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Abstract This paper presents a novel technique for detec-
tion of point landmarks in volumetric medical images based
on a three-dimensional (3D) Phase Congruency (PC) model.
A bank of 3D log-Gabor filters is specially designed in the
frequency domain and used to compute 3D energy maps,
which are further combined to form the phase congruency
measure. The PC measure is invariant to intensity variations
and contrast resolution and provides a good indication of
feature significance in an image. To detect significant 3D
point landmarks, eigen-analysis of a 3 x 3 matrix of second-
order PC moments, computed for each point in the image, is
performed followed by local maxima detection. Two differ-
ent application scenarios in radiation therapy planning of the
head and neck anatomy are used to illustrate the feasibility
and usefulness of the proposed method.

Keywords Point landmarks - 3D hase congruency -
3D log-Gabor filters - Wavelets - Nonrigid registration -
Radiation therapy

R.J. Ferrari ()

Department of Computer Sciences, Federal University of Sdo
Carlos (UFSCar), Rod. Washington Luis, Km 235, Caixa Postal
676, 13565-905 Sao Carlos, SP, Brazil

e-mail: rferrari @dc.ufscar.br

S. Allaire - A. Hope - J. Kim - D. Jaffray
Princess Margaret Hospital, University of Toronto, Toronto, ON,
Canada

V. Pekar
Philips Research North America, Toronto, Markham, ON, Canada

1 Introduction

Detection of distinctive 3D anatomical point landmarks is
an important task in a variety of medical image analysis
applications including image-to-image and atlas-to-image
registration. Landmark-based registration usually comprises
three main steps: (1) detection of reliable landmarks in
datasets to be registered; (2) establishment of correspon-
dences between the landmarks; and (3) determination of the
transformation between the datasets using the landmark cor-
respondences. Usually, the localization of anatomical point
landmarks in medical images is carried out manually by
an expert physician. However, manual annotation of image
landmarks, especially in 3D images, is a time-consuming
and error-prone task, and in general it presents high inter-
observer variability and low reproducibility [17]. Therefore,
there is a great interest in developing automatic techniques
that could reliably detect 3D landmarks in medical image.

In this work, a new technique for detection of 3D point
landmarks in medical images based on an implementation of
the 3D PC model is proposed. The intrinsic image contrast
invariance as well as the good spatial and frequency local-
ization provided by the log-Gabor filters make the proposed
method very suitable for applications in medical image anal-
ysis. In addition to the landmarks, the method also provides
3D PC maps, which correspond to important visual salient
features in an image and can be used, for instance, to re-
place image intensity information in image registration ap-
plications, e.g., multimodality registration [46].

The paper is organized as follows: Section 2 describes
the related previous work presented in the literature; the
methodology of the proposed method is described in Sect. 3,
followed by two different application scenarios in Sect. 4
that are used to illustrate the feasibility and usefulness of
the 3D PC-landmarks algorithm. Conclusions are presented
in Sect. 5.
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2 Previous work

A handful of papers have been presented in the literature
addressing the problem of detection of 3D medical image
landmarks. Monga and Benayoun [30] proposed a method
based on 3D partial derivatives of the image to estimate lo-
cal curvature of isosurfaces. The gradient direction is then
used to find the tangent plane of the isosurface at each point
in an image. Principal curvatures and their directions are
computed by maximizing a criterion derived from the Hes-
sian matrix over the tangent plane direction. Thirion [41]
applied partial derivatives to detect crest lines, or loci of the
surface, where the curvature is locally maximal. Geometri-
cal invariants are then used to determine the external points,
which are further applied to image coregistration. Rohr [37]
has extended to 3D four of the two-dimensional (2D) cur-
vature operators based on second-order partial derivatives,
which were previously proposed in the literature [11, 18].
Other metrics computed from the Hessian matrix were also
investigated by the author. Ruiz-Alzola et al. [38] proposed
a method based on the interpretation of generalized correla-
tion matrices derived from the gradient of tensor functions,
a probabilistic interpretation of point landmarks, and the ap-
plication of tensor algebra. The landmarks are detected as
local maxima of a function defined by the determinant of a
generalized correlation matrix over its trace. Worz and Rohr
[47] have also proposed 3D parametric intensity models for
the localization of 3D anatomical point landmarks in brain
images. Their method uses differential properties of the im-
age (e.g., gradient and curvature) and a fitting scheme based
on the least-squares method in order to fit their parametric
models to the landmarks. Three types of structures were con-
sidered by the proposed models: tip-, saddle-, and sphere-
like structures. Cheung and Hamarneh [4] have extended to
n-dimension the Scale Invariant Feature Transform (SIFT)
commonly used in computer vision. The authors have pro-
posed three SIFT-like features computed from local inten-
sity histogram re-oriented in the direction of local gradients
for matching points between brains MRI of different modal-
ities. Allaire et al. [1] have also proposed a technique to de-
tect 3D anatomical landmarks based on a 3D extension of
the SIFT. The authors have introduced a new efficient pro-
cedure for selection of salient features based on the anal-
ysis of the 3 x 3 Hessian matrix. By normalizing the his-
tograms of local gradient orientations with respect to the
dominant 3 angles (azimuth, elevation, and tilt), the land-
mark feature descriptor achieves full orientation invariance.
More recently, Liu et al. [24] have proposed a new model-
based, semiglobal segmentation approach to automatically
localize 3D point landmarks in neuroimages. In their work,
alandmark is localized by first using an active surface model
applied only to a part of the studied structure in a certain
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neighborhood of the landmark, and then analyzing the seg-
mented part. By combining global model-to-image registra-
tion, semi-global structure registration, active surface-based
segmentation, and point-anchored surface registration, the
authors claim that their method is robust to noise and shape
variation.

