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Abstract An automatic speech recognition system has
modules that depend on the language and, while there are
many public resources for some languages (e.g., English
and Japanese), the resources for Brazilian Portuguese (BP)
are still limited. This work describes the development of re-
sources and free tools for BP speech recognition, consisting
of text and audio corpora, phonetic dictionary, grapheme-
to-phone converter, language and acoustic models. All of
them are publicly available and, together with a proposed
application programming interface, have been used for the
development of several new applications, including a speech
module for the OpenOffice suite. Performance tests are pre-
sented, comparing the developed BP system with a com-
mercial software. The paper also describes an application
that uses synthesis and speech recognition together with a
natural language processing module dedicated to statistical
machine translation. This application allows the translation
of spoken conversations from BP to English and vice versa.
The resources make easier the adoption of BP speech tech-
nologies by other academic groups and industry.
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1 Introduction

Speech processing includes several technologies, among
which automatic speech recognition (ASR) [1, 2] and text-
to-speech (TTS) [3, 4] are the most prominent. TTS systems
are software modules that convert natural language text into
synthesized speech [5]. ASR can be seen as the TTS in-
verse process in which the digitized speech signal is con-
verted into text. In spite of problems such as limited robust-
ness to noise, ASR also has its market, which, according
to Opus Research, topped one billion dollars for the first
time in 2006 and is expected to reach US$ 3 billions in 2010
with niches such as medical reporting and electronic health
care record. Dominated in the past by companies specialized
in ASR, the market currently has players such as Microsoft
and Google, heavily investing in supporting ASR (and TTS)
on Windows [6] and Chrome [7], for example. This work
presents the results of an ambitious project, which aims at
helping the academy and software industry in the develop-
ment of speech science and technology focused in BP.

ASR is a data-driven technology that requires a rela-
tively large amount of labeled data. The researchers rely
on public corpora and other speech-related resources to ex-
pand the state of the art. Some research groups have pro-
prietary speech and text corpora [8–10]. For European Por-
tuguese (EP), the main resource collection efforts have tar-
geted Broadcast News (BN), aiming at automatic caption-
ing applications for the deaf community. The manually la-
beled BN corpus contains around 60 hours of audio, but
even with this limited size, it has already allowed the de-
ployment of a fully automatic subtitling system [11], on line
at the public TV channel since March 2008. Other speech
corpora have been collected for other domains: BDPub-
lico [12] (EP database equivalent to the Wall Street Jour-
nal corpus [13]), CORAL [14] (map-task dialog corpus),
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and LECTRA [15] (university classroom lectures, currently
comprising 27 hours of audio).

For BP, the most widely used corpus seems to be the
Spoltech, distributed by the Linguistic Data Consortium
(LDC). The LDC catalog also released the West Point
Brazilian Portuguese Speech, a read speech database of
microphone digital recordings from native and nonnative
speakers. These two corpora are not enough for fully de-
veloping a state of art large vocabulary continuous speech
recognition (LVCSR) systems in BP. For example, training
an ASR with the maximum mutual information (MMI) cri-
terion [16] requires many hours of audio data for training,
otherwise the MMI estimation will not be effective when
compared to the conventional maximum likelihood crite-
rion. Besides the scarcity of data, there are no publicly avail-
able scripts (or software recipes) to design BP baseline sys-
tems. These recipes considerably contribute towards short-
ening the development process.

Hence, two enabling factors for developments in ASR
are data and scripts. In response to this need, the FalaBrasil
project [17] was initiated in 2009. It aims at developing and
deploying resources and software for BP speech process-
ing. The public resources allow one to establish baseline
systems and reproduce results across different sites. Due to
aspects such as the increasing importance of reproducible
research [18], the FalaBrasil project achieved good visibil-
ity and is now fomented by a very active open-source com-
munity. Most of the currently available resources are for
ASR and allow composing a complete LVCSR, which is the
subject of this work. A TTS system is also under develop-
ment [19] and is used in the translation example in Sect. 8,
but is not detailed here.

This work follows two guidelines for promoting a faster
dissemination of speech technologies in BP:

– in the academy, to increase the synergy among research
groups working in BP: availability of public domain re-
sources for ASR and TTS. Both technologies are data-
driven and depend on relatively large labeled corpora,
which are needed for the development of state-of-art sys-
tems;

– in the software industry, to help programmers and entre-
preneurs to develop speech-enabled systems: availability
of engines (for ASR and TTS), preferably free and with li-
censes that promote commercialization, and tutorials and
how-to’s that target professionals without specific back-
ground in speech processing. In the latter case, the ex-
istence of application programming interfaces (APIs) is
crucial because very few programmers have formal edu-
cation in areas such as digital signal processing and hid-
den Markov models.

