
J Braz Comput Soc (2011) 17:85–102
DOI 10.1007/s13173-011-0029-3

O R I G I NA L PA P E R

A middleware platform to support river monitoring using wireless
sensor networks

Danny Hughes · Jo Ueyama · Eduardo Mendiondo ·
Nelson Matthys · Wouter Horré · Sam Michiels ·
Christophe Huygens · Wouter Joosen · Ka Lok Man ·
Sheng-Uei Guan

Received: 9 May 2010 / Accepted: 26 January 2011 / Published online: 15 February 2011
© The Brazilian Computer Society 2011

Abstract Flooding is a critical global problem, which is
growing more severe due to the effects of climate change.
This problem is particularly acute in the state of São Paulo,
Brazil, where flooding during the rainy season incurs sig-
nificant financial and human costs. Another critical problem
associated with flooding is the high level of pollution present

D. Hughes (�) · K.L. Man · S.-U. Guan
Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123,
China
e-mail: daniel.hughes@xjtlu.edu.cn

K.L. Man
e-mail: ka.man@xjtlu.edu.cn

S.-U. Guan
e-mail: steven.guan@xjtlu.edu.cn

D. Hughes · J. Ueyama · E. Mendiondo
University of São Paulo (USP), São Carlos 13566-585, Brazil

J. Ueyama
e-mail: joueyama@icmc.usp.br

E. Mendiondo
e-mail: emm@sc.usp.br

D. Hughes · N. Matthys · W. Horré · S. Michiels · C. Huygens ·
W. Joosen
Katholieke Universiteit Leuven, Leuven 3000, Belgium

N. Matthys
e-mail: nelson.matthys@cs.kuleuven.be

W. Horré
e-mail: wouter.horre@cs.kuleuven.be

S. Michiels
e-mail: sam.michiels@cs.kuleuven.be

C. Huygens
e-mail: christophe.huygens@cs.kuleuven.be

W. Joosen
e-mail: wouter.joosen@cs.kuleuven.be

in urban rivers. Efforts to address these problems focus upon
three key research areas: river monitoring, modelling of river
conditions and incident response. This paper introduces a
rich next-generation middleware platform designed to sup-
port wireless sensor network based environmental monitor-
ing along with a supporting hardware platform. This system
has been deployed and evaluated in a real-world river moni-
toring scenario in the city of São Carlos, Brazil.

Keywords Wireless sensor networks · Environmental
monitoring · Middleware · Multiparadigm programming

1 Introduction

Flooding is a significant global problem that is likely to in-
crease in severity due to the effects of climate change [1].
The problem of flooding is particularly acute in the state of
São Paulo in Brazil, where during the rainy season from De-
cember to March, seasonal flooding incurs a significant fi-
nancial and human cost. This problem is further complicated
by the high levels of pollutants found in many of Brazil’s ur-
ban waterways [2].

Wireless Sensor Networks (WSN) are a promising plat-
form for supporting environmental monitoring. WSN are
composed of tiny embedded computers known as “motes”
that are equipped with low-power wireless networking tech-
nologies and simple sensors. These motes form ad-hoc, self-
organising networks that are capable of sensing and react-
ing to the physical environment [3]. WSN promise a num-
ber of advantages for environmental monitoring compared
to traditional telemetry systems. These include: (i) reduced
cost, (ii) simplified deployment, (iii) high resolution sens-
ing, and (iv) the ability to adapt to changing environmental
conditions. These advantages are explored in more detail in
Sect. 2.

mailto:daniel.hughes@xjtlu.edu.cn
mailto:ka.man@xjtlu.edu.cn
mailto:steven.guan@xjtlu.edu.cn
mailto:joueyama@icmc.usp.br
mailto:emm@sc.usp.br
mailto:nelson.matthys@cs.kuleuven.be
mailto:wouter.horre@cs.kuleuven.be
mailto:sam.michiels@cs.kuleuven.be
mailto:christophe.huygens@cs.kuleuven.be
mailto:wouter.joosen@cs.kuleuven.be

86 J Braz Comput Soc (2011) 17:85–102

The work presented in this paper improves upon cur-
rent WSN approaches to environmental monitoring [4–6],
by providing an integrated platform that is specifically tai-
lored to the requirements of river monitoring in the state of
São Paulo, Brazil. Our approach provides middleware sup-
port that respects the requirements and skills of the various
actors, including: generic component developers, infrastruc-
ture owner/managers, application developers, and environ-
mental scientists. To complement our work in the software
domain, we also introduce a prototype hardware platform
that demonstrates the feasibility of our approach to WSN-
based environmental monitoring. In sum, these contribu-
tions provide a dependable and flexible solution that meets
the requirements of river monitoring.

The remainder of this document is structured as follows:
Sect. 2 provides background on WSN-based environmental
monitoring. Section 3 provides background on the problem
of river monitoring in the state of São Paulo. Section 4 de-
scribes our hardware sensing platform. Section 5 describes
our software sensing platform. Section 6 evaluates the com-
plete system. Section 7 discusses directions for future work.
Finally, Sect. 8 provides conclusions.

2 WSN based environmental monitoring

Wireless sensor networks have evolved through two gen-
erations of technology. The first generation of WSN used
custom hardware platforms and operating systems that were
highly optimised for a specific application. This monolithic
approach to early WSN, coupled with tight application in-
tegration made early WSN technologies difficult to reuse in
other application domains. This first generation approach is
exemplified by the Great Duck Island experiment that was
performed by the University of California at Berkeley and
the University of Maine who together deployed a sensor
network in the burrows of Storm Petrels on Great Duck Is-
land in order to monitor their nesting behaviour [4]. While
the experiment at Great Duck Island suffered high rates of
data loss and numerous technical difficulties, this experi-
ment successfully showcased how low-cost sensor nodes,
simple sensors and low power ad-hoc networking could be
used to gather rich environmental data. The lessons learned
from early experiments such as these would also be lever-
aged to create the second generation of generic sensor net-
work technologies.

The second generation of WSN build upon the foun-
dation of WSN Operating Systems (such as TinyOS [7],
Contiki [8], and SOS [9]), the availability of standardised
network protocols (such as 802.15.4 [10]) and the grow-
ing range of general-purpose sensor nodes (such as the
MicaZ [11] and T-Mote [12]). Perhaps the most relevant
of this second generation WSN is the Hydrowatch project

from the University of California at Berkeley which moni-
tors several environmental factors using a large network of
generic sensor nodes that are deployed in a river valley of
the Sierra Nevada Mountains [6]. The Hydrowatch project
demonstrates that WSN can operate efficiently at scale and
that large numbers of off-the-shelf sensors combined with
generic WSN systems software can be used to build a rich
understanding of the environment.

In parallel to the deployment of second generation WSN
applications, a number of research projects have investigated
the use of more capable computing and networking tech-
nologies to implement environmental sensing infrastructure.
For example, in the FloodNet project [13], the University of
Southampton deployed a small network of powerful sensor
nodes equipped with laptop-like CPUs and large amounts
of memory that were networked using ad-hoc 802.11 b to
monitor water levels on the River Crouch in southern Eng-
land. While the use of laptop-like computing and network
technologies provides flexibility and easy software develop-
ment, these benefits come at a significant cost in terms of
power consumption, which must be met by large solar ar-
rays, connection to fixed power infrastructure, or frequent
battery changes.

2.1 Emerging technologies

Most recently, a third generation of WSN have emerged that
offer support for a rich range of programming paradigms.
In our view, the most promising of these platforms include:
Java ME [14, 15], run-time reconfigurable component mod-
els [16] and policy-based management frameworks [17].

Java ME The open-source SQUAWK virtual machine sup-
ports programming using the standard Java ME CLDC 1.0
specification [14] and has been successively ported to ARM-
based sensor node platforms including the Sun SPOT. The
Sun SPOT provides a 180 MHz ARM7 CPU, 512 KB of
RAM and 4 MB of flash memory. The Sentilla Virtual Ma-
chine brings Java ME to even more constrained platforms,
providing support for CLDC 1.0 on the Sentilla Perk sensor
node, which offers an 8 MHz MSP430 MCU with 10 KB of
RAM and 48 KB of flash [15].