Although a direct quantitative comparison of the method
proposed in this paper and all other available approaches for
the detection of 3D landmarks presented in the literature is
an almost infeasible task, due to the lack of details provided
to implement and test all the algorithms, a brief comparison
of the proposed method and the well-known SIFT technique
is presented as follows.

The main advantages of our proposed method for detec-
tion of anatomical point landmarks in comparison to the
SIFT technique are: (a) differently to the SIFT technique,
the PC measure is very robust to intensity variations in an
image, since it is based on the local energy model of fea-
ture perception [31] and not in points located at the local
extrema of derivative images; (b) the proposed method does
not require any post-processing stage to eliminate unlikely
local extrema and to make the features invariant to rota-
tion; (c) although the current implementation of the pro-
posed method has a higher computational cost comparing to
the SIFT technique, its performance can be greatly improved
via a Graphic Processing Unit (GPU) [39] implementation
of the filtering process or even using a downscaling imple-
mentation of the algorithm in frequency domain with time
complexity of O(N log N); (d) last but not least, the pro-
posed method does not have any patent license restrictions
as SIFT does.

3 Methodology

The phase congruency model provides a measure of fea-
ture significance that is invariant to intensity variations and
contrast resolution in an image [21]. It was first proposed
by Morrone et al. [33] in terms of the Fourier series for
the 1D signal case to explain the paradoxical Match band
phenomenon. Rather than assuming that a feature is a point
of maximal intensity gradient, the phase congruency model
postulates that features are perceived at points in an image
where the Fourier components are maximally in phase. Be-
sides the fact that this model successfully explains a number
of psycho-physical effects in human feature perception, it
also provides a robust measure against image intensity vari-
ations, once it is based mainly on the phase information of
a signal. Venkatesh and Ownes [43] have shown that the
phase congruency measure is proportional to the local en-
ergy model. They also suggested calculating the local energy
via convolution of the original signal with a set of spatial fil-
ters in quadrature.
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Fairly recently, three different measures of phase congru-
ency (PC1, PC2, and PC3) for application in 2D images have
been proposed [20, 45]. These measures have shown to pro-
vide very good feature localization and have been used in
different 2D medical image processing tasks [3, 8, 23, 29,
40, 45]. In this work, a 3D extension of the PC2 measure
was developed using a bank of quadrature pairs of 3D log-
Gabor filters proposed by Dosil et al. [7]. To the authors’
best knowledge, this is the first time this technique is used
to detect 3D landmarks in medical images. The new 3D PC-
measure is defined as

Y W(s, ©) LAn(s, O)AD, (s, ©) — T

PC3p (s, ©) =
30, ©) Y An(s.0) + ¢
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where | -| denotes that the enclosed quantity is equal to itself
when its value is positive, and zero otherwise; s indicates a
spatial location (x, y, z) in an image, and & = (0, ¢) gives
the filter orientation on a sphere of unit radius, with 6 and
¢ corresponding respectively to the elevation and azimuth
angles. A, (s, ®) indicates the image energy at location s,
computed by using a 3D log-Gabor filter with scale index n
and orientation ®. The index » varies from 1 to S, the total
number of scales being used, which was set to 3 in this work.
T is a threshold controlling the noise level of the image en-
ergy map and € is a small constant to avoid division by zero.
Clearly, a point of phase congruency is only significant if it
occurs over a wide range of frequencies [19, 20, 31, 32]. In
a degenerate case where there is only one frequency compo-
nent in a signal, the phase congruency measure, which varies
from O to 1, will be one everywhere. The term W (s, @), de-
fined as

1

Wi 0) = o6

@)
was devised by Kovesi [19] as a weighting function that pe-
nalizes frequency distributions that are particularly narrows.
The parameters y and c in this function are constants repre-
senting a gain factor and a cut-off value, respectively, and

1 ( Y Au(s, ©) >

I(s,0)=—
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S
is a measure of filter response spread computed as the sum of
the amplitudes of the responses (A,) divided by the highest
individual response (Amax) in order to obtain some notional
“width” of the distribution.

The original phase congruency proposed by Morrone and
Burr [31] suffered from a poor localization on blurred fea-
tures. The reason is that energy is proportional to the cosine
of the deviation of the phase angle, ¢, (s, ®), from the over-
all mean phase angle, ¢, (s, @). While the cosine function is
maximized when ¢s 9 = En (s, ©®), it requires a significant
difference between these terms before its value falls consid-
erably. To minimize the lack of localization in the original

3

phase congruency measure, a new energy expression was
proposed by Kovesi [19] as
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where

Pe(s,0) =) _enls, ©)/E(s, ©),

6o(s.0) = 04(s.0)/E(s,0), and

2 2
E(s,0) = (Zen(s,@)> —i—(Zon(s,@)).

The term E(s, ©) is the local energy and e, = I o G¢ and
on = I e G are the convolution results of the input image
I with the quadrature even and odd 3D log-Gabor pairs of
filters G¢, and G, respectively, at scale n and orientation .
This formulation takes into account the fact that, at a point of
phase congruency, the cosine of the phase deviation should
be large and the absolute value of the sine of the phase devi-
ation should be small.