With respect to the API, the most widely used in the in-
dustry is SAPI, the speech API from Microsoft [20]. There

are other alternatives such as JSAPI (Java Speech API) from
Sun Inc. These APIs specify a cross-platform interface to
support command and control recognizers, dictation sys-
tems, and speech synthesizers [21]. As such, they contain
not only the required TTS and ASR functionality but also
numerous methods and events that allow programmers to
query the characteristics of the underlying engine. Microsoft
also provides ASR engines and software development tools
for BP and EP [22]. However, these systems are not open-
source code.

Most previous work in ASR for BP was restricted to sys-
tems using a small vocabulary (e.g., [23, 24]). The develop-
ment of a speaker-independent LVCSR for BP with a vocab-
ulary of more than 60 thousand words is discussed in [25],
where the authors target the creation of a mapped phonetic
dictionary and the improvement of the language model. The
results were obtained with a relatively small amount of au-
dio data extracted from the Spoltech corpus.

In [9], a proprietary audio corpus recorded by a single
speaker (the amount of audio was not reported) was used to
train the stochastic speaker-dependent acoustic models, and
a textual database was developed to train language models
based on n-gram. The best accuracy rate obtained for the
60 thousand words system was 81% when recognizing sen-
tences with 9 to 12 words, with perplexities ranging between
250 to 350 and processing times less than one minute per
sentence. All the tests were executed on a computer with a
Dual Intel processor (XeonTM 3.0 MHz) and 2 GB of RAM.

Dictation is a good task to stress test LVCSR systems [2].
There are many commercial softwares that have good per-
formance in dictation for several languages. For BP, the only
commercial desktop software is the IBM ViaVoice, which
was discontinued. In spite of being relatively outdated, Vi-
aVoice was used for comparison in this work. In the acad-
emy, recently a broadcast news LVCSR system originally
developed for EP was ported to BP and achieved a word er-
ror rate of approximately 25% [26].

A motivation of this work is to complement these pre-
vious initiatives and release resources of a state of art
LVCSR for BP [17], with the exception of the materi-
als protected by copyright. The implemented system estab-
lishes a baseline, enables the comparison of results among
research groups [18], and promotes the development of
speech-enabled software via the proposed API. In summary,
the contributions of this work are:

– Resources for the training and test stages of ASR systems:
a text corpus based on ten daily Brazilian newspapers, au-
tomatically formatted and collected from the Internet; two
multiple speakers audio corpora corresponding together
to approximately 16.5 hours of audio.

– A grapheme-to-phone converter with stress determina-
tion for BP. The resulting phonetic dictionary has over 65
thousand words.
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Fig. 1 The main constituent
blocks of a typical ASR system

– An API that hides from the user the low-level details of
the decoder operation. The proposed API contains a Mi-
crosoft SAPI XML grammar converter for easing the sup-
port of ASR.

– As a proof of concept, a speech-enabled machine transla-
tion system from BP to English and vice-versa. The goal
is to allow a spoken dialog between native speakers of
these languages via automatic translation.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a description of ASR system. Section 3 de-
scribes the linguistic resources for BP developed and used in
this work such as corpora and phonetic dictionary. Section 4
describes the adopted front end and HMM-based acoustic
modeling. Section 5 shows how the language model was
built. Section 6 describes the API to operate the recognizer.
The baseline results are presented in Sect. 7. Section 8 de-
scribes applications of the developed system and resources.
Finally, Sect. 9 summarizes our conclusions and addresses
future works.

2 Statistical speech recognition

The typical ASR system adopts a statistical approach based
on hidden Markov models (HMMs) [27, 28] and is com-
posed by four main blocks: front end, acoustic model, lan-
guage model, and decoder, as indicated in Fig. 1, which also
shows the phonetic dictionary.

2.1 The main blocks of an ASR system

The conventional front end extracts segments (or frames)
from the speech signal and converts, at a constant frame rate
(typically, 100 Hz), each segment to a vector x of dimen-
sion L (typically, L = 39). It is assumed here that T frames
are organized into an L × T matrix X, which represents a
complete sentence.

There are several alternatives to parameterize the speech
waveforms. Although, the Mel-frequency cepstral coeffi-
cients (MFCCs) analysis have been proven to be effective

Fig. 2 Pictorial representation
of a left-right continuous HMM
with 3 states and a mixture of
Gaussians per state

and used pervasively as the direct input to the ASR back
end [2].