Run-time reconfigurable component models The research
community has been active in applying run-time reconfig-
urable component models to WSN problems. Run-time re-
configurable component models allow developers to dy-
namically modify a running application without having to
restart the application. This is particularly advantageous in
WSN scenarios where application development seldom ends
neatly at deploy-time. Rather, the WSN developer often re-
mains engaged in order to adapt system functionality to meet
unexpected environmental conditions and to evolve system

J Braz Comput Soc (2011) 17:85–102 87

Fig. 1 Development using
DisSeNT

functionality to meet changing operational contexts. Key
work in this field includes the OpenCOM component model
[18], the Java version of which has been ported to power-
ful sensor node platforms such as the GumStix. OpenCOM
was also the basis for the WSN-specific RUNES component
model [19], which brought OpenCOM-like functionality to
a T-Mote scale platform. Most recently, OpenCOM has been
used as the basis for the run-time reconfigurable Lorien Op-
erating System [20], which is suitable for T-Mote class de-
vices.

Policy-based management of WSN Reconfigurable com-
ponent models and Java ME are not generally a good fit
with the skill-set of system administrators, who typically
favour a more declarative, rule-based approach [17] such
as that provided by a policy-based management architecture
[21, 22]. For example, Finger [22] provides support for the
policy-based management of TinyOS sensor nodes in a rel-
atively small footprint. We believe that the need for policy-
based management of WSN will only increase as these net-
works grow larger in scale, and are increasingly required to
support multiple concurrent applications [17]. In a multi-
application scenario where resources are shared between
competing and cooperating applications, policies provide a
high level mechanism for realising cross-cutting and sys-
tem wide changes. The view of sensor networks as generic
platforms that will support multiple applications throughout
their lifetimes has growing support in the literature [23–26].

It should be noted that while these technologies are
promising approaches, their usefulness to the varied stake-
holders listed above will remain limited by the quality of

user-centric tools available. While we do not focus on this
area of research in this paper, we consider it a priority for
future research, as described in Sect. 7.

2.2 Our WSN approach

Our approach to WSN development builds upon our previ-
ous work on the DisSeNT middleware platform. DisSeNT
provides LooCI, an efficient run-time reconfigurable com-
ponent model [27], implementations of which are avail-
able for the Java-based Sun SPOT Platform [14] the Con-
tiki based AVR Raven platform [8], and OSGi sensor nodes.
DisSeNT offers three key programming abstractions:

1. The Loosely-coupled Component Infrastructure (LooCI)
provides a run-time reconfigurable component model
[27].

2. The Policy-based Management Architecture (PMA) pro-
vides an Event-Condition-Action (ECA) policy manage-
ment framework [17].

3. The Quality Aware Reconfiguration Infrastructure
(QARI) provides a high-level goal-oriented mechanism
for specifying deployment requirements [28].

Figure 1 shows how LooCI, QARI, and PMA may be
used together by developers to realise reliable and flexible
WSN applications. With respect to our previous work in the
area of WSN-based environmental monitoring [5], this pa-
per presents a redesigned hardware and software platform
that applies the latest advances in WSN and middleware
technologies to meet the specific requirements of river mon-
itoring in São Paulo state. We also provide a detailed expe-
rience report for this application scenario.

88 J Braz Comput Soc (2011) 17:85–102

From a software engineering perspective, our work pro-
vides the first practical example of a multiparadigm pro-
gramming approach for WSN that builds upon our previ-
ous work in policy-based management [17] and lightweight
component models [27]. In terms of the LooCI compo-
nent model, this scenario demonstrates how LooCI compo-
nents can be used in combination with PMA policies to de-
velop efficient applications that are manageable, maintain-
able and extensible. The features of our software system are
described in Sect. 5.

3 River monitoring in São Paulo state

Flood hazards are the most frequent disaster in South Amer-
ican urban areas. Post-flood restoration plans transfer an-
nual debts to population in a rate of US$ 30 to US$ 3,500
per capita, respectively, for small human settlements and
metropolitan areas [29, 30]. In this way, South American
countries are yearly impacted by a 2% to 5% decrease of
gross domestic product caused by unprevented floods that
become social disasters [29]. Accumulated losses of South
American floods in the period 1995 to 2004 were US$
25 billion, including investment (INV) and Operation and
Maintenance (O&M). Notwithstanding, alternative scenar-
ios show that O&M costs could decay to US$ ½ billion
a year until year 2020 if early warning systems are in-
cluded in river committee plans, with increased monitoring
in today’s ungauged basins. This nonprofited “flood market”
with prevention and monitoring programs in South America
is around US$ 80 billion a year, and the Brazilian flood mar-
ket is approximately US$ 40–50 billion a year [31]. Over
the last 100 years, millions of Brazilian people have been
affected as their housing, sources of income and communi-
ties were damaged or destroyed by extreme floods [32, 33].
In January 2004 and in January 2010, Brazilian floods raised
losses to approximately US$ 10 billion and US$ 30 billion,
respectively. During January 2010 floods, the São Paulo
Metropolitan area suffered continuous flooding, encompass-
ing ca. 700 mm a month. Flood waters carry out not only
high volumes of runoff, but transfer pollution and wide-
spread contamination sources from uplands to lowlands of
the same watershed [34]. At an urban drainage system lo-
cated in headwaters of São Carlos city, pollution levels of
total coliforms can raise to 20 million colony-formed units
and biological oxygen demand (BOD) to levels higher than
100 mg L−1, raising serious concerns over contamination
and eutrophication [35]. Common runoff from urban creek
with 1-Km2 drainage area can attain strong pollution rates
of total coliforms loads between 109 to 1012 colony-formed
units per second and with BOD loads up to 1/2 Kg per sec-
ond [36].

Wireless sensor networks that are capable of sensing and
reacting to water and pollutant levels hold the potential of

significantly reducing the damage, health-risks and finan-
cial impact of flood events. The specific requirements of
river monitoring in the state of São Paulo are explored in
Sect. 3.1.

3.1 Requirements of river monitoring in São Paulo

To monitor river conditions of a quantitative and qualita-
tive nature, specific requirements must be met in terms of
(i) Nested Catchment Experiments (NCE), (ii) ecohydrolog-
ical features of drainage systems, and (iii) early warning sys-
tems to reduce vulnerability at flood-prone areas.

The concept of Nested Catchment Experiments (NCE)
[37, 38] necessitates the deployment of monitoring stations
according to the occurrence of the hydrologic cycle across
the river basin, says from headwaters to lowlands. The NCE
concept is the most popular approach among hydrologists
in order to compare natural behaviour and thresholds across
river catchment, especially to make predictions at interme-
diate scales of ungauged or poorly gauged basins [36]. An-
other advantage of NCE is the possibility to flexibly change
stations, along the drainage systems, in order to capture the
complexity of processes in critical points of urban areas. To
support this, sensor networks for environmental monitoring
must therefore offer mechanisms to simplify the manage-
ment of large-scale gauging networks and minimise mainte-
nance overhead. Our approach provides support for large-
scale management through network-wide reconfiguration
and policy based administration. The sustainable power sup-
ply of our sensor node platform also reduces maintenance
overhead due to battery replacement as does the robust na-
ture of our hardware platform.

The ecohydrology features of drainage systems are often
poorly characterised in areas undergoing urbanisation, for
example, in terms of Biological Oxygen Demand (BOD),
Chemical Oxygen Demand (COD), Total Suspended Solids
(TSS), and electric conductivity. Sensor networks for river
monitoring must therefore offer support for a range of rel-
evant sensors, and mechanisms to facilitate the integration
of new sensor types. Our approach provides support for di-
verse sensors through the use of an extensible hardware plat-
form and a semantically-rich event model, which allows for
the easy integration of diverse sensor data into semantically
aware applications. Furthermore, the ability of our platform
to offer flexible duty-cycling without battery replacement al-
lows for the use of sensors that demand high sampling rates.

Accurately assessing vulnerability criteria is critical for
early warning systems, either using participatory-based or
emergency-based layouts. For instance, the combined fea-
tures of direct estimates of water levels and indirect aver-
age velocity vectors at a given location can-provide a vul-
nerability index for movable objects like cars or even indi-
viduals living in flood-prone areas. The strength of this ap-
proach is that it could merge wireless monitoring systems

J Braz Comput Soc (2011) 17:85–102 89

Fig. 2 (Color online) Map of
drainage basins of São Carlos,
SP, Brazil

into urban policies and strategies to reduce both risks and
thus costs. Furthermore, local flood signboards can inform
citizens of the best transport options when floods are im-
minent or in progress. To support this, sensor networks for
river monitoring must therefore offer support for integration
with other local devices and also back-end systems. We pro-
vide support for this integration using a rich semantic rep-
resentation of sensor events and a system-wide event bus,
which can be used to support communication between any
system elements. Figure 2 shows 54 river sub-basins located
in São Carlos city, all linked to the drainage system and nat-
ural topology of river networks, with headwaters and creeks.
Runoff tributaries from headwater areas (•) are separated by
boundaries that are linked to drainage systems at confluence
points on valleys (yellow points), topologically forming the
entire river basin network.