3.1 Design of the 3D log-Gabor filters

The bank of complex 3D log-Gabor filters was designed in
the Fourier domain based on the work of Dosil et al. [7], and
it was used for the implementation of the phase congruency
technique as described previously. The choice for log-Gabor
filters is two fold: (i) log-Gabor filters have zero DC compo-
nent! and, therefore, do not respond to regions with constant
gray value intensities; (ii) the filters have extended tails cov-
ering high frequencies, thus making possible to obtain arbi-
trarily wide bandwidth, which can yield to a fairly uniform
coverage of the frequency domain in an octave scale mul-
tiresolution scheme. For the reasons mentioned above, it has
also been suggested that the log-Gabor function should be
able to encode natural images more efficiently than the or-
dinary Gabor functions, frequently used in the literature for
image filtering [9, 10].

In 1D, a log-Gabor function has a transfer function of the
following form

In (%)
Ri(w) = exp{—O.S " —57op }, 4)
In (—)

wj

'Value corresponding to offset component of the spectrum of an image.
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Fig. 1 Design of the radial 1
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Filter response

where w; is the central radial frequency of the filter i and
op is the standard deviation controlling the filter bandwidth
[10]. To obtain constant shape ratio filters, i.e., filters that
are all geometric scaling of a reference filter (referred to
mother wavelet in the wavelets’ literature), the term Z)—’f must
be held constant for varying ;. It can be shown that :}—f: is
related to the filter bandwidth 8 by the following expression
ng = Z)—’j = exp(—%\/2ln2ﬂ), with 0 < ng <1 and B given
in octaves [6]. Figure 1 shows the radial components of the
log-Gabor filters used in this work.

To extend the filters to 3D, a Gaussian on the angular dis-
tance, which has rotational symmetry in spherical coordi-
nates, is used to control the spread of the angular frequency

component as given by

a((~))2>

2
Oy

GO)= exp<—0.5 . 6)
where o, is the angular standard deviation of the filter
and a(®) = arccos(ﬁ), with u = (cosf - cos¢,cosb -
sin¢, sinf) and w is a point in the frequency space ex-
pressed in Cartesian coordinates.

By multiplying the radial and angular components given
respectively by (5) and (6), the 3D log-Gabor transfer func-
tion is obtained as

In*(2) 2(0)?
T(w,®)= —0.5. : . —0.5. .
(@) eXp{ lnz(n,s)} exP( o2 )

N

In the current implementation of the bank of log-Gabor fil-
ters, elevation is uniformly sampled while the number of az-
imuth angles (N, ) decreases with elevation in order to keep
the density of filters constant. This is achieved by keeping
an equal arc-length between adjacent azimuth values over
the unit radius sphere instead of taking uniform angular dis-
tances [7]. Therefore, the number of filters vary with the el-
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evations as

N,

Na =2Nu,0-cos(i . 2’;{ ) )
e

i=1

where N, o is the number of azimuth angles in the equator
of the unit radius sphere (please refer to Fig. 2) and N, is the
number of elevations.

The filter design also allows to sample the angular fre-
quency space in a uniform or nonuniform mode, as illus-
trated in Fig. 2. This 3D log-Gabor filter representation has
the advantage of being flexible in controlling the number of
filters in the equator of the sphere, which are the orienta-
tions that fall in the xy-plane. This is especially important
in the case of medical images in which the slice thickness
is usually larger than the in-slice resolution. In addition, by
allowing nonuniform sampling, the number of filters can be
considerably reduced in this representation, which reduces
the computational time for processing an image.

3.1.1 Implementation details

In order to reduce the computational burden involved in the
convolution of the original image with the even G¢, and odd
G¢ parts of each log-Gabor filter, which would require two
inverse Fourier transformations, in this proposed filter de-
sign G¢ and G¢, are combined as one complex filter as Gn=
G¢ 4+ iGY. Subsequently, by exploiting the linearity of the
Fourier transform, where FFT(A 4+ B) = FFT(A) +FFT(B),
if this filter is multiplied by the Fast Fourier Transform
(FFT) of the image I and an inverse Fourier transform is
applied to the result, then the real and imaginary parts of
the result will correspond, respectively, to e, = I ¢ G}, and
on = I o G, where e indicates the convolution operator.
This halves the number of inverse Fourier transforms re-
quired to process an image. It should also be noted that in
the frequency domain the even- and odd-symmetric filters



J Braz Comput Soc (2011) 17:117-132

121

Bank of 3D log-Gabor filters
Uniform angular sampling
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Bank of 3D log-Gabor filters
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Fig. 2 Bank of 3D log-Gabor filters designed (a) with and (b) without
uniform sampling on the angular frequency space. An angular over-
sampling around the pole (elevation angle of %) can be noticed in (a).
The number of filters used to cover the Fourier spectrum in (a) and (b)
are 75 and 45, respectively

frequency - pixel/width

are represented, respectively, by two symmetric real and two
antisymmetric imaginary valued log-Gaussian “blobs” sym-
metrically placed on each side of the origin. Due to the op-
posing symmetries, an antisymmetric “blob” from the odd-
symmetric filter will cancel out the corresponding symmet-
ric “blob” from the even-symmetric filter resulting in a sin-
gle real-valued “blob” (multiplied by 2) on the positive side
of the frequency spectrum [36].

