
J Braz Comput Soc (2011) 17:175–192
DOI 10.1007/s13173-011-0036-4

O R I G I NA L PA P E R

Identification of video subsequence using bipartite graph
matching

Silvio Jamil Ferzoli Guimarães ·
Zenilton Kleber Gonçalves do Patrocínio Jr.

Received: 16 February 2011 / Accepted: 13 July 2011 / Published online: 7 September 2011
© The Brazilian Computer Society 2011

Abstract Subsequence identification consists of identifying
real positions of a specific video clip in a video stream to-
gether with the operations that may be used to transform the
former into a subsequence from the latter. To cope with this
problem, we propose a new approach, considering a bipar-
tite graph matching to measure video clip similarity with a
target video stream which has not been preprocessed.

The main contributions of our work are the application
of a simple and efficient distance to solve the subsequence
identification problem along with the definition of a hit func-
tion that identifies precisely which operations were used in
query transformation. Experimental results demonstrate that
our method performances achieve 90% recall with 93% pre-
cision, though it is done without preprocessing of the target
video.

Keywords Video retrieval · Graph bipartite · Video clip
localization

1 Introduction

Traditionally, multimedia information has been analogically
stored and manually indexed. Due to advances in multime-
dia technology, video retrieval techniques are increasing.

A previous version of this paper appeared at WEBMEDIA 2010, the
Brazilian Symposium on Multimedia and the Web.

S.J.F. Guimarães (�) · Z.K.G. do Patrocínio Jr.
Department of Computer Science, Pontifícia Universidade
Católica de Minas Gerais, Rua Walter Ianni, 255, 31980-110 São
Gabriel Belo Horizonte, Brazil
e-mail: sjamil@pucminas.br

Z.K.G. do Patrocínio Jr.
e-mail: zenilton@pucminas.br

Unfortunately, the recall and precision rates of these sys-
tems depend on the similarity measure used to retrieve infor-
mation. Nowadays, due to improvements on digitalization
and compression technologies, database systems are used to
store images and videos, together with their metadata and
associated taxonomy. Thus, there is an increasing search
for efficient systems to process and to index image, audio
and video information, mainly for information retrieval pur-
poses.

Automatic segmentation, indexing, and retrieval of large
amount of video data have important applications in archive
management, entertainment, media production, rights con-
trol, surveillance, and many more.

We see the complex task of video segmenting (mainly in
the presence of gradual transitions and motion) and index-
ing faces and the challenges of coping with the exponential
growth of the Internet, which has resulted in a massive pub-
lication and sharing of video content and in an increase in
the number of duplicated documents; and the distribution
across communication channels, like TV, resulting in thou-
sands of hours of streaming broadcast media. Additionally,
one important application of video content management is
broadcast monitoring for market analysis [8, 10, 11].

The video clip localization problem, as it will be referred
to throughout this paper, has arisen in the domain of broad-
cast television, and consists of identifying the real locations
of a specific video clip in a target video stream (see Fig. 1).
The main issues that must be considered during video clip
localization are:

(i) The definition of the dissimilarity measures in order to
compare frames/shots of video clips

(ii) The processing time of the algorithms due to the huge
amount of information that must be analyzed

(iii) The insertion of intentional and non-intentional distor-
tions

mailto:sjamil@pucminas.br
mailto:zenilton@pucminas.br

176 J Braz Comput Soc (2011) 17:175–192

(iv) Different frame rates; and
(v) Edition of the videos

The selection of the feature used to compute the dissimilar-
ity measure has an important role to play in content-based
image retrieval and has been largely explored [25]. In [7],
the authors showed that the performance of the features is
task dependent, and that it is hard to select the best feature
for an specific task without empirical studies. Nevertheless
low-complexity features and matching algorithms can work
together to increase matching performance.

Current methods for solving the video retrieval/local-
ization problem can be grouped in two main approaches:

(i) Computation of video signatures after temporal video
segmentation, as described in [10, 17, 20]; and

(ii) Use of matching algorithms after transformation of the
video frame content into a feature vector, as described
in [1, 9, 13, 18, 26]

When video signatures are used, methods for temporal
video segmentation must be applied before the signature
calculation [2]. Although temporal video segmentation is
a widely studied problem, it represents an important issue
that has to be considered, as it increases the complexity of
the algorithms and it affects the matching performance. For
methods based on string matching algorithms, the efficiency
of these algorithms must be taken into account, when com-
pared to image/video identification algorithms. In [1] and

Fig. 1 Problem of identifying the real position of a specific video clip
in a target video stream

[18], the authors have successfully applied the longest com-
mon substring (LCS) algorithm to deal with the problem.
However, it has space and time cost O(mn), in which m and
n represent the size of the query and target video clips, re-
spectively. In [9], the authors have proposed a new approach
to cope with the problem of video clip localization using the
maximum cardinality matching of a bipartite graph; how-
ever, this approach deals only with exact video matching. In
[26] bipartite graph matching is also used; however, the first
step of the algorithm is related to analysis of the video query
and video target to identify frame similarities and candidate
locations of query occurrence (clip filtering).

In the present paper, we present a modified version of our
previous approach [9], which is able to deal with the general
case in video clip localization problem, allowing insertion,
removal and replacement operations on the video clip. Our
method not only solves the approximate video clip (or sub-
sequence) localization problem, but it also gives a precise
description of the operations that are necessary to transform
the query video into a clip of the target video stream. Our ap-
proach deals with the problem of video clip localization us-
ing the maximum cardinality matching of a bipartite graph.
It is important to note that we use this information to shift
over the video target in order to identify candidate locations
of the matching. For the set of frames from a query video and
from a clip of target video, a bipartite graph is constructed
based on a similarity measure between each pair of frames
(illustrated in Fig. 2(a)). The size of the maximum cardinal-
ity matching of this graph defines a video similarity measure
that is used for video clip identification. This information to-
gether with the maximum distance between any two frames
of the target video clip which belong to the maximum car-
dinality matching are used to analyze the hit occurrences
and to identify precisely which operations are necessary to
transform the query video into the target video content. A
preliminary version of this work was presented in [12].

This paper is organized as follows. In Sect. 2, we discuss
related work. In Sect. 3, the problem of video subsequence
identification is described, together with some formal defi-
nitions of the field. In Sect. 4, we present a methodology to
identify the locations of a query video clip using bipartite
graph matching. In Sect. 5, we discuss experiments and the

Fig. 2 Frame similarity graph

J Braz Comput Soc (2011) 17:175–192 177

Table 1 Comparison of some approaches for video clip localization (adapted from [24])

Sliding Temporal order Vstring Multi-level Graph approach Dense BMH Our proposed

window [3] [16, 27] edit [1] [19] [24] [26] [13] method

Shot/Frame Matching shot shot shot shot shot frame frame frame

Temporal order no yes yes yes yes possible yes possible

Clip filtering no no no no yes yes no no

Online Clip Segment. yes no no no yes yes no no

Preprocessing yes yes yes yes yes yes no no

Video edition no no no no no yes no yes

setting of the parameters of the algorithm. Finally, in Sect. 6,
we draw some conclusions and suggest further work.

2 Related works

In general, video clip similarity can be obtained using
matching between shots. Besides relying on shot similar-
ity, clip similarity could also be dependent on the tempo-
ral order. Table 1 presents a comparison between some ap-
proaches found in the literature. In [3], a window is slid
across the target video to identify the matched shots. The
number of similar shots in the window is used to form a one-
dimensional signal. The relevant clips are then segmented
by locating the local maxima of this signal (i.e., online clip
segmentation). The major disadvantage of the method pre-
sented in [3] is that the granularity (which models the degree
of one-to-one shot matching between two clips), temporal
order, and interference (which models the percentage of un-
matched shots) are not taken into account. One typical ex-
ample is that the similarity of two clips with one-to-one shot
matching can be the same as two clips with one-to-many
matching [24].

In [16, 27], shots in two clips are matched by preserving
their temporal order. For instance, in [27] the authors have
employed dynamic programming to align two sequences in
time order and to measure the similarity accordingly. Some-
times, in clip retrieval, shot matching by time preserving
may not be appropriate, since shots in different clips tend to
appear in various orders due to editing effects [24]. In [16],
a nontemporal preserving matching is also proposed. The
similarity of clips is reduced to the similarity of two most
similar shots by bidirectional matching. Nevertheless, this
approach is prone to noise and, furthermore, the similarity
ranking is ineffective, since two clips can be considered sim-
ilar even if only one pair of shots is matched.