We have chosen to evaluate our approach to supporting
flood monitoring and warning in São Paulo state using a
small scale deployment in São Carlos. This deployment is
highlighted in Fig. 3 and described in detail in Sect. 3.2 be-
low.

3.2 Deployment environment

For our initial prototype deployment, we have chosen to
monitor the intersection of two creeks, which are shown in
Fig. 3. The maximum separation between any two sensor
nodes in this deployment was 50 m and all sensor nodes
were able to communicate directly with each other. The
base-station {BS} was permanently powered and connected
to a fixed Internet link, while all other sensor nodes {T, C1,
and C2} were powered only using solar arrays and commu-
nicated using an 802.15.4 mesh network. All motes with the
exception of {BS} were mounted on trees near to the river
at a height of 3 m. While this deployment is of small scale,
it provides a realistic environment in which we can evalu-
ate the functionality of the proposed hardware and software
platform.

Fig. 3 Prototype deployment location

4 Hardware sensing platform

While the core contribution of this paper is in the software
field, in order to demonstrate the feasibility of our approach
it was necessary to create a custom hardware platform. This
platform is built around the Sun SPOT sensor node [14],
which was extended with solar power facilities, expanded
battery capacity, and additional sensors. We refer to this in-
tegrated river monitoring package as REde de sensores sem
fio para Detectar Enchentes (REDE). Section 4.1 provides
an overview of the specifications of the REDE platform and
Sect. 4.2 compares this to the GridStix platform [5] that we
developed and evaluated during our previous river monitor-
ing work.

4.1 REDE hardware specifications

Based upon the requirements of our environmental science
partners, we have opted for a powerful sensor node platform
that can meet the local processing needs of advanced sensors

90 J Braz Comput Soc (2011) 17:85–102

and on-site modelling. The core of the REDE platform is
the Sun SPOT sensor node [14]. In terms of computational
specifications, the Sun SPOT offers a 32 bit ARM 7 CPU
running at 180 MHZ with 512 KB of RAM and 4 MB of
Flash Memory. With respect to networking, the SPOT offers
a standard IEEE 802.15.4 radio [10]. The SPOT offers also
offers the following sensors: temperature, light, and a three-
dimensional accelerometer. In terms of sensor expandability,
the SPOT provides six 10 bit analogue input channels, two
digital input channels and two digital output channels. Our
additions to this platform are summarised below.

Solar power A key requirement of our environmental sci-
ence partners was that REDE sensor node should be able
to operate continuously without battery replacement. This
necessitates scavenging of power from the physical environ-
ment. To meet this requirement, we considered using mi-
cro wind generators, micro water turbines, and solar pan-
els. After some investigation, we settled on solar power, due
to the plentiful solar energy available during Brazil’s sum-
mer rainy season and the high comparative cost of micro
turbines and micro wind generators. Specifically, we inte-
grated a 15 CM×24 CM solar array constructed from a pair
of monochrystalline panels This array produced a maximum
of 150 mA at 15 V and was used to trickle-charge a large
backup battery (see below). We opted for monochrystalline
panels as these offer high efficiency at a relatively low price
point [6]. The performance of our solar power harvesting
hardware is analysed in Sect. 6.1.1.

Secondary battery In addition to the internal lithium ion
battery available on the Sun SPOT, we integrated a 7 AH,
12 V sealed gel lead-acid battery. This type of battery has
three key advantages in WSN scenarios: (i) low price point,
(ii) high charge density and (iii) robustness. Despite these
significant advantages, sealed gel batteries are not com-
monly used in WSN scenarios due to their size [6]. In this
case, however, our environmental science partners place a
significantly higher value on a low price point and robust-
ness than the size of an individual sensor node. As will be
shown in Sect. 6.1.3, this battery has ample capacity to serve
as a reliable reservoir for the energy that is produced by our
solar array.

Sensors In order to monitor water depth, we used a vented
gauge pressure sensor (SSI model P51-15). We also inte-
grated sensors to test water quality including a custom-built
conductivity sensor and a methane sensor (HANWEI model
MQ-4). These sensors were integrated over the analogue in-
put channels of the REDE sensor node. In addition, the in-
ternal accelerometer of the REDE sensor node was used to
implement tamper and theft detection.

4.2 Comparison with the GridStix sensing platform

This section compares the REDE sensor node with our pre-
vious hardware platform, GridStix which was deployed in
two flood monitoring and warning scenarios in North–West
England and North Wales between 2005 and 2009 [5]. In
terms of hardware, there are three key differences between
the REDE platform and the GridStix platform:

Computational platform The GridStix used a powerful
400 MHz XScale CPU, while REDE uses a more mod-
est 180 MHz ARM 7 CPU. As the ARM 7 CPU consumes
less power, a smaller solar array is needed, resulting in a
lower price-point for REDE sensor nodes and more flexible
duty-cycling.

Networking The REDE platform uses a more energy ef-
ficient, WSN-specific IEEE 802.15.4 radio rather than
802.11 b/g as used in GridStix v1 or the mixed approach
used in GridStix v3 [39]. This further reduces power de-
mand, and thus the price-point of REDE sensor nodes.

Sensing While GridStix provide support for only pressure
and flow sensors, REDE provides support for a number of
new sensors including depth, conductivity, methane, and
tamper-detection, as described in Sect. 4.1.

The REDE platform is able to meet the demands of our
river monitoring application using a smaller, more power ef-
ficient platform in large part because of our more efficient
software architecture, which is described in Sect. 5.

5 Software sensing platform

Our approach to designing WSN software is based upon the
DisSeNT middleware framework, as described in Sect. 2.2.
DisSeNT offers three primary tools that will be exploited in
the context of this project (i) a reflective run-time reconfig-
urable component model known as LooCI [27], (ii) a high-
level policy management architecture known as PMA [17]
and (iii) a quality aware deployment mechanism known as
QARI [28]. This section discusses how these features were
used in concert to implement, deploy, and manage the river
monitoring application.

5.1 Multiparadigm WSN programming

Typical WSN scenarios involve multiple actors such as: the
infrastructure owner/manager, generic component develop-
ers, application developers, and application users. In the
context of the presented river monitoring scenario, the ac-
tors are as follows:

Developers of generic components Such as sensing, log-
ging, and networking. This role was filled by Software En-
gineers at Xi’an Jiaotong-Liverpool University using the
LooCI component model [27].

J Braz Comput Soc (2011) 17:85–102 91

Fig. 4 The Loosely Coupled
Component Infrastructure
(LooCI)

Managers of WSN infrastructure Specialise in the provi-
sion and management of hardware infrastructure. This role
is filled by Computer Scientists at the University of São
Paulo who use PMA [17] to manage deployment-related
concerns, such as software access rights and power man-
agement.

Application developers Use the high-level composition spec-
ification language included with QARI to compose generic
components into a coherent application. This role was
filled by Computer Scientists at the University of São
Paulo.

Environmental scientists Interact with the system in two
key ways. At deployment time, they provide a high level
environment specification that is used to achieve a quality-
aware software deployment. At run-time, Environmental
Scientists may tailor system behaviour in order to adapt
to changing environmental conditions and application re-
quirements. This role was filled by Environmental Scien-
tists at the University of São Paulo.

More details on how these development tools are used to
realise application functionality are provided in Sects. 5.2
to 5.5.

5.2 Component based development with LooCI

The Loosely-coupled Component Infrastructure (LooCI) is
a run-time reconfigurable component and binding model
that is designed for networked embedded systems such as
WSN. Along with a small memory footprint and good per-
formance, the key benefits of LooCI are that it promotes an
event-based interaction paradigm and a loose coupling be-
tween cooperating components. We believe that these fea-
tures are a good fit with WSN, which are inherently asyn-
chronous and unreliable. LooCI provides these features us-
ing an event-bus communication abstraction supported by a
connectionless networking model [27]. In the LooCI com-
ponent model an interface is modelled by the publication of
a specific event type on the event bus, while a receptacle is

created by the subscription of a component to a specific type
of event. The LooCI component model is platform and lan-
guage independent, with ports available for the Java-based
Sun SPOT platform, the Contiki-based AVR Raven platform
as well as GumStix and standard PCs [40]. LooCI supports
runtime reconfiguration including: (i) dynamic component
deployment, (ii) distributed mechanisms to start/stop a com-
ponent and to place components into quiescent state and
(iii) support for the dynamic modification of bindings be-
tween components.