Figure 3 illustrates a log-Gabor filter designed in the fre-
quency domain and the corresponding isosurfaces of the
even and odd filters in the spatial domain.

In this work, the bank of 3D log-Gabor filters is com-
puted off-line. For each filter, the envelop corresponding to

Log-Gabor filter designed in the freguency domain

frequency - pixeldimZ
¢
@
et

3 U 04 045 05
frequency - pixel/dimY -01 o4 015 02 025 03 03

frequency - pixel/dimX

(2)

Log-Gabor filter - even part .

Log-Gator filter - odd part

Fig. 3 Example of a 3D log-Gabor filter used in this work. (a) Filter
designed in the frequency domain and the corresponding isosurfaces
from the even (b) and odd (c) wavelet components in the spatial do-
main. Due to the lack of analytical representation of the log-Gabor fil-
ter, the wavelet representations in (b) and (c¢) were obtained by inverse
Fourier transform of the filter in (a). Plot in (a) shows the frequency
response of a 3D log-Gabor filter for a 80% decay of its energy
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the support area, where the energy of the coefficients are
significant,” is determined automatically during the filter de-
sign and only the rectangular region encapsulating the sup-
port area is saved to a disc file for further use. When filtering
an image, the filters are loaded one-by-one from the disc into
the computer memory and the filtering process is executed
as described previously.

The proposed method was implemented in C++ language
and the FFT computations were performed using the FFTW
3.2.2 library [12]. All results reported in this paper were ob-
tained using a desktop personal computer with a Pentium IV
single-core (3.4 GHz) processor and 1 GB of memory.

3.1.2 Design strategy and parameters tuning

The bank of filters should be designed to cover the log-
frequency plane uniformly with a minimal overlap between
the filters. In other words, the transfer function should be as
close as possible to a perfect bandpass filter. Depending on
the application, the bank of filters may be designed to better
respond to oriented structures in an image (anisotropic fil-
ters). In the present work, the filters were designed to give
approximate isotropic responses, since the image structures
do not present any preferential orientation.

By appropriately setting the constant g, and the number
of scales (S), elevations (N, ) and azimuths (N, o), it is pos-
sible to change the spectrum coverage of the filters. An im-
portant aspect of the design is to set the value of the highest
filter centre frequency smaller than the Nyquist frequency to
that to avoid aliasing artifacts. Granlund and Knutsson [14]
suggested that the maximum frequency centre should follow
the condition wpax < 0.5 - n’é’ , with m = 3 being the number
of standard deviations.

Experimentally, it was found that a very reasonable uni-
form spectral coverage, as indicated by Figs. 1 and 2(b),
can be obtained by fixing the maximum radial frequency
centre of the filters to wmax = 0.15 cycles/width and set-
ting ng = 0.745, which gives a filter bandwidth of approxi-
mately 1 octave. The number of azimuth angles on the equa-
tor of the sphere and the number of elevations angles were
set to Ng0 = 6 and N, = 4, respectively. The number of
scales was set to S = 3 and the angular standard deviation to
oq & 25°. The central frequency of each scale is defined as
w; = wmax/ZS_l.

Although there is no exact formula or recipe for the ad-
justment of these parameters, five important points were
taken into account in the design of the bank of filters: (1) the
quality of PC map, in the sense of better feature localization,
improves as the number of scales increases; (2) the num-
ber of elevations depends on the in-plane resolution—the

2 A coefficient is considered to be significant if its value is higher than
20% of the energy peak of the filter.
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higher the in-plane resolution is, the finer the elevation sam-
pling should be; (3) the number of azimuths in the equator
of the sphere is related to the through-plane resolution—the
higher the through-plane resolution is, the finer the angular
(azimuth) sampling should be; (4) the parameters were set
by taking into account the trade-off between quality of the
PC map and the computational time required to process an
image; (5) filters with wavelengths greater than half of the
smaller dimension of the original image were discarded, as
they approximately represent the average intensity level.

Because the through-plane sampling rate in the Com-
puted Tomography (CT) images used in this work is 1.5
times higher than the in-plane rate, a correction factor was
applied to the z coordinate in the filter design to solve this
discrepancy. One important property of the Fourier trans-
form that should be noticed is that frequency expansion in
the spatial domain results in contraction in the Fourier do-
main. Therefore, in the present work, we have set o’ =
/1.5, which represents the frequency in z direction is con-
tracted by 1.5 times.

3.2 Detection of landmarks

The procedure for detection of 3D landmarks starts by first
convolving the original image with the designed bank of 3D
log-Gabor filters described in Sect. 3.1. Then the resulting
filtered images are used to compute the phase congruency
measure independently for each orientation ® = {0, ¢} and
at each position s = (x, y, z) in an image by using (1). The
phase congruency is a dimensionless quantity, which is in-
variant to intensity and contrast variations and, therefore, it
is possible to use its magnitude directly to determine the sig-
nificance of a feature at each point in an image. In fact, if the
phase congruency values are squared and normalized for the
number of orientations used on the filter design, then the val-
ues will correspond to phase congruency moments ranging
from O to 1 [21]. Consequently, from the theory of wavelets
[27] and discrete image moment analysis [25], a 3D phase
congruency moment of order p 4+ g + r computed for each
pixel in an image can be written as

Mpgr@®=> > x0 o vl o 20 )
n e

where

Xpn,© = PCp(8s) - cosb - cos @,
Yn,0 =PC,(s) - cos6 -sing, (10)
in,® = PC,,(s) - sin¢

and n and @ are the indices for the number of scales and the
total number of orientations, respectively. From (9), a 3 x 3
symmetric matrix of second-order moments of inertia can be