Another approach for clip retrieval is proposed in [1],
where various factors, including granularity, temporal order,
and interference are taken into account. Several new edit op-
erations (swap, fusion and break) are proposed, along with
the parametric edit distances which consider the weights of

traditional and video-specific operations for similarity rank-
ing. One major problem with this approach is the high de-
pendence on the robustness of features used. Moreover, if
the indices are not invariant under certain changes, the com-
puted edit distance may not be very reliable. In [13], a mod-
ified version of the Boyer–Moore–Horspool (BMH) algo-
rithm is proposed for exact string matching [14, 21], to deal
with the problem of video location and counting; however,
it is a very hard task to translate video features into a mean-
ingful alphabet.

As indicated in Table 1, most approaches assume that
video clips are presegmented and always available for
matching. In addition, the capabilities of filtering irrelevant
clips prior to similarity ranking are usually not considered.
In [24], the authors have adopted clip filtering and online
segmentation. First, the candidate clips are located and seg-
mented from videos, while the irrelevant clips are rapidly
filtered out. In the second stage, the detailed similarity rank-
ing is conducted by using a quality measure of matching
(determined jointly by the granularity, temporal order, and
interference factors). In [26], the authors have proposed
two algorithms for clip localization, an optimum and a sub-
optimum approach, based on bipartite graph matching anal-
ysis, and they present good experimental results. This work
adopted a clip filtering strategy in order to identify the can-
didate locations; however, this could increase mismatches
since two or more video clips may be merged into one.

Recently, an online system to detect near-duplicate oc-
currences into a video stream has been proposed in [15]. In
that work, some video editions are allowed; however, tempo-
ral reorder and combination of video edit operations are not
treated. In [6], a video retrieval algorithm based on ensem-
ble similarity was proposed. An ensemble similarity is used
to calibrate the similarity between a user given query video
clip and each video clip in the database. In [4], the authors
present a method based on a time-series linear search for
detecting video copies. Their method utilizes a sliding win-
dow to locate sequences that are near-duplications of a given
query. Experimental results demonstrate that their proposed
method is robust against different types of video transforma-
tion and editing. Finally, the work presented in [29] consid-

178 J Braz Comput Soc (2011) 17:175–192

ers the copy detection problem in the case of a continuous
query stream, for which precise temporal localization and
some complex video transformations like frame insertion
and video editing need to be handled. The authors present
a frame fusion approach based on a Viterbi-like algorithm
which converts video copy detection to a frame similarity
search and frame fusion under a temporal consistency as-
sumption. The test results show that their proposal achieves
high localization accuracy even when a query video under-
goes some complex transformations.

The first difference between our proposed approach and
the others is associated with the use of frame matching
to compute video clip similarity. Most contributions as-
sume that the target video has been preprocessed and on-
line/offline segmented into video clips which are used by
the search procedure, while ours can be applied directly to
a target video stream without any preprocessing, since it
uses frame-based similarity measures. With the exponential
growth of the Internet, the storage of segmented videos may
become an intractable problem. Our approach allows us to
perform video localization over a streaming media down-
loaded directly from the Internet, while most of the others
need to download, segment and store segmented video clips
before starting to deal with video clip localization.

Moreover, our approach can be applied without consid-
ering temporal order constraints, which allows us to locate
the position of the query video even if the video has been
edited and its frames reordered (illustrated in Fig. 2(b)).
The current version of our algorithm also deals with inser-
tion, removal and replacement of frames/shots, and it also
allows for changes in temporal order of query video clip
frames/shots. However, our approach can be applied to the
traditional (exact) video clip localization problem using dy-
namic programming to compute temporal order similarity.
On the other hand, clip editing and reordering have be-
come desired features in the new context of online video
delivery. As mentioned in [23], users expect to be able to
manipulate video content based on choices such as desired
portions of video, ordering and “crop/stitch” of clips. New
coding schemes that consider this novel scenario have been
included in most recent standards such as MPEG-7 and
MPEG-21 [28]. Nevertheless, since our approach is based
on frame similarity measures, it may present an efficiency
problem. This issue has been addressed by employing a
shift strategy based on the size of the maximum cardinality
matching, as will be discussed later.

Finally, one should note that our approach does not re-
quire a complete match between the query video and a given
target video clip, since we are only trying to identify video
subsequences. During the search, when a matching is iden-
tified (even if there is an error whose size is less than or
equal to the allowed video edit distance), our method does
not search for an exact subsequence. In fact, we are inter-
ested not only in finding locations at the target video of a

near-similar clip of the query, but also in identifying which
operations are necessary to transform the query video into a
subsequence of the target.

3 Problem definition

Let A ⊂ N
2, A = {0, . . . ,W − 1}× {0, . . . ,H − 1}, where W

and H are the width and height of each frame, respectively,
and, T ⊂ N, T = {0, . . . ,N − 1}, where N is the length of
a video. Frame, video, and video clip can be defined as fol-
lows.

Definition 1 (Frame) A frame f is a function from A to
Z

3, where for each spatial position (x, y) in A, f (x, y) rep-
resents a color value at pixel location (x, y). Without loss of
generality, a frame can be defined by a function from A to Z

to represent a grayscale value at location (x, y).

Definition 2 (Video) A video VN , in domain A × T, can
be seen as a temporally ordered sequence of frames f . It is
described by

VN = (f)t∈T, (1)

where N is the number of frames contained in the video.

Definition 3 (Video clip) Let VN be a video. A j -sized
video clip Ck,j is a temporally ordered subsequence of
frames from VN which starts at frame k with j frames. It
can be described by

Ck,j = (ft | ft ∈ VN)t∈[k,k+j−1] (2)

in which k ≤ N − j .

It is obvious that Ck,0 = ∅,∀k, and C0,N = VN . More-
over, from two distinct videos one can produce distinct video
clips, so a superscript will be used to indicate which video is
the frame source. Therefore video clip CX·,· contains frames
f X
t from video VX

N , and, CX
0,N = VX

N .
A dataset may contain an altered version of a specified

video clip, in which some frames may have been added, re-
moved, or even replaced by others. Consequently, we can
define a distance between two video clips based only on the
number of frame insertions, removals, and replacements, as
follows. It is important to note that frame reordering is per-
mitted without changing the video edit distance. But it is
possible to consider temporal order (if necessary) adopting
a measure for temporal order as used in [24].

Definition 4 (Video clip edit distance—d(CX1
k1,i

,CX2
k2,j

)) Let

CX1
k1,i

and CX2
k2,j

be two video clips of sizes i and j from

videos VX1 and VX2 , respectively. Then the edit distance

J Braz Comput Soc (2011) 17:175–192 179

Fig. 3 Video clip modifications

between CX1
k1,i

and CX2
k2,j

is equal to the minimum number of
operations (insertions, removals and replacements) needed
to transform CX1

k1,i
into CX2

k2,j
, and vice versa, regardless of

frame temporal ordering.

Let VX1
4 be the original video Y1 presented by Fig. 3(a),

so CX1
0,4 = VX1

4 . Let Y2 = VX2
5 , Y3 = VX3

3 , Y4 = VX4
4 , and let

Y5 = VX5
4 be the altered versions presented by Figs. 3(b),

3(c), 3(d), and 3(e), respectively.
The edit distance between Y1 and Y2 is equal to 1 since

both videos contain the same frames except for f X2
2 , which

is not present in the original video Y1, i.e., CX1
0,2 = CX2

0,2 and

CX1
2,2 = CX2

3,2. Therefore, d(Y1, Y2) = d(CX1
0,4,CX2

0,5) = 1 be-
cause only one insertion is need to transform Y1 into Y2.
Analogously, the edit distance between Y1 and Y3 is also
equal to 1, since both videos contain the same frames ex-
cept for f X1

0 , which is not present in altered video Y3, i.e.,

CX1
1,3 = CX3

0,3. Hence, d(Y1, Y3) = d(CX1
0,4,CX3

0,3) = 1, because
only one removal is needed to transform Y1 into Y3. The
edit distance between Y1 and Y4 is also equal to 1, since
frame f X1

1 has been replaced by f X4
1 , i.e., CX1

0,1 = CX4
0,1 and

CX1
2,2 = CX4

2,2. Therefore, d(Y1, Y4) = d(CX1
0,4,CX4

0,4) = 1, be-
cause one replacement is needed to transform Y1 into Y4.
Finally, the edit distance between Y1 and Y5 is equal to 0,
since there is only a temporal reordering of frames with-
out any insertion, removal or replacement (if temporal order
is considered, the video edit distance is not equal to zero).
Therefore, d(Y1, Y5) = d(CX1

0,4,CX5
0,4) = 0, because no inser-

tion, removal and replacement is needed to transform Y1

into Y5. However, it is possible to consider temporal order
as an assumption of our method (see Sect. 4.3).