The LooCI event bus follows an entirely decentralised
publish-subscribe architecture, wherein an “Event Manager”
on each node acts as a broker—disseminating incoming
events from the network to local components with a match-
ing receptacle and disseminating outgoing events to the ap-
propriate location. Addressing of entities on the event bus
is of flexible granularity. At the finest level of granularity,
a component interface may be bound to a specific recepta-
cle available on a specific component that is hosted on an
individual sensor node, while at the coarsest level of granu-
larity; a component interface may be bound to all matching
receptacles available within an entire network (for a detailed
description of LooCI components, bindings, interfaces, and
receptacles, we refer the reader to [27]). Section 5.2.1 shows
the event types used in the river monitoring application and
their associated ontology

An architectural overview of the LooCI runtime is shown
in Fig. 4. The Sun SPOT LooCI port builds on the no-
tion of isolates, which provide process-like units of encap-
sulation [41]. From Fig. 4, it can be seen that the LooCI
run-time is hosted in the master isolate, which executes on
start-up. LooCI offers two types of components. Macro-
components each run in a separate isolate. They may be
multithreaded and can include utility classes and data files.
Microcomponents are delivered in a child isolate, but are
then transferred to the master isolate, where they execute
alongside the LooCI runtime. Microcomponents must be
single threaded and self-contained. Microcomponents offer

92 J Braz Comput Soc (2011) 17:85–102

better performance than macrocomponents [27]. Aside from
these distinctions, macrocomponents and microcomponents
are functionally identical. In this project, it was only neces-
sary to use microcomponents.

In terms of interaction paradigms, LooCI is designed to
support applications with periodic or event-based data re-
quirements, which we believe includes the majority of WSN
applications. Query-based applications may be created using
LooCI, however, no implicit support is provided for this.

5.2.1 Component-based composition

LooCI events are defined based upon a global, hierarchical
name-space represented by a spanning tree. The root of the
tree is the base EVENT type and each successive layer of
child nodes describes events with increased specificity. The
structure of this tree is encoded using a unique identifier
which can be used to support efficient subsumption testing,
i.e., the testing of whether one event is a sub-type of another.
This scheme is based upon the work reported on in [42].
In brief, each event in the tree is assigned two values, (n)

and (p) which together can be used to efficiently compute
a unique identifier (b) that is used to encode subsumption
testing functionality into each event:

n: represents the sequence number of the event as it was
added to the tree. The first event is assigned the value 1,
the second event 2, and so on and so forth.

p: is the nth prime. This is not computed dynamically, but
instead is assigned based upon a well-known list of the first
10,000 primes [25].

b: is the Globally Unique Identifier (GUID) for this event
type and is calculated based upon the product of the as-
signed p-value and the b-value of the parent node. The root
node is a special-case and is assigned the b-value 1.

The portion of the event ontology that relates to sensor
events is shown in Fig. 5 along with the unique identifiers
that are assigned to each event (b-values). For space reasons,
the complete ontology is not reproduced here.

As reported in [42], due to the properties of primes, it is
easy to test whether one event (X) is a subtype of another
event (Y). All that is required is to calculate the modulus of
the b-value for X by the b-value for Y (i.e., X.b Mod Y.b).
If the result of this operation is 0, then X is a subtype of Y ,
otherwise X is not a subtype of Y . This event taxonomy is
exploited to allow for the creation of a generic Environmen-
tal Hazard Alert component that subscribes to all events that
are sub-types of SENSOR using a single receptacle.

The river monitoring composition consists of five com-
ponents, which are bound as shown in Fig. 6. Lines ending
in balls denote interfaces, while lines ending in cups denote
receptacles. The number above each interface/receptacle in-
dicates its type as defined by the n-number assigned in the
application ontology and illustrated in Fig. 5.

Fig. 5 Event ontology

Fig. 6 Pure component-based application composition

As can be seen from Fig. 6, in the pure component-based
composition, the Environmental Hazard Alert component
subscribes to sensor data from all other components and
will receive sensor data at a rate controlled by the individual
component parameterisations.

5.3 Policy-based refinement with PMA

The Policy Management Architecture (PMA) [17] integrates
with the LooCI event bus [27] in order to provide support for
tailoring and management of system functionality through
the use of high level policies. As all interactions between
LooCI components occur over the event bus, it is possible to
tailor any aspect of system functionality by modifying the
manner in which events are allowed to propagate. To facili-
tate this type of application management, the LooCI runtime
is extended with a compact policy engine, which executes a
simple event-condition-action policy specification language.

J Braz Comput Soc (2011) 17:85–102 93

Fig. 7 The policy-based management architecture

The PMA Policy Engine is integrated with the per-node
LooCI Event Manager (as shown in Fig. 7) and intercepts
all event flows. Where an event is found to match the target
listed in a Policy Specification, the policy engine may ap-
ply a number of operations. Passing events may be: blocked,
redirected to a new destination, transformed into a new
event type or otherwise allowed to pass without modifica-
tion.

The Policy Specification Language used in PMA is high-
level and based upon Event-Condition-Action (ECA) rules.
This is a good fit with the typical skill-set of a system ad-
ministrator and is supported by a simple back-end tool that
allows policies to be applied at various levels of granularity
[17]. Consider the following examples:

At the granularity of an entire network, an administra-
tor may block all reconfiguration events in order to place
the system into a “stable” operational state. At the granu-
larity of a sensor node, an administrator may deny all out-
going events that are destined for sensor nodes not owned
by the same party in order to provide security for sensi-
tive infrastructure. At the granularity of component inter-
faces, an administrator may allow a 3rd party to access the
data produced by a sensing component, but not allow those
same users to place the component into a nonoperational
state. This would be achieved by denying all incoming re-
configuration events that did not originate from the system
administrator. Section 5.3.1 describes how PMA was used
to tailor and manage the component functionality described
in Sect. 5.2.

5.3.1 Policy augmented composition

The river monitoring application composition includes four
policies, the functionality of which is outlined below:

ConductivityDetectionPolicy This policy effectively acts as
a filter, allowing CONDUCTIVITY (6) events to pass
to the EnviornmentalHazardAlert component only where
the reading contained in the EVENT exceeds a specified
threshold (and thus indicates that a conductive pollutant
has entered the river). This threshold value is configured at
the level of individual sensor nodes, based upon previously
observed readings.

MethaneDetectionPolicy This policy effectively acts as a
filter, allowing METHANE (7) events to pass to the En-
viornmentalHazardAlertComponent only where the read-
ing contained in the EVENT exceeds a specified threshold
(and thus indicates that an organic pollution event has oc-
curred). This threshold value is also configured at the level
of individual sensor nodes, based upon previous readings.

TamperDetectionPolicy This policy filters ACCEL (8) read-
ings, only allowing them to pass to the EnviornmentalHaz-
ardAlertComponent where they exceed a threshold that in-
dicates theft or vandalism. This threshold is initially con-
figured globally for every sensor node, but may be tailored
at run-time to account for natural movement of the sensor
nodes (for example, due to trees swaying in the wind).

FloodDetectionPolicy This policy filters PRESSURE (9)
readings, only allowing them to pass to the Enviornmental-
HazardAlertComponent where they exceed a threshold that
indicates flooding. This threshold value is configured at the
level of individual sensor nodes, based upon the height of
the river bank at that deployment location; however, this
value may be tweaked to account for bank erosion or rein-
forcement.

The complete application composition including policies
and components is shown in Fig. 8. As can be seen from
Fig. 8, components are used to provide generic functional-
ity, including the encapsulation of physical resources like
sensors and generic tasks like power management and log-
ging. In contrast, policies are used to tailor this functionality,
for example, by setting a specific level at which sensor read-
ings should generate an alert to the application back-end. An
example filtering policy is provided in Listing 1.

Data interpretation occurs in the resource-rich back-end,
where it is performed by the Environmental Hazard Alert
component, which applies computational models to deter-
mine the current risk due to pollution, flood, and theft. In
the case of flood and theft, these models need only a sin-
gle type of sensor data (pressure and accelerometer, respec-
tively), while in the case of pollution, both conductivity and
methane data are required in order to better characterise the

94 J Braz Comput Soc (2011) 17:85–102

Fig. 8 Mixed policy and component-based composition

policy "flood detection" {
on PRESSURE_SENSOR_READING_EVENT as p;
if(p.value >= 500)
then(
publish SENSOR_READING_EVENT(p.eventID,
p.src_comp, p.value);
)

}

Listing 1 The flood detection policy

pollution event that has occurred. We consider these mod-
els outside of the scope of this paper and would refer the
interested reader to our previous work in this area [43].