J Braz Comput Soc (2011) 17:117-132

123

written as
My (s) Mio(s) Mioi(s)

Mpc(s) = | M1io(s) Moxo(s) Mo (s) | . (11)
Mio1(s) Moi1(s) Moo2(s)

The principal axis, corresponding to the axis about which
the moment is minimized, provides an indication of the ori-
entation of the feature in the image [21]. Similarly to the 2D
case, the magnitude values of the image moments about the
axes perpendicular to the principal axis give an indication of
the significance of the feature in 3D. If these values are large
in addition to the minimum moment, this indicates that the
feature point has a strong 3D component associate to it, and
consequently, it should be classified as a landmark point. In-
stead of computing directly the principal moments of inertia,
they can be approximated by the eigenvalues of the second-
order 3 x 3 matrix of moments in (11). The eigenvalues of
this symmetric matrix, represented in an ordered manner by
A1 > Ay > A3, are real-valued and positive values and they
are related to the shape of an ellipsoid with the lengths of
its semiaxes being proportional to the eigenvalues. When
all three eigenvalues are sufficiently large, this indicates a
point-like structure. Therefore, in the present work, a 3D
landmark point is identified by using a quantity computed
in terms of the eigenvalues for each position s as follows

Al A2 A3
2,124 ,2
A2 42

where, the denominator of the equation is a normalization
factor used to avoid the detection of the landmarks only on
high contrast regions.

Figure 4 illustrates the axial, frontal, and sagittal views
of a 3D map obtained by using (12). The landmarks are then
detected on this map as 3D local maxima points by using a
kernel with size adaptable to the scale of the salient feature
in which the normalized energy response of the log-Gabor
filters is the highest. In this work, kernel sizes of 15, 13, and
11 pixels were used, respectively, for the large, middle, and
small scales.

R(s) = (12)

3.3 Computational complexity analysis

In this section, we provide the computational complexity
analysis of our proposed algorithm for the detection of point
landmarks in 3D medical images. Here, we will discuss an
algorithm that exploits some, but not necessarily all of the
available manners to reduce the computational complexity.
Since the computation of the bank of Gabor filters is per-
formed off-line, i.e., all filters are computed only once and
saved in a disc for further use, then the complexity analysis
of the time and space discussed as follows consider only the
worst case scenario of the image filtering procedure. In 3D

imaging techniques, an image is represented as a volume of
size Ny X Ny X N, where N is the number of slices and N,
and N, correspond to the dimensions of the in-plane matrix.
In radiation therapy practice of head and neck, it is uncom-
mon to use isotropic image sampling and image matrix with
dimension higher than 512 pixels. In general, the images are
represented by a matrix of 256 x 256 or 512 x 512 pixels
with the number of slices varying from 64 to 256, which
is sufficient to cover the entire anatomical area with a good
trade-off between image quality, spatial sampling and acqui-
sition time. For the sake of analysis and notation simplicity,
in this work we assume that N = Ny = Ny = N,. However,
it is important to note that the signal size N in this case has
an upper bound and it will not grow unlimited.

Our image filtering algorithm starts by computing the
DFT of the input image using the FFT algorithm imple-
mentation proposed in [12]. For a one-dimensional sig-
nal with size N, the direct (or inverse) FFT requires only
O(NlogN) real operations, independently of the signal
length. Therefore, for an image of size N 3, the total com-
plexity is O(N3log N) [12]. The second step is to compute
the complex product of the transformed input image and a
real-valued Gabor filter, designed directly in the frequency
domain. Because of the transforms are Hermite [16], we
need only to record (and multiply) half of that many values,
i.e., only one side of the spectrum will be modified. In addi-
tion, as mentioned in Sect. 3.1.1, only the support region of
each 3D filter with size M, x My x M, needs to be multi-
plied to the complex data from the transformed input image.
Similarly to the image dimensions, for the sake of simplic-
ity we have considered M = M = M, = M. Although the
support region of the filter varies with the input image size,
its dimensions are much smaller than the image dimensions,
i.e., M < N. Since the values of the filters are all real, each
nominal complex multiplication requires only two real mul-
tiplications, O (M?). Afterward, the product must be inverse
transformed, with order O (N3log N), and saved for poste-
rior analysis. Thus, the total number of operations to filter
an image using one filter of the bank is O (N> log N 4+ M?).
This must still be multiplied by S x N, x N,, which is the
total number of filters in the bank, and add N3 log N opera-
tions due to the direct FFT of the input image. In the next and
final step, the computation of the PC local energy and mo-
ment maps require both O(N?3) operations. In conclusion,
the time complexity of the proposed algorithm is

T(N,M,N,, Ny, S)
= O(N3logN + (N*log N + M*)N,N,S + N?)
= O((N*logN + M?)N.N,S)
= O(N,N,SN>logN). (13)

Although the number of scales, azimuths, and elevations
were set to fix values in this work, they may be slightly
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Fig. 4 Axial (a, b), coronal (c,
d) and sagittal (e, f) image CT
views for the original image
(left column) and the respective
eigen-maps obtained by using
(12) (right column). Image
contrast was modified for the
sake of best visualization

changed depending on the image characteristics. Therefore,
they were also considered in the complexity analysis.