In the previous example, two frames were considered
equal if they were exactly alike, but this may not be always
true due to minor differences in vector quantization used in
digital representation for both videos. In order to establish
if two distinct frames of two distinct video clips are similar,
we define frame similarity as follows.

Definition 5 (Frame similarity) Let f X1
t1

and f X2
t2

be two

video frames at locations t1 and t2 from video clips CX1
k1,i

and CX2
k2,j

, respectively. Two frames are similar if the dis-

tance measure D(f X1
t1

, f X2
t2

) between them is smaller than a
specified threshold δ. The frame similarity is defined as

FS
(
f X1
t1

, f X2
t2

, δ
) =

{
1, if D(f X1

t1
, f X2

t2
) ≤ δ;

0, otherwise.
(3)

There are several choices for D(f X1
t1

, f X2
t2

), i.e., the dis-
tance measure between two frames; e.g. histogram/frame
difference, histogram intersection, difference of histograms
means, and others. In our experiments, we have adopted his-
togram intersection as the distance measure between frames.
After selecting one distance measure, it is possible to con-
struct a frame similarity graph based on a query video VQ

M

and a (M + λ)-sized video clip of target video CT
k,M+λ, in

which λ is the maximum allowed edit distance, as follows.

Definition 6 (Frame similarity graph—Gδ
k,λ) Let VQ

M and

VT
N be a query video with M frames and a target video

with N frames, respectively, and let CT
k,M+λ be a (M + λ)-

sized video clip which starts at frame k of target video
with (M + λ) frames. A frame similarity graph Gδ

k,λ =
(NQ ∪ NT

k,λ,Eδ
k,λ) is a bipartite graph. Each node v

Q
t1

∈ NQ

represents a frame from the query video f Q
t1

∈ CQ
0,M(= VQ

M)

and each node vT
t2

∈ NT
k,λ represents a frame from the target

video clip f T
t2

∈ CT
k,M+λ. There is an edge e ∈ Eδ

k,λ between

v
Q
t1

and vT
t2

if frame similarity of associated frames is equal
to 1, i.e.,

Eδ
k,λ = {(

v
Q
t1

, vT
t2

)|vQ
t1

∈ NQ,vT
t2

∈ NT
k,λ,FS

(
f Q
t1

, f T
t2

, δ
) = 1

}
.

(4)

As illustrated in Fig. 2, in order to allow up to λ oper-
ations of insertion into the query video clip, we match the
query video to a video clip of the target video stream whose
size (number of frames) is equal to the query video size
plus the maximum allowed edit distance (λ). Figure 4 il-
lustrates three different frame similarity graphs based on a
query video equals to the original video sequence Y1 (see
Fig. 3(a)) and a video target containing Y2 (see Fig. 3(b))

180 J Braz Comput Soc (2011) 17:175–192

Fig. 4 Frame similarity graphs
based on a query video equals to
the original video sequence Y1
of Fig. 3(a) (i.e., M = 4) and a
video target containing Y2 of
Fig. 3(b) (with only one
insertion, i.e. λ = 1) for
different sizes of target video
clip

with only one insertion, i.e. d(Y1, Y2) = 1. For this case, the
query video has 4 frames (i.e., M = 4) and the maximum al-
lowed edit distance should be at least equal to 1 (i.e., λ = 1).
One can easily see that a frame similarity graph between
all the relevant frames is only obtained when the number of
frames of the target video clip is at least equal to 5 (= M +λ)
frames—see Fig. 4(a). If the size of the target video clip
is smaller than 5 frames, relevant frames may not be con-
sider in the construction of the frame similarity graph—see
Fig. 4(b) and 4(c). If the target video clip has more than 5
frames, unnecessary frames may be used in the construction
of the frame similarity graph, and this could increase the
number of misses.

Conversely, in order to allow up to λ operations of re-
moval from the query video clip, we match the query video
to a video clip of the target video stream whose size (num-

ber of frames) is equal at least to the query video size minus
the maximum allowed edit distance (λ). Figure 5 illustrates
three different frame similarity graphs based on a query
video equal to the original video sequence Y1 (see Fig. 3(a))
and a video target containing Y3 (see Fig. 3(c)) with only
one removal, i.e. d(Y1, Y3) = 1. Again, the query video has
4 frames (i.e., M = 4) and the maximum allowed edit dis-
tance should be at least equal to 1 (i.e., λ = 1). One can see
that, in this case, a frame similarity graph between all the rel-
evant frames is obtained when the number of frames of the
target video clip is at least equal to 3 (= M − λ) frames—
see Fig. 5(c). If the size of the target video clip is greater
than 3 frames, unnecessary frames may be considered in
the construction of the frame similarity frame—see Fig. 5(a)
and 5(b). However, it the target video has less than 3 frames,

J Braz Comput Soc (2011) 17:175–192 181

Fig. 5 Frame similarity graphs
based on a query video equals to
the original video sequence Y1
of Fig. 3(a) (i.e., M = 4) and a
video target containing Y3 of
Fig. 3(c) (with only one
removal, i.e. λ = 1) for different
sizes of target video clip

relevant frames may not be used in the construction of the
frame similarity graph.

Both examples discussed before illustrate scenarios in
which mismatches and improper hit type classifications may
increase, if the size of the target video clip is not carefully
chosen. Thus, the size of the target video clip should be re-
stricted to the range [M − λ,M + λ], in order to reduce the
number of mismatches and improper hit type classifications.
But, as we want to ensure that all possible combinations of
insertions, removals and replacements allowed by the max-
imum edit distance are considered, we should generate a
frame similarity graph based on a query video clip of size M

and a target video clip of size M + λ (i.e., the upper bound
stated above). Later, the lower bound (M − λ) is enforced
by the adoption of a hit function (see Definition 10).

In this paper, the video subsequence identification prob-
lem with (or without) any changes in the video content (in-
cluding changes in its temporal ordering) will be addressed
using maximum cardinality matching. To do so, we define
matching and maximum cardinality matching as follows.

Definition 7 (Matching—Mδ
k,λ) Let Gδ

k,λ be a frame simi-

larity graph, i.e., Gδ
k,λ = (NQ ∪NT

k,λ,Eδ
k,λ). A subset Mδ

k,λ ⊆
Eδ

k,λ is a matching if any two edges in Mδ
k,λ are not adjacent.

The size of matching Mδ
k,λ is the number of edges in Mδ

k,λ,

written as |Mδ
k,λ|.

Definition 8 (Maximum cardinality matching—Mδ
k,λ) Let

Mδ
k,λ be a matching in a frame similarity graph Gδ

k,λ. So,

182 J Braz Comput Soc (2011) 17:175–192

Mδ
k,λ is the maximum cardinality matching (MCM) if there

is no other matching Mδ
k,λ in Gδ

k,λ such that |Mδ
k,λ| > |Mδ

k,λ|.

During the search, a hit can be associated with the size of

the MCM, i.e., if M − λ ≤ |Mδ
k,λ| ≤ M, then a hit may have

been found. The lower bound is associated with a scenario
of λ operations of removal, so the size of matching Mδ

k,λ is
at least M − λ. The upper bound is related to the size of the
query video (i.e., M), since the frame similarity graph Gδ

k,λ

is a bipartite graph (and it is impossible to find a matching
with size greater than M = min{|NQ|, |NT

k,λ|}).
However, in order to prevent false positives, we need to

evaluate the largest distance between any two frames of the
target video clip associated with the MCM found. This eval-
uation is necessary to correctly identify which operations are
necessary to transform the query video into a subsequence
of the target video, since the size of MCM may be smaller
than the video query size M , e.g. for removal and replace-
ment operations.

Let F be the set of frames associated with the MCM
Mδ

k,λ and it contains frames from the query and the target

video clips, i.e., F = F Q ∪ F T
k,λ, in which F Q and F T

k,λ are
frame sets from the query and the target video clips, respec-
tively. So, F Q = (f Q

t | f Q
t ∈ CQ

0,M, t ∈ [0,M − 1]), while

F T
k,λ = (f T

t | f T
t ∈ CT

k,M+λ, t ∈ [k, k + M + λ − 1]). It is

also easy to verify that |Mδ
k,λ| = |F Q| = |F T

k,λ|. So, the max-
imum distance between any two frames of the target video
clip associated with the MCM found could be defined as fol-
lows.