5.4 Software deployment and maintenance

Software deployment is achieved using the tools provided by
the Quality Aware Reconfiguration Infrastructure (QARI)
[28]. Following application composition, quality aware de-
ployment specification is achieved using two high-level
domain-specific languages. First, a target network specifi-
cation is provided using the high level network description
language of QARI. This language allows the application
developer to specify regions, which may be nested and to
map nodes onto these regions. Secondly, a quality aware de-
ployment specification is provided that describes how soft-
ware should be deployed within the regions created in the
first stage. This additional layer of abstraction simplifies the
deployment process and allows for the automatic repair of
compositions at run-time.

This information is then used by the per-network QARI
run-time, which executes on the network gateway and at-
tempts to honor and enforce the intentions of the deploy-
ing actor. After deployment, the QARI runtime will poll
the network using the reflective functionality of LooCI [27]
and compare observed component availability against the re-
quired quality aware deployment specification. Where a re-
gion is found not to meet the requirements defined in the
associated quality specification, repair action will be under-
taken. For example, if the developer specified that exactly
one node in the region “RIVER_A” should report the wa-
ter level, appropriate components, and policies would be de-
ployed by QARI to that node. If that node were then to fail,
QARI would detect this mismatch and deploy the appropri-
ate components to another sensor node in “RIVER_A.” If it
is not possible to repair the deployment to meet the provided
quality specification, then QARI will disseminate an excep-
tion to the actor who is responsible for the deployment.

5.4.1 Target network specification

The target deployment location is described in detail in
Sect. 3.2. In brief, our test deployment consists of four
sensor nodes deployed over an area of approximately 100
square meters, covering the confluence of two creeks in the
city of São Carlos. As described in Sect. 3.2, we deploy a
sensor node on each creek upstream of the confluence, and
one sensor node downstream of the confluence in order to
infer the relationship between water levels and pollution lev-
els in the two creeks. To support easy software deployment,
maintenance, and management, we divide the creek into a
number of regions. Figure 9 shows the deployment region
graphically, while Listing 2 provides a subset of the QARI
target network specification that was used to realise zoning
for this application scenario. Due to space constraints only a
subset of regions are described.

5.4.2 Quality aware deployment specification

The River Monitoring application is composed of a com-
bination of components and policies that are connected to-
gether as described in Sect. 5.3.1. This composition is re-
alised using the quality-aware deployment specification lan-
guage provided by QARI. The deployment specification
states that (in the interests of brevity, a full listing of the
deployment specification has been omitted):

• ConductivitySensor components should be de-
ployed to one node in each sub-region of Creek1.

• A EnvironmentalHazardAlert component should
be deployed to the region BaseStation.

• All ConductivitySensor components should be
bound to an EnvironmentalHazardAlert compo-
nent. This will cause ConductivityReadings to be
transmitted to the alert system.

J Braz Comput Soc (2011) 17:85–102 95

Fig. 9 Deployment topology regions

Group Creek1Nodes {
desc = "All nodes at Creek 1";
nodes = [$C1,$C2]; }

Group Creek1BeforeConfluenceNodes {
desc = "Nodes on Creek 1 before the
confluence";
nodes = [$C1]; }

Group Creek1AfterConfluenceNodes {
desc = "Nodes on Creek 1 after the
confluence";
nodes = [$C2]; }

Region Creek1 {
// This region includes two sub-regions
desc = "Creek 1 (both before and after
the confluence)";
Region Creek1BC { // Before Confluence

desc = "Creek 1 before the confluence";
coveredBy = $Creek1BeforeConfluenceNodes;}

Region Creek1AC { // After Confluence
desc = "Creek 1 after the confluence";
coveredBy = \$Creek2AfterConfluenceNodes;}

Listing 2 The target network specification for this application

• A ConductivityDetection policy should be bound
to all ConductivitySensor components in order to
allow the customisation of the conductivity levels that
generate a hazard alert.

As described in Sect. 5.5, following the deployment and
binding phase, QARI will actively attempt to maintain com-
positions at run-time. For example, if the ConductivitySen-
sor was deployed to a single node in the region Creek1 and
this node was to fail, QARI would attempt to deploy an-
other ConductivitySensor and bind this to Environmental-
HazardAlert component instead.

5.5 Maintenance and management using DisSeNT

Following the deployment stage, system maintenance and
management is accomplished by using QARI to deploy new
or updated policies and components. Policy updates are used
to implement fine-grained or cross-cutting changes, while
component updates are used to implement long-lived evo-
lution of system functionality. In a well-crafted DisSeNT
composition, policies should be used to represent all of
those concerns that would typically be tailored at runtime
by users or infrastructure managers. Unanticipated concerns
may be addressed by the injection of a new policy at run-
time. A number of illustrative examples follow:

Example 1 Tailoring the issuance of flood alerts At deploy-
ment time, the water level that generates a flood alert up-
stream of the confluence on Creek 1 was estimated based
upon some fraction of the height of the bank; however, em-
pirical data from the deployment location showed that this
initial setting generated too many false flood warnings. To
address this, an update of the flood alert policy was deployed
using QARI to all nodes in the region Creek 1 BC.

Example 2 Modifying component functionality The perfor-
mance of the depth sensor was subject to short-lived inaccu-
racies due to waves that occur in Creek 1 (these do not occur
in Creek 2). To address this, an update of the PressureSensor
component that uses time averaging to negate the effects of
waves was deployed to all nodes in the region Creek 1 using
QARI.

Example 3 Injection of logging functionality at run-time To
allow for roll-back and data recovery in the event of network
failure, it was decided that logging functionality should be
added to the composition. To accomplish this, a generic log-
ging component, which logs events of type SENSOR was
first deployed to a subset of sensor nodes. A new policy was
then deployed to all sensor nodes, which forward copies of
all SENSOR events to the logging component.

It is important to note that without the policy based man-
agement architecture offered by DisSeNT, these modifica-
tions would require the ongoing redevelopment of compo-
nents.

6 Evaluation

We have quantitatively assessed the performance of REDE
sensor nodes in terms of power characteristics, sensor sup-
port, application footprint, and developer overhead. The re-
sults of this evaluation are reported in Sects. 6.1 to 6.4, re-
spectively. All of the results reported in this section were

96 J Braz Comput Soc (2011) 17:85–102

Fig. 10 A REDE sensor node being tested at the deployment site

gathered in the context of the real-world deployment envi-
ronment described in Sect. 3.2. A complete REDE sensor
node is shown being tested at the deployment site in Fig. 10.

6.1 Power characteristics

This section firstly evaluates the power production capabili-
ties of the solar array provided with the REDE sensor node.
We then analyze the power consumption of the REDE plat-
form and use this data to derive the minimum duty cycle re-
quirements that allow for continual operation of the REDE
sensor nodes without battery replacement. This evaluation is
necessary to demonstrate the feasibility of our approach for
this application scenario.

While it is clearly important to also evaluate how quickly
and reliably the REDE system can generate flood and pollu-
tion warnings, performing such an evaluation is difficult due
to: (i) the inherent tension between providing timely warn-
ings and reliably warnings as explored in [43], (ii) the need
for a large-scale deployment to gather sufficient experimen-
tal data to support this evaluation and (iii) the need to cap-
ture environmental data over a long period in order to cap-
ture sufficient flood events. Due to these complexities, we
consider this evaluation to be a key area for future work, as
explored in Sect. 7.

6.1.1 Solar panel power production

To provide a realistic assessment of the power scavenging
capabilities of our solar array (described in Sect. 4.1), we
evaluated the array at the deployment site. The physical con-
straints of the deployment site did not allow for optimal
placement of the solar array; necessitating that it be mounted
facing south easterly and with an inclination perpendicular
to the horizontal. For some parts of the day, the panel was
also partially shaded by vegetation.

Fig. 11 Solar panel power production

Figure 11 shows the minimum and maximum power pro-
duction recorded during daylight hours. The average value
includes the night time, when no solar power is available.
The minimum value refers to the lowest solar power level
observed during the day time. Weather conditions varied
throughout the evaluation period. From the 29th to the 31st
of January, stormy weather with heavy rain and dark cloud
cover prevailed. From the 1st to the 4th of February, weather
conditions were sunny with light clouds. We are confident
that the combination of harsh weather conditions and sub-
optimal placement of solar panels make our results repre-
sentative of typical solar conditions that might be expected
during the São Paulo rainy season.

