81 – – – –

p_hat300-1 1.62 0.37 0.34 0.39

p_hat300-2 3333.80 4.92 2.76 5.63

p_hat300-3 – 1586.09 366.70 951.82

p_hat500-1 15.19 2.73 2.21 2.99

p_hat500-2 – 349.39 94.19 281.62

p_hat500-3 – – – –

p_hat700-1 58.24 8.86 6.97 13.81

p_hat700-2 – 4743.96 763.28 2637.62

p_hat700-3 – – – –

p_hat1000-1 327.15 49.21 34.61 66.25

Table 13 (Continued)

Instance basic mcr mcs dyn

p_hat1000-2 – – – –

p_hat1000-3 – – – –

p_hat1500-1 3473.86 428.89 274.09 529.73

p_hat1500-2 – – – –

p_hat1500-3 – – – –

san200_0.7_1 – 2.51 0.82 1.24

san200_0.7_2 – 0.63 0.41 1.46

san200_0.9_1 – 206.17 35.23 68.44

san200_0.9_2 – 391.74 23.37 581.02

san200_0.9_3 – 43.70 4.72 691.17

san400_0.5_1 – 2.79 1.79 2.28

san400_0.7_1 – 212.86 50.85 75.95

san400_0.7_2 – 30.13 15.67 26.69

san400_0.7_3 – 356.42 110.19 293.37

san400_0.9_1 – – – 4906.83

san1000 – 910.12 298.10 147.11

sanr200_0.7 1597.00 53.26 29.67 50.90

sanr200_0.9 – – 5223.79 10692.55

sanr400_0.5 680.22 72.19 51.47 83.51

sanr400_0.7 – – – –

Table 14 Average search tree node per second and number of solved
instances for each algorithm

Algorithm (# Search tree nodes)/s Solved instances

basic 72066.01 26

cp 66490.03 25

df 6648.27 26

chi 28.87 28

chi + df 29.58 27

mcq 3778.20 43

dyn 2579.93 45

mcr 3523.45 43

mcs 3014.30 44

This is the number of search tree nodes summed over all the
instances, divided by the total time summed over all the in-
stances. The last column shows how many of the instances
were solved to completion within the prescribed time of
three hours.
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