Definition 9 (Maximum MCM distance—D(Mδ
k,λ)) Let

Mδ
k,λ be the MCM in a frame similarity graph Gδ

k,λ and

let F = F Q ∪ F T
k,λ be the set of frames associated with

the MCM. Let tf and tl represent the locations of the first
and the last frames of the target video clip that are re-

lated to the MCM Mδ
k,λ, so tf = min{ t | f T

t ∈ F T
k,λ} and

tl = max{ t | f T
t ∈ F T

k,λ}. The maximum distance between
any two frames of the target video clip associated with the
MCM is defined as

D
(
Mδ

k,λ

) = tl − tf + 1. (5)

Using the maximum MCM distance together with the
size of the MCM, we can identify not only a hit occurrence
but also its type. The type of a hit occurrence represents
which operations are necessary to transform the query video
into the target video clip. Therefore, we can define 06 (six)
types of hit occurrence as follows.

• T1—Exact hit (ExHit): represents an exact match be-
tween the query video and the target video clip, therefore

|Mδ
k,λ| = M in order to guarantee that every frame of the

query video appears in the target, i.e., every frame of the
query video is similar to at least one distinct frame of the

target video clip, and D(Mδ
k,λ) = |Mδ

k,λ| to prevent any
additional frame from having been inserted among the tar-
get frames;

• T2—Insertion hit (InsHit): represents a match between
the query video and the target video clip in which ad-
ditional frames have been inserted into the target, thus

|Mδ
k,λ| = M in order to guarantee that every frame of

the query video appears in the target video clip, and

|Mδ
k,λ| < D(Mδ

k,λ) ≤ M + λ to ensure that no more than
λ additional frames have been inserted among the target
frames;

• T3—Removal hit (RemHit): represents a match between
the query video and the target video clip in which some

frames have been removed, so M − λ ≤ |Mδ
k,λ| < M in

order to guarantee that some frames of the query video do

not appear in the target, and D(Mδ
k,λ) = |Mδ

k,λ| to prevent
any additional frame from having been inserted among
the target frames;

• T4—Replacement hit (RepHit): represents a match be-
tween the query video and the target video clip in which

some frames have been replaced, so M −λ ≤ |Mδ
k,λ| < M

in order to guarantee that some frames of the query video

do not appear in the target, and D(Mδ
k,λ) = M to ensure

that every missing target frame has been replaced by an-
other one;

• T5—Replacement and Removal hit (RepRHit): rep-
resents a match between the query video and the target
video clip in which some frames have been replaced and

others have been removed, so M −λ ≤ |Mδ
k,λ| < M in or-

der to guarantee that some frames of the query video do

not appear in the target, and |Mδ
k,λ| < D(Mδ

k,λ) < M to
ensure that some of the frames have been removed since
D(Mδ

k,λ) < M (it is not only a replacement) but also that

some frames have been replaced, since D(Mδ
k,λ) > |Mδ

k,λ|
(it is not only a removal);

• T6—Replacement and Insertion hit (RepIHit): repre-
sents a match between the query video and the target
video clip in which some frames have been replaced and

others have been inserted, so M − λ ≤ |Mδ
k,λ| < M in

order to guarantee that some frames of the query video
do not appear in the target (they have been replaced),

and M < D(Mδ
k,λ) ≤ |Mδ

k,λ| + λ to ensure that additional
frames have been inserted among the target frames since

D(Mδ
k,λ) > M (it is not only a replacement) but also to

limit the edit distance to a maximum of λ operations, i.e.,

D(Mδ
k,λ) − |Mδ

k,λ| ≤ λ.

Table 2 presents some examples of hit occurrences with
a maximum edit distance λ = 2. Without loss of generality,
each frame is represented only by a single feature value (an

J Braz Comput Soc (2011) 17:175–192 183

Table 2 Examples of hit occurrence with λ = 2

Query Target Hit type |Mδ
k,λ| D(.)

1 2 3 4 . . . 1 2 3 4 – – . . . ExHit 4 4

1 2 3 4 . . . 1 2 3 5 4 – . . . InsHit 4 5

1 2 3 4 . . . 1 2 3 5 5 4 . . . InsHit 4 6

1 2 3 4 . . . 1 2 – – – – . . . RemHit 2 2

1 2 3 4 . . . 1 2 3 – – – . . . RemHit 3 3

1 2 3 4 . . . 1 2 5 4 – – . . . RepHit 3 4

1 2 3 4 . . . 1 5 5 4 – – . . . RepHit 2 4

1 2 3 4 . . . 1 5 4 – – – . . . RepRHit 2 3

1 2 3 4 . . . 1 2 5 5 4 – . . . RepIHit 3 5

1 2 3 4 . . . 1 2 5 5 5 4 . . . No hit 3 6

integer one), and two frames are similar if their features are
exactly the same. The first column shows the sequence of
frames from a query video clip, while the second column
presents the sequence of frames from the target video as-
sociated with a hit occurrence. Hit type is presented in the
third column, followed by MCM size and maximum MCM
distance in the fourth and fifth columns, respectively. Lines
are separated if they represent different hit types. Therefore,
using MCM size and maximum MCM distance, a function
to detect a hit occurrence can be defined as follows.

Definition 10 (Hit function—H(Mδ
k,λ)) Let Mδ

k,λ be the

MCM in a frame similarity graph Gδ
k,λ. Then a function

H(Mδ
k,λ) to detect a hit occurrence can be defined as

H(Mδ
k,λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if |Mδ
k,λ| = M and

D(Mδ
k,λ) = |Mδ

k,λ|;
2, if |Mδ

k,λ| = M and

|Mδ
k,λ| < D(Mδ

k,λ) ≤ M + λ;
3, if M − λ ≤ |Mδ

k,λ| < M and

D(Mδ
k,λ) = |Mδ

k,λ|;
4, if M − λ ≤ |Mδ

k,λ| < M and

D(Mδ
k,λ) = M;

5, if M − λ ≤ |Mδ
k,λ| < M and

|Mδ
k,λ| ≤ D(Mδ

k,λ) < M;

6, if M − λ ≤ |Mδ
k,λ| < M and

M < D(Mδ
k,λ) ≤ |Mδ

k,λ| + λ;
0, otherwise.

(6)

The hit function returns a value greater than zero for
a hit occurrence, while zero corresponds to a miss. More-
over, the hit function value corresponds to the type of the

hit occurrence, i.e., H(Mδ
k,λ) = 1 for a T1 hit (or ExHit),

H(Mδ
k,λ) = 2 for a T2 hit (or InsHit), and so on. As de-

scribed before, the proposed hit function ignores temporal

reordering of frames, since we are interested in identifying
video subsequence with similar content. But it is possible
to consider temporal order as an assumption of our method
(see Sect. 4.3).

Finally, the video subsequence identification problem can
be stated.

Definition 11 (Video subsequence identification problem)

Let Mδ
k,λ be a MCM of a frame similarity graph Gδ

k,λ with a
maximum edit distance λ and a threshold δ. The video sub-
sequence identification (VSI) problem corresponds to iden-
tify the locations of subsequences (or video clips) of the tar-
get video VT

N that are similar (or near-similar) to a query

video VQ
M together with the operations necessary to trans-

form the query video into a subsequence from the target.
A hit at location k is found if there is a (M + λ)-sized video
clip CT

k,M+λ of VT
N that matches with VQ

M(= CQ
0,M) accord-

ing to the hit function H(Mδ
k,λ). Thus, the VSI problem can

be stated as

VSI
(
VQ

M,VT
N , δ, λ

)

= {
k ∈ [

0,N − (M + λ) − 1
] ∣∣ H

(
Mδ

k,λ

) 	= 0
}
. (7)

One should note that our definition for the VSI prob-
lem does not require a complete match between the query
video and a given target video clip, since we are only trying
to identify video subsequences. During the search, when a
matching is identified (even if there is an error whose size
is less than or equal to the allowed video edit distance),
our method does not search for an exact subsequence. In
fact, we are interested not only in finding locations at the
target video of a near-similar clip of the query, but also in
identifying which operations are necessary to transform the
query video into a subsequence of the target. Since we have
adopted a linear search for the query video (as will be dis-
cussed in Sect. 4), our identification procedure may produce
two hits (e.g., two removal hits or a removal hit followed by
a replacement hit) instead of an exact hit. But this could be
eliminated (if necessary) with a post-processing step.