The maximum power production recorded during our ex-
periments was 136 mA on the 2nd of February, while the
average power produced during the experiment was 15 mA,
including periods of darkness.

6.1.2 REDE power consumption

We recorded the power consumption of the REDE sensor
nodes in the lab during three key phases of operation:

Sensing phase In this phase the sensor interface board is op-
erational so that data may be read from the attached envi-
ronmental sensors.

Transmission phase In this phase the sensor node is actively
transmitting data to a remote entity using the 802.15.4 ra-
dio. During this phase, the sensor board is disabled.

Sleep mode In which the sensor node hibernates in order
to conserve power, for example during the “off” period of
duty cycles.

During all experiments, the REDE sensor nodes ran the
DisSeNT middleware and the default Sun SQUAWK JVM,
“Red” version. Power consumption was recorded at an in-
terval of 250 ms and averaged over a period of one minute.
The average power consumed by the REDE sensor nodes
in sleep mode is 35 µA, while the power consumption dur-
ing the data transmission phase averages 75 mA. During
the sensing phase, the sensor node consumes an average of

J Braz Comput Soc (2011) 17:85–102 97

Fig. 12 REDE power consumption

230 mA. The power profile of REDE sensor nodes is shown
in Fig. 12.

It should be noted that, for REDE sensor nodes, the sens-
ing phase of activity consumes significantly more power
than the transmission phase, which is unusual for sensor
node platforms [44]. This discrepancy arises because the
REDE platform incorporates complex sensors with signifi-
cant power demands, such as the methane sensor which uses
a small heating element as part of the gas detection process.
In contrast, most sensor node platforms reported on in the
literature use only simple sensors with low power demands
[12, 15, 41].

6.1.3 Minimum duty cycle requirements

In order to ensure continued sensor node operation in the
face of limited power availability, sensor nodes must be
duty-cycled (i.e., periodically placed into sleep mode). The
literature provides significant work in the area of duty cy-
cling and a number of approaches exist to ensure power
conservation in the face of changing environmental condi-
tions and operational contexts such as [45] or [46]. What-
ever duty-cycling approach is selected, the parameterisation
of this approach will be limited by the power-consumption
and generation capability of the sensor node platform. This
section discusses the minimum duty cycling requirements
that REDE sensor nodes impose upon applications. Using
the average power production of our solar panels (15 mA)
as the upper bound to our power budget, we analysed the
length of time for which each sensor node must sleep, fol-
lowing specific periods of transmission and sensing.

Due to space considerations, Table 1 only shows short
sensing and transmission periods, however, we believe that
this time-scale is appropriate for environmental monitoring
applications. As can be seen from Table 1, a safe minimum
duty-cycle period may be easily deduced based upon the de-
sired length of the sensing and transmission phases. For ex-
ample, with a transmission phase of 5 seconds and a sensing
period of 5 seconds, a REDE sensor node must then sleep
for 92 seconds before resuming operation.

6.2 Component-based sensor components

The pressure, conductivity, and methane sensors used in
this scenario provide a voltage output, which may be read
from the ADC of the REDE sensor node using a simple
call to the underlying SQUAWK API that can be linearly
converted into an associated data point. Because of the sim-
plicity of these components, their performance is not ana-
lyzed here. In contrast, the tamper detection component uses
more complex three dimensional accelerometer data and re-
quired specific experimentation. We have therefore chosen
to use the TamperDetection component and the associated
policy as an illustrative case-study that demonstrates com-
ponent and policy development. This is described in full in
Sect. 6.2.1.

6.2.1 Implementing a tamper detection component

The tamper detection system of the REDE sensor nodes con-
sists of a single LooCI component, which aggregates sensor
readings from the internal 3D accelerometer and an associ-
ated filtering component.

The Accelerometer component provides a single inter-
face that publishes a scalar reading for total acceleration
across all axes. The Accelerometer policy filters these read-
ings at the source node, only allowing remote publication
where the value exceeds a predefined threshold. In this way,
the filter policy prevents the publication of spurious alerts
due to movement caused by wind and heavy rain and thus
conserves battery power. A complete listing for this com-
ponent is provided in Listing 3 which shows how sensor
readings may be disseminated over the event bus using
LooCI.

In order to better understand the effect of environmental
conditions on sensor node movement, we monitored the out-
put of the Accelerometer component on a deployed REDE
sensor node at the test site described in Sect. 3.2 for 24 hours
during inclement weather. Readings from the Accelerometer
component were recorded at one second intervals through-
out the evaluation period. To simulate tampering with the
REDE sensor node, we then had five volunteers attempt to
open the sensor node enclosure three times in any way they
chose, recording the output of the Accelerometer component
in each case.

Figure 13 shows the maximum Accelerometer reading
generated by natural movement of the REDE sensor nodes,
along with the most successful attempt (i.e., the attempt with
the lowest Accelerometer reading) of each volunteer who at-
tempted to open the sensor node enclosure. It can be seen

98 J Braz Comput Soc (2011) 17:85–102

Table 1 Minimum sleep
periods required for continual
operation

Listing 3 The
TamperDetection component

IEventPublisher {
private byte[] publications =
{ApplicationEventTypes.THEFT_READING};

private IAccelerometer3D vibrationSensor =
EDemoBoard.getInstance().getAccelerometer();

protected void startApp() throws MIDletStateChangeException \{
initialise(); // Connect to the LooCI run-time
while (getState() == STARTED) { // Send readings over Event Bus
PayloadBuilder payload = new PayloadBuilder();
double x = vibrationSensor.getAccelX();
double y = vibrationSensor.getAccelY();
double z = vibrationSensor.getAccelZ();
double totalVibration = x + y + z;
int total = (int)totalVibration;
payload.addInteger(total);
publishEvent(new Event(ApplicationEventTypes.THEFT_READING,

payload.getPayload()));
Thread.sleep(Parameterization.getTiming());

}
}
public byte getComponentID() { // Return the component type

return ApplicationComponentTypes.THEFT_SENSOR; }
public byte[] getPublications() { // Return the interface types

return publications; }
} // End of class VibrationSensor

that for every case, attempts to open the sensor node en-
closure resulted in a higher Accelerometer reading than for
natural movement.

It is important to note that we do not expect the above
experiments to provide a fool-proof method for distinguish-
ing between natural movement and movement caused by
tampering with the REDE sensor nodes. For this reason,
we choose to implement the filtering of ACCEL events (see

Fig. 5) using a PMA-based policy that can be easily tailored

at run-time. A complete listing for this policy is provided in

Listing 4.

As can be seen from Listing 4, the tamper detection pol-

icy is significantly more compact than the Accelerometer

component, and thus if the need to reconfigure the system

arises (for example to adapt to changing levels of natural

J Braz Comput Soc (2011) 17:85–102 99

Fig. 13 Output from the accelerometer component. (*The output of
this component is the scalar sum of the SunSPOT accelerometer on
three axes (an ADC value of between 0 and 1023) and, therefore,
ranges between 0 and 3069)

policy "tamper detection" {
on ACCELEROMETER_SENSOR_READING_EVENT as a;
if(a.value >= 2000) then (
publish SENSOR_READING_EVENT(a.eventID,
a.src_comp, a.value);)

}

Listing 4 The accelerometer filtering policy

movement) the distribution of policy updates imposes mini-
mal energy overhead.

6.3 Application footprint

For resource constrained embedded systems, maintaining a
minimal application footprint is critical for two primary rea-
sons: firstly, a small application footprint leaves more space
available for data logging. Secondly, in the case of reconfig-
urable systems, where component updates may be transmit-
ted over the air, a smaller component footprint reduces radio
activity, and thus conserves battery life.

The static memory footprint of all components in our
application composition is shown in Table 2. As can be
seen from the table, all components have a footprint of less
than 2 kB, with the exception of The EnvironmentalHaz-
ardAlert component that runs on the resource-rich back-end
and, therefore, its larger size has no significant impact on
system performance.