In our experiments using the personal computer de-
scribed in Sect. 3.1.1, the average processing time of an im-
age of size 256 x 256 x 98 is about 2 min.

A space complexity analysis was also performed for the
proposed method. The image filtering step requires addi-
tional memory to hold two complex images with O(N?)
each; one for the FFT of the original image and a sec-
ond image to keep the resulting multiplication of the trans-
formed image and a Gabor filter. Memory space to load a
Gabor filter from the disc is also required, O (M 3). The re-
quired memory space to compute the PC local energy map is
O(N?), which is mostly used to hold temporary data in the
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(b)

(d)

(f)

implementation of (1). The most memory consuming part of
the proposed algorithm is where the minimum moment map
is computed. For this computation, the additional required
memory is O(N?). Therefore, the total space required by
the proposed algorithm is

Sp(N, M) = O(N°> + M + N?) = O(N?). (14)
3.4 Phase congruency measure applied to MR images

In the current work, we have emphasized that one of the
most important characteristics of the PC measure applied
to detection of 3D point landmarks in medical images, in
comparison to gradient based methods, is the fact that this
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measure is invariant to intensity parameters. In this section,
a very simple experiment is presented to illustrate such im-
portant property. Although in radiotherapy planning, which
is the main application of our proposed method in this work,
computed tomography (CT) is still the most common imag-
ing modality used in practice, multimodality fusion [45],
such as CT and Magnetic Resonance Imaging (MRI) and CT
and Positron Emission Tomography (PET), has become an
important procedure to more thoroughly investigate tumors
in the head-neck anatomy [42].

Despite the great success of the MRI in radiation ther-
apy, MR images present an intrinsic artifact called “bias
field.” Such an artifact is inevitable in the imaging processes
due to a number of factors including the imperfection of
magnetic fields and inhomogeneous properties of scanned
object. The majority of intensity inhomogeneities appears
as a low-frequency intensity variation known as bias field
across the whole image from slice to slice. The intensity in-
homogeneities may reach up to 40% of the intensity ampli-
tudes. Although it may be unnoticeable to the eye, the spuri-
ous intensity variation may significantly hamper the precise
measurement in automated MRI image segmentation, reg-
istration, qualification, or other quantitative image analyses
based on intensity levels, which usually rely on the assump-
tion that a specific tissue is represented in similar intensity
throughout the data [13].

Figure 5(b) shows a simulated MR image obtained from
the BrainWeb project [5] which is corrupted by noise and in-
tensity inhomogeneity, showed in Fig. 5(a), due to the bias
field phenomenon. As it can be easily seen in Fig. 5(c),
thresholding or intensity-based classification are highly af-
fected by this artifact. Gradient-based edge detectors are
also greatly affected in the sense that setting a global thresh-
old on gradient strength becomes more difficult, as inten-
sity differences also vary locally. This effect is shown in
Fig. 5(d). On the contrary, the phase congruency method
seems to be very robust to the presence of intensity varia-
tions across the image, as shown in Fig. 5(e).

3.5 Manually annotated versus automatically detected
landmarks

For the sake of illustration, Fig. 6 shows two examples
of results obtained from the proposed method in compari-
son to patient-invariant point landmarks manually annotated
by an expert radiation oncologist (JK). Points in red (dark
gray in printed version) indicate the landmarks automati-
cally detected by our method and points in yellow (light gray
in printed version) are the landmarks manually annotated.
Large points correspond to landmarks in the plane of view
and the blue arrows indicate good correspondence matches
between the landmarks. The C7 vertebra is indicated in the
image for the sake of better understanding of the three dif-
ferent planes of view used in the illustrative example.

As it can be noticed, the number of detected points is
greater than the annotated ones. The reason is that, due to
the intense required labor work, only a few anatomical im-
portant point-landmarks were manually annotated in the CT
images and considered for comparison in this work. Be-
sides, the number of automatically detected landmarks is
controlled by a threshold value and, in this work, was set to
detect 200 landmarks. Due to a good image contrast present
in the cervical spine and mandible regions of the CT im-
ages, a large number of landmarks was properly and con-
sistently detected in the images. Despite the low contrast of
the structures in the soft-tissue areas of the anatomy, a con-
siderable number of landmarks was also detected in these
regions. Even using a relatively high threshold to select the
detected landmarks, it can be seen in Fig. 6 that the algo-
rithm is very robust to avoid detecting curvilinear structures
with high contrast, such as the skull contour. Another im-
portant point to be noticed in Figs. 6(a)—(d) is that the de-
tected landmarks present a relatively large degree of symme-
try, which is in agreement with the almost symmetric nature
of the head-neck anatomy.

Visual comparison between the landmarks manually an-
notated and the ones automatically detected is only pre-
sented to demonstrate that the proposed method in fact can
detect landmarks that are anatomically meaningful. It should
also be noticed that the proposed method uses only image in-
formation in order to detect the landmarks, while a radiation
oncologist uses both image information and his/her anatomy
expertise to annotate the landmark points.