4 Methodology

As described before, the main goal of the VSI problem is to
identify occurrences of the subsequences of the target video
that are similar to a query video together with the operations
necessary to transform the query video into a subsequence
from the target; see Fig. 6. One of the key steps of the pro-
cess is feature extraction. Choosing an appropriate feature
that enhances the performance of a matching algorithm is
not a trivial task. Therefore, empirical studies are the best
way to get insights in which feature should be used for each
case.

184 J Braz Comput Soc (2011) 17:175–192

Fig. 6 Workflow for subsequence identification

Algorithm 1: Identification procedure.

Input: Target video VT
N ; query video VQ

M ; threshold
value δ; maximum edit distance λ.

Output: Hit locations ≡ pos[]; size of each hit ≡
size[]; and hit occurrence types ≡ type[].

count = 0; k = 0;1

while (k < N − M − λ) do2

Construct Gδ
k,λ;3

Calculate Mδ
k,λ and F for Gδ

k,λ;4

Calculate tf and tl for F ;5

if (H(Mδ
k,λ) 	= 0) then6

// Query was found at7

location k
pos[count] = tf ;8

size[count] = D(Mδ
k,λ);9

type[count] = H(Mδ
k,λ);10

count = count + 1;11

k = tl + 1;12

else13

// Query was not found at14

location k

if (|Mδ
k,λ| = 0) then15

k = k + (M + λ);16

else17

k = max{k + M − (|Mδ
k,λ| + λ), tf };18

end19

end20

end21

return (pos[], size[], type[]);22

4.1 Identification procedure

Algorithm 1 presents our identification procedure. It scans
over the target video stream, looking for a video clip that

matches the query video, i.e., one that generates a frame sim-
ilarity graph (line 3) which has a MCM that corresponds to

a hit occurrence according to the hit function H(Mδ
k,λ) (lines

4–6). If a hit is found, its location, size and type are saved
(lines 7–11).

It is also important to describe the shift strategy adopted
(at lines 12, 16 and 18 of Algorithm 1). After locating a
hit occurrence, the procedure ensures a jump to the location
after the last frame of the target video clip that belongs to the
MCM (line 12), since one should not expect to find the query
video inside itself. In this case, the minimum shift value is
M − λ, because it corresponds to the minimum value of the
maximum MCM distance for a T1 or a T2 hit. Moreover,
tl +1 = D(Mδ

k,λ)+ tf and tf is equal at least to the previous
value of k. Therefore, line 12 could also be written as k =
k +D(Mδ

k,λ). This not only contributes to an acceleration of
the search but it also helps in reducing the number of false
positives.

In case of a mismatch, the shift value depends on the
MCM size. If the MCM size is equal to zero, i.e., there is
no match between query and target frames, so the maximum
shift value (M + λ) is employed (line 16). But if the MCM
size is greater than zero, the shift value is set to the differ-
ence between M −λ and the size of the MCM, i.e., the num-
ber of unmatched frames necessary to detect a hit occurrence
(line 18). In order to ensure positive shift value, the value of
k is set to tf at least.

In spite of being a conservative approach, this setting al-
lows our search procedure to perform better than the naive
(brute force) algorithm, and it could result in a great im-
provement depending on query content and size, e.g., the
search would be faster for videos that are more dissimilar
and/or for lower values of edit distance (λ)—see the experi-
mental results for more on that.

It is also important that the search procedure does not
miss a hit position. Adjusting the shift value to the number of
unmatched frames avoids this event by using a conservative
approach which assumes that all mismatches occurred in the

J Braz Comput Soc (2011) 17:175–192 185

Table 3 Example of subsequence identification procedure

Video Information |Mδ
k,λ| D(.) Shift Iteration Hit

Target video 1 5 6 2 4 2 1 3 5 1 2 3 7 6 1 4 2 – – – –

λ = 0 1 2 3 1 1 2 1 no

1 2 3 1 1 2 2 no

1 2 3 2 2 1 3 no

1 2 3 3 3 3 4 ExHit

1 2 3 2 2 1 5 no

1 2 3 3 3 3 6 ExHit

1 2 3 1 1 2 7 no

1 2 3 2 3 – 8 no

Average 1.87 2.00 –

Target video 1 5 6 2 4 2 1 3 5 1 2 3 7 6 1 4 2 – – – –

λ = 1 1 2 3 – 2 4 1 1 no

1 2 3 – 1 1 1 2 no

1 2 3 – 1 1 1 3 no

1 2 3 – 2 4 1 4 no

1 2 3 – 3 3 4 5 ExHit

1 2 3 – 3 3 4 6 ExHit

1 2 3 – 1 1 2 7 no

1 2 3 2 3 - 8 RepHit

Average 1.87 – 2.00 –

beginning of the video clip CT
k,M+λ of the target video. Thus,

it is necessary to shift the target video clip at least the same
number of unmatched frames in order to be feasible to find
a new hit occurrence (T3, T4, T5, or T6 hit).

Table 3 presents an example of subsequence identifica-
tion procedure for a query video with 3 frames and two dif-
ferent values for the maximum edit distance λ = 0 and λ = 1
(≡30% of the query video size), in order to illustrate an ex-
act and an approximate matching. For an exact match (i.e.,
λ = 0), only two occurrences were found; and for λ = 1, the
number of hit occurrences rises to three. In both cases an
average shift value of 2 (≡66% if the query video size) was
adopted.

4.2 Computation cost analysis

Generation of the frame similarity graph (line 3) and cal-
culation of the MCM (line 4) are the most time consuming
steps of Algorithm 1. Graph generation needs O(M2 +λM)

operations, in which M represents the query video size
and λ is the maximum edit distance. Moreover, for prac-
tical scenarios, the maximum edit distance should be set
to a value between 0 and M/2, i.e., 0 ≤ λ ≤ M/2; thus,
λ = O(M). Therefore, the total time spent on graph genera-
tion is O(NM2), if the shift value is set to its worst possible
value, i.e., if it is equal to 1.

Solving the MCM on a bipartite graph could be done
with O(E

√
V) operations [22], in which V and E repre-

sent the number of nodes and edges, respectively. The num-
ber of nodes is always equal to 2M + λ, while the number
of edges depends on frame similarity measures and thresh-
old. It could be close to zero, but it also could be equal to
M2 + λM in the worst case scenario (in which all query
video frames are similar to all target video frames).

One should notice that at least M − λ edges are needed
in order to find a hit occurrence, i.e., the size of the MCM
has to be equal to M −λ at least (for T3, T4, T5, or T6 hit).
And, for practical reasons, one should consider the number
of edges to be at least O(M − λ) = O(M) in the iteration
that locates a hit occurrence. So the MCM should need at
least O((M − λ)

√
2M + λ) = O(M

√
M) operations and

the total time spent on maximum cardinality matching is
O(NM

√
M). Unfortunately, in the worst case scenario, it

could take O((M2 + λM)
√

2M + λ) = O(M2
√

M).
Assuming that all query video frames are similar to all

target video frames is quite unrealistic, since frame similar-
ity measure and threshold should reduce that number. More-
over, this worst case scenario always leads to near optimal
shift value, i.e., a shift value that is equal at least to the query
video size because MCM for a KM,M+λ (i.e., a complete bi-
partite graph) has size equal to M and the minimum value
for the maximum MCM distance is also M for T1 and T2

186 J Braz Comput Soc (2011) 17:175–192

hit. The search algorithm runs faster when the near opti-
mal shift value is used (only O(N/M) locations need to be
tested), and the total time spent on the maximum cardinality
matching calculation is O(NM

√
M), even in the worst case

scenario.
Thus, our search procedure has a time complexity of

O(NM2) since it is dominated by the total time spent on
the graph generation step.

4.3 Retrieval validation

After query location candidates are selected, they may be
validated to ensure other assumptions, like temporal or-
dering. In order to verify this assumption, we can use the
dynamic programming (DP), as proposed by the authors
in [24], for computing the longest common subsequence be-
tween video clips. We define a temporal order similarity as
follows.