The footprint of all policies in our application compo-
sition is shown in Table 3. As can be seen from the table,
policies are much more compact than components, with all
policies consuming between 94 bytes and 95 bytes—an or-
der of magnitude less than components. This is particularly
advantageous as policies are used to represent dynamic con-
cerns such as alert thresholds and are therefore more likely
to be updated at run-time over-the-air. The dynamic mem-
ory requirements of each component vary depending on us-

Table 2 Component footprint

Size

ConductivitySensor 1.8 kB

MethaneSensor 1.7 kB

PressureSensor 1.7 kB

AccelerometerSensor 1.9 kB

EnvironmentalHazardAlert 13.2 kB

Total 20.3 kB

Table 3 Policy footprint

Size

ConductivityDetectionPolicy 94 bytes

MethaneDetectionPolicy 94 bytes

TamperDetectionPolicy 95 bytes

FloodDetectionPolicy 94 bytes

Total 377 bytes

Table 4 Lines of code: components

Functional code LooCI code

ConductivitySensor 48 11

MethaneSensor 48 11

PressureSensor 48 11

AccelerometerSensor 42 11

EnvironmentalHazardAlert* 41 23

Total 227 67

*LoC for the supporting GUI is not included in this analysis, as it is
unrelated to the application

age context, however, each policy consumes approximately
400 bytes of RAM and each microcomponent consumes ap-
proximately 2 kB of RAM.

6.4 Development overhead

This section provides a quantitative assessment of develop-
ment overhead. Tables 4 and 5, respectively, provide a Lines
of Code (LoC) analysis for all components and policies in
our application. As can be seen from Table 4, LooCI com-
ponents are relatively compact and impose limited overhead
on developers in terms of LooCI-specific code. The identi-
cal size of the first three components listed in the table may
be attributed to their simplicity and similarity (in all cases,
these components read a simple value from the Sun SPOT
Analogue to Digital Converter (ADC) and transmit it over
the event bus).

100 J Braz Comput Soc (2011) 17:85–102

Table 5 Lines of code: policies

Size

ConductivityDetectionPolicy 10

MethaneDetectionPolicy 10

TamperDetectionPolicy 10

FloodDetectionPolicy 10

Total 40

As shown in Table 5, the high-level nature of PMA poli-
cies allows compact expression of rich functional and non-
functional objectives.

7 Future work

Our initial future work will focus on realising a large scale
deployment of REDE sensor nodes to monitor river con-
ditions on the Tiete River in the city of São Paulo. This
work will allow us to analyse the scalability of the LooCI
event bus communication abstraction [27] and better evalu-
ate the efficiency of our policy-based management architec-
ture [17]. In addition to providing interesting technical data,
a REDE deployment in the city of São Paulo will serve the
public interest by issuing warnings of impending flood and
pollution events. In the extended Tiete River deployment,
power efficient Contiki-based sensor nodes such as the AVR
Raven [8] will be used to support simple sensors, while pow-
erful sensor nodes such as the Sun SPOT [41] will provide
additional functionality such as encryption and logging. Us-
ing this heterogeneous scenario, we will investigate the ben-
efits of LooCI as an interoperability layer that can integrate
heterogeneous sensor node platforms.

Building upon our large-scale deployment on the River
Tiete, we will undertake a significant evaluation of the ef-
fectiveness of REDE in providing timely and reliable flood
warnings. Specifically, this evaluation will assess the trade-
off between timeliness and reliability and attempt to isolate
the optimum lead time for warning distribution.

In tandem with the research directions outlined above,
we will also work to build a suite of tools that will facilitate
the development, management, and use of DisSeNT appli-
cations. In particular, we will develop an integrated devel-
opment environment for the multiparadigm programming
approach used in this scenario. This development environ-
ment will provide support for high-level application com-
position using QARI [28], generic component development
using LooCI [27] and policy-based management using PMA
[17]. We will also develop a suite of graphical tools for the
River Monitoring application presented in this paper.

8 Conclusions

This paper has explored how wireless sensor network tech-
nologies can be used to realise a next-generation river mon-
itoring system. We have designed and evaluated a cus-
tom hardware platform called REDE that meets the spe-
cific requirements of river monitoring and warning in São
Paulo state. In addition to the REDE hardware platform,
we have demonstrated how the multiparadigm programming
approach offered by DisSeNT can be used to build efficient,
adaptable and maintainable applications.

Evaluation has shown that our custom hardware platform
provides flexible sensing and low-power consumption. In
conjunction with the solar array, the low power consump-
tion of REDE sensor nodes ensures continuous operation
without the need for battery replacement. Furthermore, ap-
plications developed using DisSeNT are efficient in terms
of both lines-of-code and memory footprint. Together these
features make the developed system a good match with the
requirements of river monitoring in the state of São Paulo.

In a broader sense, it is our belief that the multipara-
digm programming approach embodied in DisSeNT holds
great potential for large scale multiactor scenarios such as
the river monitoring application described in this paper. Dis-
SeNT respects both the skill-set of each actor and the re-
source constraints of WSN environments.

Acknowledgements This research is conducted in the context of the
IWT-STADIUM project No. 80037 [47]. Wouter Horré is a Ph.D. fel-
low of the Research Foundation—Flanders (FWO).

Dr. Danny Hughes and Dr. Jo Ueyama would like to thank FAPESP
for funding the case-study elements of this research project (Process ID
08/05346-4 and 09/01881-5).

References

1. Douglas BC (1997) Global sea rise: a redetermination. Surv Geo-
phys 18:279–292

2. Mendiondo EM (2008) Challenging issues of urban biodiversity
related to ecohydrology. Braz J Biol 68(4):983–1002

3. Römer K, Mattern F (2004) The design space of wireless sensor
networks. IEEE Wirel Commun 11(6):54–61

4. Mainwaring A, Polastre J, Szewczyk R, Anderson J (2002) Wire-
less sensor networks for habitat monitoring. In: Proc of 1st ACM
international workshop on wireless sensor networks and applica-
tions, Atlanta, Georgia, USA, pp 88–97

5. Hughes D, Greenwood P, Coulson G, Blair G, Pappenberger F,
Smith P, Beven K (2007) An experiment with reflective middle-
ware to support grid-based flood monitoring. Inter-Sci J Concurr
Comput, Pract Exp 20(11):1303–1316

6. Taneja J, Jeong J, Culler D (2008) Design, modelling, and capacity
planning for micro-solar power sensor networks. In: Proc of the
7th international conference on information processing in sensor
networks, IPSN SPOTS ’08, pp 407–418

7. Hill J, Szewczyk R, Woo A, Hollar S, Culler D, Pister K (2000)
System architecture directions for networked sensors. ACM SIG-
PLAN 35(11):93–104

J Braz Comput Soc (2011) 17:85–102 101

8. Dunkels A, Grönvall B, Voigt T (2004) Contiki—a lightweight
and flexible operating system for tiny networked sensors. In: Proc
of 29th IEEE international conference on local computer net-
works, LCN’04, Tampa, FL, USA, pp 455–462

9. Han CC, Rengaswamy RK, Shea R, Kohler E, Srivastava M (2005)
SOS: A dynamic operating system for sensor networks. In: Proc of
the 3rd international conference on mobile systems, applications
and services, Mobisys’05, pp 211–224

10. IEEE Computer Society (2009) IEEE Standard 802.15.4d-2009,
April 17

11. Crossbow, MICA-Z wireless measurement system. Data sheet
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/
MICAz_Datasheet.pdf

12. MoteIV. T-MOTE sky ultra-low power wireless module.
Data sheet http://www.cs.uvm.edu/~crobinso/mote/tmote-sky-
datasheet-102.pdf

13. DeRoure D. Improving flood warning times using pervasive
and grid computing. Available online at http://envisense.org/
floodnet/ingenia/ingenia.htm

14. Microsystems Sun Java ME—the most ubiquitous application
platform for mobile devices. http://java.sun.com/javame/index.jsp

15. Sentilla. Perk frequently asked questions. http://www.sentilla.
com/perk_faq.html

16. Coulson G, Blair G, Grace P, Taiani F, Joolia A, Lee K, Ueyama
J, Sivaharan T (2008) A generic component model for building
systems software. ACM Trans Comput Syst 26(1)

17. Matthys N, Huygens C, Hughes D, Michiels S, Joosen W (2009)
Flexible integration of data qualities in wireless sensor networks.
In: Proc of the 4th international workshop on middleware tools,
services and run-time support for sensor networks, MidSens’09,
Urbana Champaign, Illinois, USA

18. Waysmall Computers. Gumstix embedded computing plat-
form specifications. Available online at http://gumstix.com/
spexboards.html

19. Costa P, Coulson G, Gold R, Lad M, Mascolo C, Mottola L,
Picco GP, Sivaharan T, Weerasinghe N, Zachariadis S (2007) The
RUNES middleware for networked embedded systems and its ap-
plication in a disaster management scenario. In: Proc of the 5th
annual IEEE international conference on pervasive computing and
communications, PerCom’07, White Plains, New York, pp 69–78