4 Application of the proposed algorithm to radiation
therapy planning

The aim of radiation therapy (RT) is to accurately deliver
maximum radiation dose to the target tumor volume while
optimally sparing the normal tissue [48]. Accurate tumor
and organ at risk delineation is a very important required
procedure in the RT planning process. Traditionally, organ
contouring for radiation treatment planning is performed
manually on 2D axial CT image slices using simple draw-
ing tools. This process is extremely labor intensive and can
take many valuable hours of clinician’s time. In addition, re-
cent advances in RT such as the transition from conformal
methods to intensity-modulation RT methods and the intro-
duction of 4D CT and adaptive radiotherapy have further
amplified the burden of an organ delineation [26]. The devel-
opment of robust and reliable automatic or semi-automatic
segmentation techniques has the potential to substantially
facilitate the planning process and significantly increase the
patient throughput in the clinic [49]. This is specially impor-
tant in the head and neck RT planning, where the number of
contours that need to be drawn is very large due to the com-
plexity of this anatomy.
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Fig. 5 (a) Bias field map
function corrupting the MR
image in (b). The image was
contrast enhanced for the sake
of better visualization;

(b) corrupted MR image;

(c) Resulting image after
applying Otsu thresholding [34]
to (b); (d) gradient magnitude;
(e) phase congruency map

Recently, various image processing techniques have been
proposed in the literature to aid radiation oncologists in de-
lineation of anatomy [15, 44]. Among them, deformable
models have been showing to be one of the most suitable
approaches for this specific task since they allow the general
shape, location, and orientation of the anatomical structures
of interest in the image to be incorporated in the segmenta-
tion procedure [35]. Particularly, this is an important advan-
tage to segment soft tissue structures in CT data, where im-
age contrast is usually very poor. In addition, they are robust
to image noise and artifacts due to their inherent continuity
and smoothness properties.

In the current work, two different application scenarios
are used to illustrate the feasibility and usefulness of the pro-
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posed method for detection of 3D landmarks. In the first ex-
ample in Sect. 4.1, the method is used to initially positioning
deformable models in planning CT images. In the second ex-
ample in Sect. 4.2, the method is used to propagate normal
tissue planning contours from the planning CT to multifrac-
tion Cone-Beam Computed Tomography (CBCT) volumes.

4.1 Initialization of deformable contours

The ability of deformable models to effectively segment or-
gans of interest is in part dependent on their proper initial-
ization (initial positioning) in the dataset of interest. For ex-
ample, automatic initialization of the models can be done by
nonrigid registration of a patient dataset and an atlas dataset
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Fig. 6 Comparison between
manual annotated and
automatically detected 3D
landmarks for CT images of two
different patients. (a) Axial,

(b) frontal and (c) sagittal CT
views showing in red (dark gray
in printed version) the
landmarks automatically
detected and in yellow (light
gray in printed version) the
landmarks manually annotated.
Landmarks located in the plane
of view are indicated by large
dots

containing ground-truth contours. By applying the transfor-
mation between the atlas and the patient, the models can be
propagated to the patient dataset of interest [22]. However,
robust nonrigid interpatient deformable image registration
is a very challenging task in radiation therapy planning due
to the high anatomical variability, as well as image artifacts,
which are mostly caused by dental fillings or metal implants.

In the present work, the proposed 3D PC landmark detec-
tion method was used to guide a landmark-based registra-
tion algorithm applied for initialization of deformable organ
models in the head and neck area. The method starts by first
computing an initial 3D thin-plate spline (TPS) transforma-
tion [2] using an atlas-based method proposed by Leavens
et al. [22]. Next, a total of two hundred landmarks, as il-

lustrated in Fig. 7, is automatically detected on the refer-
ence CT image using our proposed 3D PC landmark de-
tection method. From those, a small subset of landmarks
(42 in this example) is automatically selected based on the
distances of the landmarks to the models of interest (brain,
brain stem, mandible, and spinal cord), represented by trian-
gular meshes. Only landmarks located within 2-10 mm of
distance, depending on the organ, were kept for further pro-
cessing. Finally, the Levenberg—Marquardt algorithm [28]
is used to optimize the initial TPS transformation obtained
from the atlas-based registration. The sum of squared differ-
ences of pixel values inside a small rectangular mask placed
around each detected landmark is used to evaluate image
similarity for the optimization. For the purpose of compar-
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Fig. 7 Results of the proposed
algorithm for deformable
contour initialization. Left
column: PC-landmarks overlaid
on the original axial (a), coronal
(c) and sagittal (e) CT view
images. Right column: initial
placed contours obtained by
using the gray-level intensity
(red or dark gray in printed
version) and PC-map (green or
light gray in printed version) as
a measure of image similarity.
Landmarks located in the plane
of view are indicated by large
dots

ison, two sources of image information were used in this
work to measure image similarity: the gray-level intensity
and the computed PC map.

Figure 7 shows a CT image of a patient with the mandible
and spinal cord contours overlaid on the axial, sagittal and
coronal images. The red (dark gray in printed version) con-
tours were obtained by using the gray-level intensity as im-
age similarity in the optimization algorithm while the green
(light gray in printed version) contours were obtained by us-
ing the PC map. Landmarks obtained from the proposed 3D
PC landmark detection algorithm were used in both cases.
By visually assessing the images in Fig. 7, it can be easily
noticed that the use of the PC map has improved signifi-
cantly the placement of the initial contours. This can be ex-
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plained by the fact that the landmarks used to drive the po-
sitioning of the contours correspond to prominent features
in the image highlighted by the PC map (see Figs. 4 and 7
for comparison), which helps the optimization algorithm to
converge to a better local minimum.