Definition 12 (Temporal order similarity—TSδ
k) Let i be

used to represent the ith frame of the query video VQ
M , and

j be used to represent the j th frame of a M-sized video clip

CT

tf ,M
of the target video, in which M = D(Mδ

k,λ). Tem-

poral order similarity TSδ
k(V

Q
M,CT

tf ,M
) between the query

video and a M-sized target video clip is equal to Tδ(M,M)

which is calculated using DP and a specified frame similar-
ity threshold δ using the following recurrence relation:

Tδ(i, j)

=

⎧
⎪⎨

⎪⎩

0 if i = 0 or j = 0;
Tδ(i − 1, j − 1) + 1 if FS(i, j, δ) = 1;
max{Tδ(i, j − 1),Tδ(i − 1, j)} otherwise.

(8)

Using the temporal order similarity TSδ
k , we can validate

location candidates by ensuring that its value is greater than
a threshold, i.e., TSδ

k(V
Q
M,CT

tf ,M
) ≥ Δ. The threshold Δ rep-

resents the minimum number of similar frames in correct
temporal order needed to accept a location candidate. No

temporal order changes are allowed, if Δ = |Mδ
k,λ| (i.e., the

MCM size).
Table 4 and Table 5 illustrate the calculation of the tem-

poral order similarity using DP and the recurrence relation
of (8) between a target video clip and a given query video.
The value of temporal order similarity appears at the shaded
cell. Table 4(a) and Table 4(b) correspond to hit occurrences
identified in Table 3 for λ = 0 (two ExHits). In the first case,
only 2 frames are in correct temporal order, while in the
second case all 3 frames are in correct temporal order. Ta-
ble 4(c) corresponds to the last hit occurrence identified in

Table 4 Temporal order similarity for ExHits and
RepHit

Table 3 for λ = 1 (a RepHit) with only 2 frames in the cor-
rect temporal order, and Table 4(d) shows a case with a tem-
poral reordering of the same target video frames presented
in Table 4(c) and only 1 frame is presented in correct tempo-
ral order. Finally, Table 5(a) and Table 5(b) correspond to hit
occurrences associated with an insertion (i.e., InsHit) and a
removal (i.e., RemHit), respectively, for video edit distance
λ = 1—which did not appear in the example described in
Table 3. In the first case, all 3 frames are in correct temporal
order, while in the second case only 1 frame is presented in
correct temporal order.

5 Experiments

In this section, we present some experiments to show the ef-
fectiveness of our method, and we also compare it to Shen’s
approach [26]. We illustrate also an example of video editing
in which the operations of insertion, removal and reordering
are analyzed. The purposes of our experiments are:

(i) To show the effectiveness of our method
(ii) To compare it with a reference method

(iii) To understand the tuning of parameters

J Braz Comput Soc (2011) 17:175–192 187

Fig. 7 Edited videos: (a) target;
(b) exact query (Q1);
(c) removal query (Q2);
(d) inserted query (Q3); and
(e) removal and re-ordering
query (Q4)

Table 5 Temporal order similarity for InsHit and RemHit

Table 6 Video corpora

Video Time Video Frame Genre

dataset length queries rate

TV broadcast 1 1h 00 min 04 s 08 30 fps News

TV broadcast 2 35 min 02 s 02 30 fps Cartoon

TV broadcast 3 31 min 50 s 03 30 fps Series

TV broadcast 4 33 min 13 s 05 30 fps Series

TV broadcast 5 30 min 27 s 07 30 fps General

Internet retrieved 19 min 52 s 21 25 fps Advertisement

video

Total 3h 30 min 29 s 46 –

(iv) To understand its behavior when facing video edit op-
erations; and

(v) To understand the performance issues

5.1 Experimental setup

The video dataset has been split into two sub-sets, since two
different experiments were conducted:

(i) Real videos; and
(ii) Edited videos

The first one is used to analyze the implemented meth-
ods, our method and Shen’s method (which was fully im-
plemented from scratch), and consists of TV broadcast,
recorded directly and continuously from a Brazilian cable

TV channel, and Internet retrieved video. The first dataset
is composed of videos of different genres, like cartoon,
news, advertisement and series. Table 6 shows information
about the dataset (including video length and the number
of queries)—there are 46 query videos without repetition.
The experiments searched for 92 occurrences of video clips
in our dataset (54 for TV broadcast and 38 for Internet
retrieved video), with lengths varying from 9 to 61 sec-
onds. It is important to note that we extracted some video
queries from the original videos to create our query video
dataset.

The second set consists of a video with 11:05 minutes.
Consider the target video sequence T illustrated in Fig. 7(a)
composed of small video subsequences. In that sequence,
the X represents a don’t-care (i.e., any video subsequences
that could be ignored during the search). From the tar-
get video sequence, we extracted three parts, A, B and C,
with 11 sec, 12 sec and 6 sec, respectively, as illustrated in
Fig. 7(b). Afterwards, we produce four video subsequences
from these segments:

(i) An exact query (Q1)
(ii) A query with a removal operation (Q2)

(iii) A query with an insertion operation (Q3); and
(iv) A query with a removal operation and temporal re-

ordering (Q4)

Figures 7(b), 7(c), 7(d) and 7(e) illustrate exact, removal,
insertion and removal with reordering queries, respectively,
obtained by editing the original video subsequence. This
dataset is used in the experiment that aims to analyze the
effectiveness of our method to deal with video edit opera-
tion.

In Table 7, we present all values of the parameters used in
our experiments. For simplicity, some parameters are writ-
ten as relative values with respect to query size; for exam-
ple, λ = 10% corresponds to a maximum allowed video edit
distance of 10% of the query size. In order to compare the
two methods using similar features, we ignore temporal sub-
sampling, which was considered in [26]. Shen’s method has
the following parameters:

(i) α, related to highest permitted number of consecutive
dissimilar frames at the target with respect to the query

(ii) β, the minimum allowed video edit distance; and
(iii) δ, the similarity threshold between two frames

188 J Braz Comput Soc (2011) 17:175–192

Table 7 Parameter setting

(a) Our method

Parameter Values

λ 10%,20%,30%,40%,50%

δ 10%,20%,30%

Sub-sampling No

Dissimilarity function Histogram intersection

(b) Shen’s method

Parameter Values

α 10%,20%,30%,40%,50%

β 10%,20%,30%,40%,50%

δ 10%,20%,30%

Sub-sampling No

Dissimilarity function Histogram intersection

5.2 Precision–Recall analysis

In order to evaluate the results, it is necessary to define some
measures. We denote by #Occurrences the number of query
video occurrences, by #Video clip identified the number of
query video occurrences that are properly identified and by
#Falses the number of video occurrences that do not repre-
sent a correct identification. Based on these values, we con-
sider the following quality measures.

Definition 13 (Recall and precision rates) The recall rate
represents the ratio of correct and the precision value relates
correct to false detections. They are given by

R = Video clip identified

#Occurrences
; (Recall) (9)

P = #Video clip identified

#Falses + #Video clip identified
· (Precision) (10)

Precision–Recall (PR) curves give a more informative
picture of the algorithm performance, since they group in-
formation about hits, miss, false positives and false neg-
atives [5]. An optimal algorithm should have a precision-
recall value of (1,1) (which means 100% of recall with 100%
of precision), i.e. it managed to identify all video clip occur-
rences with no false positives.

Definition 14 (F measure) The F measure is a weight har-
monic mean of precision and recall rates, and it is given by

F = 2 × P × R
P + R · (11)

Table 8 shows the quality measures for our approach re-
lated to precision and recall rates, together with F measures
for different values of edit distance (λ) and threshold (δ).

Table 8 Precision and recall rates

Video edit Threshold value (δ)

distance 10% 20% 30%

(λ) R P F R P F R P F

10% 51% 100% 68% 86% 99% 92% 91% 92% 92%

20% 62% 100% 77% 90% 93% 92% 92% 79% 85%

30% 67% 100% 81% 91% 91% 91% 96% 77% 85%

40% 73% 99% 84% 91% 88% 90% 96% 70% 81%

50% 84% 99% 91% 95% 89% 92% 93% 62% 75%

Fig. 8 Precision-recall curves

Figure 8 illustrates the precision-recall curves. Best results
are associated with λ = 20% and δ = 20% and our method
achieves 90% recall with 93% precision (see Table 8), which
is similar to (and even better than) the approach proposed
in [26] with the capacity of identifying video edit operations.

One of the features of our algorithm that contributes to
those results is the use of the MCM size. The algorithm
only considers a video clip position as a positive localiza-
tion if the size of the MCM is at least equal to the query
video size minus the maximum allowed edit distance, and
the number of frame insertions in the target video clip must
also be smaller than the error. Using the size of the MCM
prevents the algorithm from finding versions of query video
that have additional frames/shots, or target video clips with
suppressed parts (frames/shots) of the query video, when we
search for exact video, i.e., λ = 0. A relaxation of the edit
distance may imply finding edited video clips, but it may
also contribute to a rising number of false positives, as can
be seen in Table 8 and Fig. 8.