20. Porter B, Coulson G (2009) Lorien: a pure dynamic component-
based operating system for wireless sensor networks. In: Proc of
the 4th international workshop on middleware tools, services and
run-time support for sensor networks, MidSens’09, Urbana Cham-
paign, Illinois, USA

21. Russello G, Mostarda L, Dulay N (2008) Escape: a component-
based policy framework for sense and react applications. In: Proc
of the 11th international symposium on component-based soft-
ware engineering, CBSE’08, pp 212–229

22. Zhu Y, Keoh S, Sloman M, Lupu E (2009) A lightweight policy
system for body sensor networks. IEEE Trans Netw Serv Manag
6(3):137–148

23. Huygens C, Joosen W (2009) Federated and shared use of sensor
networks through security middleware. In: Proc of the 6th inter-
national conference on information technology: new generations,
ITNG’09, Las Vegas, Nevada, USA, pp 1005–1011

24. Steffan J, Fiege L, Cilia M, Buchmann A (2005) Towards multi-
purpose wireless sensor networks. In: Proc of IEEE systems com-
munications, ICW’05, Montreal, Canada, pp 336–341

25. Iwao T, Nomura K, Pitt J, Amamiya M (2005) A control model
of multi-purpose sensor networks by policies. In: Proc of active
media technology, AMT’05, Kagawa, Japan, pp 429–434

26. Kansal A, Nath S, Liu J, Zhao F (2007) SenseWeb an infrastruc-
ture for shared sensing. IEEE Multimed 14(4):8–13

27. Hughes D, Thoelen K, Horré W, Matthys N, Michiels S, Huy-
gens C, Joosen W (2009) LooCI: a loosely-coupled component

infrastructure for networked embedded systems. In: Proc of the
7th international conference on advances in mobile computing &
multimedia, MoMM’09. ACM, New York

28. Horré W, Hughes D, Michiels S, Joosen W. QARI: Quality aware
software deployment for wireless sensor networks. In: Proc of the
7th international conference on information technology: new gen-
erations, ITNG’10

29. Mendiondo EM, Valdes JB (2002) Strategies for sustainable devel-
opment of water resources systems. In: Proc of 2nd int conf new
trends in water & environ eng for safety & life: eco-compatible
solutions for aquatic ecosystems, Capri, Italy, 2002

30. Mendiondo EM (2005a) Scenarios of South American floods—
From mitigating disasters to early-warning strategies In: Takara K
et al (eds) Proceedings from international conference on monitor-
ing. Prediction and mitigation of water-related disasters MPMD
2005, Kyoto University, Kyoto, 12–15 Jan. Kyoto: DPRI

31. Mendiondo EM (2010) Reducing vulnerability to water-related
disasters in urban areas of the humid tropics. In: Parkinson et al
(eds) Integrated urban water management: humid tropics. Urban
water series, vol 6. Leiden: UNESCO/Taylor&Francis, pp 109–
124. Chapt. 6, ISSN 1749-0790

32. Clarke RT, Mendiondo EM, Brusa LC (2000) Uncertainties in
mean discharges from two large South American rivers due to rat-
ing curve variability. Hydrol Sci J 45(2):221–236

33. Neiff JJ, Mendiondo EM, Depettris CA (2000) ENSO floods on
river ecosystems: from catastrophes to myths. In: Toensmann F,
Koch M (eds) “River flood defence”, Proceedings from I interna-
tional symposium on flood defence. Kassel: Herkules

34. Tucci CEM (2010) Integrated urban water management in the hu-
mid tropics. In: Parkinson et al (eds) Integrated urban water man-
agement: humid tropics. Urban Water Series, vol 6. Leiden: UN-
ESCO/Taylor&Francis, pp 1–15. Chapt. 1, ISSN 1749-0790

35. Benetti AD, Campos L (2010) Water supply and wastewater man-
agement in the humid tropics. In: Parkinson et al (eds) Integrated
urban water management: humid tropics. Urban Water Series,
vol 6. Leiden: UNESCO/Taylor&Francis, pp 25–40. Chapt. 2,
ISSN 1749-0790

36. Mendiondo E (2008) Challenging issues of urban biodiversity re-
lated to ecohydrology. Braz J Biol 68:983–1002

37. Clarke T, Mendiondo E, Brusa L (2000) Uncertainties in mean dis-
charge from two South American rivers (Amazonas and Paraná)
due to rating curve variability. Hydrol Sci J 45(2):221–236

38. Barros R, Wendland E, Mendiondo E (2007) Cálculo de áreas in-
undáveis devido às enchentes para o Plano Diretor de Drenagem
Urbana na Bacia Escola do Gregório, São Carlos. Rev Bras Recur
Hídr 12:5–17

39. Coulson G, Hughes D, Blair G, Grace P (2008) The evolution of
the GridStix wireless sensor network platform. In: Proc of the in-
ternational workshop on sensor network engineering, IWSNE’08,
Santorini, Greece

40. The LooCI project on google code. Available online at
http://code.google.com/p/looci/

41. Simon D, Cifuentes C, Cleal D, Daniels J, White D (2006) Java on
the bare metal of wireless sensor devices: the squawk java virtual
machine. In: Proc of the 2nd international conference on virtual
execution environments, Ottawa, Canada, pp 78–88

42. Preuveneers D, Berbers Y (2008) Encoding semantic awareness in
resource-constrained devices. IEEE Intell Syst 23(2):26–33

43. Smith P, Hughes D, Beven K, Cross P, Tych W, Coulson G, Blair G
(2009) Towards the provision of site specific flood warnings using
wireless sensor networks. Inter-Sci J Meteorol Appl 16(1):57–64

44. Prayatib A, Antonopoulosa C, Stoyanovaa T, Koulamasb C, Pa-
padopoulosa G (2010) A modelling approach on the TelosB WSN
platform power consumption. J Syst Softw 83(8):1355–1363

45. Sundaresan S, Koren I, Koren Z, Krishna CM (2009) Event-
driven adaptive duty-cycling in sensor networks. Int J Sens Netw
6(2):89–100

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICAz_Datasheet.pdf
http://www.cs.uvm.edu/~crobinso/mote/tmote-sky-datasheet-102.pdf
http://www.cs.uvm.edu/~crobinso/mote/tmote-sky-datasheet-102.pdf
http://envisense.org/floodnet/ingenia/ingenia.htm
http://envisense.org/floodnet/ingenia/ingenia.htm
http://java.sun.com/javame/index.jsp
http://www.sentilla.com/perk_faq.html
http://www.sentilla.com/perk_faq.html
http://gumstix.com/spexboards.html
http://gumstix.com/spexboards.html
http://code.google.com/p/looci/

102 J Braz Comput Soc (2011) 17:85–102

46. Vigorito CM, Ganesan D, Barto AG (2007) Adaptive control
of duty cycling in energy-harvesting wireless sensor networks.
In: Proc of 4th annual IEEE communications society confer-
ence on sensor, mesh and ad hoc communications and networks,
SECON’07, San Diego, California, pp 21–30

47. IWT Stadium project 80037. Software technology for adaptable
distributed middleware. http://distrinet.cs.kuleuven.be/projects/
stadium/

48. Mosquera-Machado S, Ahmad S (2007) Flood hazard assessment
of Atrato river in Colombia. Water Resour Manag 21(3):591–609

http://distrinet.cs.kuleuven.be/projects/stadium/
http://distrinet.cs.kuleuven.be/projects/stadium/

	A middleware platform to support river monitoring using wireless sensor networks
	Abstract
	Introduction
	WSN based environmental monitoring
	Emerging technologies
	Java ME
	Run-time reconfigurable component models
	Policy-based management of WSN

	Our WSN approach

	River monitoring in São Paulo state
	Requirements of river monitoring in São Paulo
	Deployment environment

	Hardware sensing platform
	REDE hardware specifications
	Solar power
	Secondary battery
	Sensors

	Comparison with the GridStix sensing platform

	Software sensing platform
	Multiparadigm WSN programming
	Component based development with LooCI
	Component-based composition

	Policy-based refinement with PMA
	Policy augmented composition

	Software deployment and maintenance
	Target network specification
	Quality aware deployment specification

	Maintenance and management using DisSeNT

	Evaluation
	Power characteristics
	Solar panel power production
	REDE power consumption
	Minimum duty cycle requirements

	Component-based sensor components
	Implementing a tamper detection component

	Application footprint
	Development overhead

	Future work
	Conclusions
	Acknowledgements
	References