4.2 Automatic head-neck contour propagation

In image-guided adaptive radiation therapy, multiple addi-
tional images of a patient are acquired to verify the setup
and monitor the progress of the radiation treatment. In par-
ticular, CBCT on-board imaging devices have become stan-
dard tools for image-guided procedures. The aim of adap-
tive treatment is to detect deviations from the original plan
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(d)

Fig. 8 Results of contours propagation from a CT planning image to
a CBCT fraction. Left column: spinal cord (red or dark gray in printed
version) and brain stem (yellow or light gray in printed version) con-
tours manually delineated in a CT image. Middle column: contours
from the CT copied to the CBCT image. Right column: contour prop-

at an early stage and perform corrections if needed. There-
fore, the original delineations from the planning CT image
need to be transferred to the follow-up datasets. When using
daily CBCT imaging, this procedure can only be success-
fully accomplished by using automated methods due to the
large amount of images. In addition, manual contouring on
CBCT images is often infeasible due to the very poor soft

tissue discrimination.

(e)

(i)

agation from CT to CBCT image using the 3D PC-landmarks. Green
and light blue contours (or light gray tones in printed version) are the
truth contours manually annotated on the CBCT images and used for
the purpose of quantitative and visual comparison

In this work, we have used PC landmarks to automati-
cally transfer contours from planning CT to CBCT images.
The method starts by detecting a total of 300 landmarks on a
planning CT image using the proposed 3D PC landmark de-
tection algorithm. Then the detected landmarks are retrieved
in the CBCT fraction images by using maximum local cor-
relation within a small searching area [1]. A threshold value
of 0.7 applied to the correlation coefficients ranging from 0
to 1, and a search area of 30 x 30 mm? were used in this
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Table 1 Average and percentile

Copied contours (mm)

TPS/PC-landmarks (mm)

distances resulting from the

quantitative analysis of the spinal cord brain stem spinal cord brain stem
contour propagation method
applied to six patient datasets average dist. 4.00 3.57 2.66 3.23
10% 0.10 0.02 0.09 0.03
20% 0.19 0.05 0.16 0.07
30% 0.26 0.12 0.23 0.12
40% 0.34 0.22 0.30 0.21
50% 0.44 0.33 0.38 0.32
60% 0.57 0.47 0.47 0.44
70% 0.87 0.72 0.60 0.70
80% 1.38 1.51 0.81 1.28
90% 2.47 3.47 1.68 2.69
100% 11.48 8.35 9.55 8.02

work. Finally, the contours are propagated from the CT to
the CBCT images by using the TPS interpolation method
anchored on the detected point correspondences [2].

For the evaluation of the proposed method, two contours
of normal structures (spinal cord and brain stem) drawn in
the initial planning CT were propagated to a CBCT image at
each fraction using the same patient setup. Figure 8 shows
in the left column the axial, coronal and sagittal views of a
planning CT image with the overlaid manually drawn con-
tours. The middle and the right columns show the CBCT
image views with the contours transferred, respectively, by
copying the original contours and using the TPS interpola-
tion method anchored on the matching 3D PC landmarks.
Manually annotated contours drawn by an expert radiation
oncologist (AH) in green and light blue colors (or light gray
tones in printed version) on the CBCT image are presented
for visual comparison of volumetric concordance. By com-
paring the overlaid contours in the image views in Fig. 8
(middle and right columns), one can easily notice that the
automatically propagated contours (right column) are much
closer to the ground truth comparing to the copied contours
(middle column). The effectiveness of the proposed method
was also quantitatively assessed by measuring the distances
between the propagated contour vertices to the ground truth
meshes of the respective structures for six different patient
datasets, as shown in Table 1. For both structures, the spinal
cord and brain stem, the average distances obtained by us-
ing the automatic TPS/PC landmarks method were smaller
than the distances obtained by copying the contours. For the
brain stem, the automatic TPS/PC landmarks method has
only shown a slightly improvement over the contour copy
(3.23 mm versus 3.57 mm average). This can be explained
by the fact that brain stem usually does not undergo large de-
formations. Furthermore, the lack of image contrast in this
area makes manual image contouring a very difficult task
and can introduce bias to the comparison. In contrast, the
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automatic method has performed considerably better in the
spinal cord region (2.66 mm versus 4 mm average).

In addition to the average distances, the percentile dis-
tances, as shown in Table 1, were computed after sorting all
vertices distances in an ascending order. A percentile is the
value of a variable below which a certain percentage of ob-
servations fall. For instance, the 10th percentile is the value
(or score) below which 10% of the observations (the vertices
distances in our case) may be found. As it can be noticed by
comparing the percentile distances in Table 1, the method
for automatic propagation of the contours has shown a bet-
ter overall performance.

5 Conclusions

We have presented a new method for automatic detection
of 3D image landmarks in volumetric medical images based
on the phase congruency model. The method is very flex-
ible in allowing multiresolution and oriented feature analy-
ses. It is also adaptable to anisotropic image resolution, com-
monly present in medical images. The usefulness of the pro-
posed method was demonstrated qualitatively and quantita-
tively by using two practical and important applications in
radiation therapy planning; (a) initialization of deformable
organ models and (b) automatic contour propagation be-
tween CT and CBCT images. By using local energy infor-
mation instead of the magnitude of the intensity gradient in
an image, the proposed method has a great potential to MR
imaging applications, since MR images are usually affected
by image intensity inhomogeneities. In addition to the pro-
posed method for detection of 3D point-landmarks, 3D low-
level image symmetries can be identified by slightly modi-
fying (1). This information maybe used to detect 3D point-
landmarks of a different nature.
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