Another parameter that is related to high precision detec-
tion is the threshold (δ), which was kept very low during all
experiments.

J Braz Comput Soc (2011) 17:175–192 189

Table 9 Average shift value percentage

Video edit Threshold value (δ)

distance (λ) 10% 20% 30%

10% 94% 87% 71%

20% 97% 84% 65%

30% 98% 81% 59%

40% 99% 76% 52%

50% 100% 72% 45%

5.3 Tuning of parameters

One should notice that both parameters, similarity threshold
(δ) and video edit distance (λ), have influenced the size of
frame similarity graph (Gδ

k,λ), and consequently, the quality
of the results.

5.3.1 Tuning of video edit distance

The recall and precision rates are directly influenced by
the tuning of video edit distance value. As one can see in
Table 8, the recall rate increases together with high video
edit distance values. This should be expected since a relax-
ation of the edit distance may imply finding a great number
of query video occurrences (with or without editing). Con-
versely, the precision rate decreases for high values of the
edit distance, since more false positives may be identified.
With respect to the shift value (see Table 9), for high values
of the edit distance, the shift value decreases, since we need
less frames to find a hit occurrence according to the query
video, except when using a very low value for the similarity
threshold (δ = 10%).

5.3.2 Tuning of similarity threshold

The recall and precision rates are also directly influenced
by the tuning of the similarity threshold value. As one can
observe in Table 8, the recall rate decreases when the sim-
ilarity threshold value becomes lower. That should be ex-
pected, since we impose more restrictions on the similarity
between frames. Conversely, the precision rate increases for
low values of similarity threshold, since less false positives
are identified. With respect to the shift value (see Table 9),
for high values of similarity threshold, the shift value de-
creases, since we need more frames to find a hit occurrence
according to the query video.

According to Table 8, an outlier for the recall rate is iden-
tified for λ = 50% and δ = 30%. This can be explained by
the large number of edges in the frame similarity graph, due
to both huge relaxation of the similarity threshold and the
size of target video clip used for matchings (as a conse-
quence of a large video edit distance).

5.4 Comparative analysis

In [26], the authors have proposed two algorithms for clip lo-
calization, an optimum and a sub-optimum approach based
on bipartite graph matching analysis, and they present good
experimental results. Considering that our method is based
on the calculation of the optimal MCM for a bipartite graph,
we decided to implement the optimum method proposed by
Shen et al. The main differences between the two methods
are:

(i) Filtering step
(ii) Bipartite graph construction; and

(iii) The shift strategy

In order to reduce the number of constructed graphs, Shen’s
method filters out some video segments which did not have
some properties. Afterwards, a graph is constructed for each
dense segment which was not filtered out in the previous
step. As discussed before, our method adopts a shift strat-
egy while Shen’s approach does not use such a mechanism.
Thus, our method does not have any filtering step, and the
graph construction depends on the shift strategy which helps
us in localizing all frames that must match.

Some results for Shen’s method are illustrated in Ta-
ble 10, and as one can see the best results according to F1
measure are obtained for α = 10%, β = 50% and δ = 10%.
Both methods (ours and Shen’s) present quite similar results,
with respect to precision, recall and F1 measure. However,
our method produces more detailed results, since it can de-
scribe which video edit operations were done. One should
note that the recall rate decreases for high values of α. With
respect to β , the recall rate increases for high values.

5.5 Video editing analysis

As described before, our method has two main features:

(i) Temporal reordering invariance; and
(ii) Video editing invariance

The former can be considered as a special case of the latter.
In order to illustrate these features, we conduct an experi-
ment with the second dataset (which was described before).

The query videos represent video edit operations and will
be used to show the behavior of our approach under tem-
poral reordering and/or video editing; e.g., Q4 is generated
by temporal reordering of Q2. Each query video occurs ex-
actly once; however, depending on the video edit distance
some other occurrences will be identified. For example, a
search for Q1 with λ = 50% will return as hits all four subse-
quences Q1, Q2, Q3 and Q4 (see the groundtruth for edited
video queries in Table 11). Moreover, one should pay atten-
tion to the fact that subsequences Q2 and Q4 have the same
frames in a different order.

190 J Braz Comput Soc (2011) 17:175–192

Table 10 Precision and recall rates for Shen’s method

(a) α = 10

Video edit Threshold value (δ)

distance 10% 20% 30%

(β) R P F R P F R P F

10% 52% 100% 69% 82% 95% 88% 85% 85% 85%

20% 63% 100% 77% 87% 92% 89% 89% 77% 82%

30% 67% 100% 81% 89% 87% 88% 89% 70% 78%

40% 75% 100% 86% 89% 86% 88% 89% 64% 74%

50% 85% 99% 91% 91% 79% 85% 90% 52% 66%

(b) α = 30

Video edit Threshold value (δ)

distance 10% 20% 30%

(β) R P F R P F R P F

10% 51% 100% 68% 76% 92% 83% 70% 82% 75%

20% 62% 100% 77% 80% 88% 84% 72% 77% 74%

30% 66% 100% 80% 83% 85% 84% 72% 68% 70%

40% 74% 100% 85% 83% 84% 84% 72% 59% 65%

50% 84% 99% 91% 85% 78% 81% 73% 48% 58%

(c) α = 50

Video edit Threshold value (δ)

distance 10% 20% 30%

(β) R P F R P F R P F

10% 48% 98% 64% 68% 90% 78% 55% 78% 65%

20% 58% 96% 72% 73% 86% 79% 57% 73% 64%

30% 62% 97% 75% 75% 83% 79% 57% 63% 60%

40% 70% 97% 81% 75% 82% 78% 57% 54% 55%

50% 78% 96% 86% 77% 76% 76% 58% 47% 52%

(d) average values for α between [10%,50%]
Video edit Threshold value (δ)

distance 10% 20% 30%

(β) R P F R P F R P F

10% 50% 99% 67% 76% 93% 83% 70% 82% 75%

20% 61% 99% 75% 80% 89% 84% 73% 76% 74%

30% 65% 99% 79% 83% 86% 84% 73% 67% 70%

40% 73% 99% 84% 83% 84% 83% 73% 59% 65%

50% 82% 98% 89% 85% 78% 81% 74% 49% 59%

As can be seen in Table 12, the recall rate of this experi-
ment is 100%; however, the precision is not so high, mainly
due to the size of video subsequence Q2 (and Q4). For ex-
ample, there are false positives related to query video Q1
with λ = 40%, since the size of Q2 (and Q4) is only 0.4 sec-
onds (≡12 frames) smaller than the size of Q1 in this case,
i.e., when the video edit distance is set to 40% (λ = 40%).
Table 13 represents minimum and maximum sizes (in sec-

onds) of the video subsequences searched in the target video
according to the video edit distance.

5.6 Performance issues

The performance of the algorithm is directly related to the
shift value that is adopted during the identification proce-
dure. Once the size of the MCM is calculated, the conserva-
tive approach used in this work defines the shift value as a
function of the number of unmatched frames. This approach
assumes that all mismatches occurred in the beginning of
the frame similarity graph. In other words, the algorithm as-
sumes that all matches might be used in the next iteration,
preventing the algorithm from shifting at larger steps.

Table 9 shows the average shift value of the performed
experiments. A number of 100% means that the shift value
is equal to the query video length. It can be seen that the av-
erage shift value is higher for lower values of δ when the edit
distance is the same. This effect is expected, since a lower
value of δ increases the number of mismatched frames. In
addition, the shift value is also higher for lower edit dis-
tances, since the expected number of mismatched frames is
higher.

6 Conclusions

In this work, we present an approach capable of coping with
a general video clip localization problem, allowing inser-
tion, removal and replacement operations on the video clip.
Our method not only solves the approximate subsequence
localization problem but also gives a precise description of
the set of operations that are necessary to transform the
query video into the target content. In order to do so, it uses
a bipartite graph matching to identify query location candi-
dates. The main contributions of our work are the applica-
tion of a simple and efficient distance to solve the subse-
quence identification problem along with the definition of a
hit function that identifies precisely which operations were
used in query transformation.

According to the experimental results, our method per-
formance (90% recall with 93% precision) is similar to (and
even better than) the approach proposed in [26] but it is done
without preprocessing of the target video. However, subse-
quence identification results may be highly dependent on the
testing material, which is usually scarce and not especially
representative. Moreover, choosing an appropriate feature
that enhances performance of a matching algorithm is not
a trivial task. Therefore, as future work, we will consider
more relevant/robust descriptors and study their impact on
the precision and recall rates.

Finally, we also intend to adapt our method to cope with
another important problem known as near-duplicate video

J Braz Comput Soc (2011) 17:175–192 191

Table 11 Groundtruth for
edited video queries Query Video edit distance (λ)

videos 0% 10% 20% 30% 40% 50%

Query 1 (Q1) Q1 Q1 Q1 Q1 Q1 Q1, Q2, Q3, Q4

Query 2 (Q2) Q2, Q4 Q2, Q4 Q2, Q4 Q2, Q4 Q2, Q4 Q2, Q4

Query 3 (Q3) Q3 Q3 Q3 Q1, Q3 Q1, Q3 Q1, Q3

Query 4 (Q4) Q2, Q4 Q2, Q4 Q2, Q4 Q2, Q4 Q2, Q4 Q2, Q4

Table 12 Precision and recall
rates for edited video queries Video edit Threshold value (δ)

distance 10% 20% 30%

(λ) R P F R P F R P F

10% 100% 100% 100% 100% 100% 100% 100% 42% 60%

20% 100% 100% 100% 100% 85% 92% 100% 40% 57%

30% 100% 63% 73% 100% 63% 77% 100% 43% 60%

40% 100% 58% 73% 100% 70% 82% 100% 43% 60%

50% 100% 83% 90% 100% 62% 76% 90% 55% 68%

Table 13 Minimum and maximum sizes of video subsequences (in
seconds) searched in target video

Video edit distance (λ)

0% 10% 20% 30% 40% 50%

Q1 29 [26.1,31.9] [23.2,34.8] [20.3,37.7] [17.4,40.6] [14.5,43.5]

Q2 17 [15.3,18.7] [13.6,20.4] [11.9,22.1] [10.2,23.8] [8.5,25.5]

Q3 41 [36.9,45.1] [32.8,49.2] [28.7,53.3] [24.6,57.4] [20.5,61.5]

Q4 17 [15.3,18.7] [13.6,20.4] [11.9,22.1] [10.2,23.8] [8.5,25.5]

clip/copy detection. Near-duplicate video copies are those
video copies derived from the same original copy, by some
global transformation such as video re-formatting and color
shifting, or some local changes such as frame editing; and it
has a wide range applications in TV broadcasting monitor-
ing, copyright enforcement, and content-based video search.

Acknowledgements The authors are grateful to PUC Minas—
Pontifícia Universidade Católica de Minas Gerais, CT-Info/MCT/
CNPq (Project 551005/2007-6) and FAPEMIG (Project CEX PPM
126/08) for the financial support of this work. We are also grateful to
the anonymous reviewers for their various contributions.

References

1. Adjeroh DA, Lee MC, King I (1999) A distance measure for video
sequences. Comput Vis Image Underst 75(1–2):25–45

2. Bimbo AD (1999) Visual information retrieval. Morgan Kauf-
mann, San Francisco

3. Chen L, Chua TS (2001) A match and tiling approach to content-
based video retrieval. In: ICME. IEEE Comput Soc, Los Alamitos

4. Chiu CY, Wang HM (2010) Time-series linear search for video
copies based on compact signature manipulation and contain-
ment relation modeling. IEEE Trans Circuits Syst Video Technol
20(11):1603–1613

5. Davis J, Goadrich M (2006) The relationship between precision-
recall and roc curves. In: Proc of the 23rd international conference
on machine learning, Pittsburgh, PA

6. Deng L, Jin LZ (2010) A video retrieval algorithm based on en-
semble similarity. In: IEEE international conference on intelligent
computing and intelligent systems (ICIS), vol 3, pp 638–642

7. Deselaers T, Keysers D, Ney H (2004) Features for image
retrieval—a quantitative comparison. In: DAGM 2004, pattern
recognition, 26th DAGM symposium, Tübingen, Germany. Lec-
ture notes in computer science, pp 228–236

8. Diakopoulos N, Volmer S (2003) Temporally tolerant video
matching. In: Proc of the ACM SIGIR Workshop on multimedia
information retrieval, Toronto, Canada

9. do Patrocínio ZKG Jr, Guimarães SJF, de Paula HB (2007) Bi-
partite graph matching for video clip localization. In: SIBGRAPI,
pp 129–138

10. Gauch J, Shivadas A (2005) Identification of new commercials
using repeated video sequence detection. In: International confer-
ence on image processing, vol III, pp 1252–1255

11. Gauch JM, Shivadas A (2006) Finding and identifying unknown
commercials using repeated video sequence detection. Comput
Vis Image Underst 103:80–88

12. Guimarães SJF, do Patrocínio ZKG Jr (2010) Identification and
analysis of video subsequence using bipartite graph matching. In:
16th WebMedia Brazilian symposium on multimedia and the web

13. Guimarães SJF, Kelly R, Torres A (2006) Counting of video clip
repetitions using a modified bmh algorithm: preliminary results.
In: Proc of the IEEE ICME, Toronto, Canada, pp 1065–1068

14. Horspool RN (1980) Practical fast searching in strings. Softw
Pract Exp 10(6):501–506

15. Huang Z, Shen HT, Shao J, Cui B, Zhou X (2010) Practical on-
line near-duplicate subsequence detection for continuous video
streams. IEEE Trans Multimed 12(5):386–398

16. Jain AK, Vailaya A, Xiong W (1999) Query by video clip. Mul-
timed Syst 7(5):369–384

17. Joly A, Frelicot C, Buisson O (2005) Content-based video copy
detection in large databases: A local fingerprints statistical simi-
larity search approach. In: International conference on image pro-
cessing, vol I, pp 505–508

18. Kim Y, Chua T (2005) Retrieval of news video using video se-
quence matching. In: MMM, pp 68–75

192 J Braz Comput Soc (2011) 17:175–192

19. Lienhart R, Effelsberg W, Jain R (1999) Visualgrep: A systematic
method to compare and retrieve video sequences. Multimed Tools
Appl 10(1):47–72

20. Naturel X, Gros P (2005) A fast shot matching strategy for de-
tecting duplicate sequences in a television stream. In: Proceedings
of the 2nd ACM SIGMOD international workshop on computer
vision meets DataBases

21. Navarro G (2001) A guided tour to approximate string matching.
ACM Comput Surv 33(1):31–88

22. Papadimitriou CH, Steiglitz K (1982) Combinatorial optimization:
algorithms and complexity. Prentice-Hall, Upper Saddle River

23. Pedro JS, Denis N, Domínguez S (2005) Video retrieval using
an edl-based timeline. In: Marques JS, de la Blanca NP, Pina P
(eds) IbPRIA (1). Lecture notes in computer science, vol 3522.
Springer, Berlin, pp 401–408

24. Peng Y, Ngo CW (2006) Clip-based similarity measure for query-
dependent clip retrieval and video summarization. IEEE Trans Cir-
cuits Syst Video Technol 16(5):612–627

25. Rubner Y, Puzicha J, Tomasi C, Buhmann JM (2001) Empirical
evaluation of dissimilarity measures for color and texture. Comput
Vis Image Underst 84(1):25–43

26. Shen HT, Shao J, Huang Z, Zhou X (2009) Effective and efficient
query processing for video subsequence identification. IEEE Trans
Knowl Data Eng 21(3):321–334

27. Tan YP, Kulkarni SR, Ramadge PJ (1999) A framework for mea-
suring video similarity and its application to video query by ex-
ample. In: ICIP (2), pp 106–110

28. Tseng BL, Lin CY, Smith JR (2004) Using MPEG-7 and MPEG-
21 for personalizing video. IEEE Multimed 11(1):42–53

29. Wei S, Zhao Y, Zhu C, Xu C, Zhu Z (2011) Frame fusion for video
copy detection. IEEE Trans Circuits Syst Video Technol 21(1):15–
28

	Identification of video subsequence using bipartite graph matching
	Abstract
	Introduction
	Related works
	Problem definition
	Methodology
	Identification procedure
	Computation cost analysis
	Retrieval validation

	Experiments
	Experimental setup
	Precision-Recall analysis
	Tuning of parameters
	Tuning of video edit distance
	Tuning of similarity threshold

	Comparative analysis
	Video editing analysis
	Performance issues

	Conclusions
	Acknowledgements
	References