The language model provides the probability p(T ) of ob-
serving a sentence T = [w1, . . . ,wP ] of P words. Concep-
tually, the goal is to find the sentence T ∗ that maximizes the
posterior

T ∗ = arg max
T

p(T |X) = arg max
T

p(X|T )p(T )

p(X)
,

where p(X|T ) is given by the acoustic model. Because
p(X) does not depend on T ,

T ∗ = arg max
T

p(X|T )p(T ). (1)

In practice, an empirical constant is used to weight the lan-
guage model probability p(T ), before combining it with the
acoustic model probability p(X|T ).

Because of the large number of possible sentences, (1)
cannot be calculated independently for each candidate sen-
tence. Therefore, ASR systems use data structures such as
lexical trees and are hierarchical, breaking sentences into
words, and words into basic units as phones [2]. The search
for T ∗ is called decoding, and, in most cases, hypothe-
ses are pruned (i.e., some sentences are discarded, and
(1) is not calculated for them) to make the search feasi-
ble [29, 30].

A phonetic dictionary (also known as lexical model) pro-
vides the mapping from words to basic units and vice versa.
For improved performance, continuous HMMs are adopted,
where the output distribution of each state is modeled by
a mixture of Gaussians, as depicted in Fig. 2. The HMM
topology is “left-right,” in which the only valid transitions
are loops or to the next state.
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Table 1 Example of phone transcription using context-dependent
models. The phones are represented using the SAMPA phonetic al-
phabet [32]

Model Transcription

Monophones sil u∼ sp d E s sil

Word-internal sil u∼ sp d+E d-E+s E-s sil

Cross-word sil sil-u∼+d sp u∼-d+E d-E+s E-s+sil sil

Two major problems in acoustical modeling are the
phone variability due to coarticulation and insufficient data
to estimate the models. Sharing (or tying) aims to combat
the latter problem by improving the robustness of the mod-
els. In many systems, sharing is implemented at the state
level, i.e., the same state can be shared by different HMMs.

Ideally, the phones would have unique articulatory and
acoustic correlates. However, the acoustic properties of a
given phone can change as a function of the phonetic en-
vironment. This contextual influence, known as coarticula-
tion, is responsible for the overlap of phonetic information
in the acoustic signal from segment to segment and for the
smearing of segmental boundaries [31]. Hence, coarticula-
tion motivates the adoption of context-dependent models in
ASR such as the word-internal and cross-word triphones [2].

The cross-word triphone models take into account the
coarticulation effects between the words boundaries, and the
word-internal models ignore the words boundaries. For ex-
ample, in Table 1, the sentence “um dez” is converted into
context-dependent models.

Data scarcity also affects the language model that esti-
mates

P(T ) = P(w1,w2, . . . ,wP )

= P(w1)P (w2|w1) . . . P (wP |w1,w2, . . . ,wP−1).

It is impracticable to robustly estimate the conditional
probability P(wi |w1, . . . ,wi−1), even for moderate val-
ues of i. So, the language model for LVCSR consists
of an n-gram model, which assumes that the probability
P(wi |w1, . . . ,wi−1) depends only on the n − 1 previous
words. For example, the probability P(wi |wi−2,wi−1) ex-
presses a trigram language model.

In summary, after having all models trained, an ASR at
the test stage uses the front end to convert the input signal
to parameters and the decoder to search for the best sen-
tence T .

The acoustic and language models can be fixed during
the test stage, but adapting one or both can lead to improved
performance. For example, the topic can be estimated and
a specific language model used. This is crucial for applica-
tions with a technical vocabulary such as X-ray reporting by
physicians [33]. The adaptation of the acoustic model is also
important [34].

The ASR systems that use speaker-independent models
are convenient but must be able to recognize with a good
accuracy any speaker. At the expense of requesting the user
to read aloud some sentences, speaker adaptation techniques
can tune the HMM models to the target speaker. The adap-
tation techniques can also be used to perform environmental
compensation by reducing the mismatch due to channel or
additive noise effects.

The maximum likelihood linear regression (MLLR) is the
adaptation by linear transformations. This technique com-
putes a set of transformations that will reduce the mis-
match between an initial model set (the speaker-independent
model) and the adaptation data provided by the user [35].
The effect of these transformations is to shift the component
means in the initial system so that each state in the HMM
system is more likely to generate the adaptation data. Model
adaptation can also be accomplished using a maximum a
posteriori (MAP) or Bayesian approach [35].

2.2 Evaluation metrics

In most ASR applications (including dictation) the figure
of merit of an ASR system is the word error rate1 (WER).
Given that in general the correct and recognized transcrip-
tions have a different number of words, they are aligned
through dynamic programming [36]. An edit distance is then
used to account for deletions, insertions, and substitutions,
which are all taken in account when computing WER [2].

Another metric for evaluating an ASR system is the real-
time factor (xRT). The xRT is obtained by dividing the time
that the system spends to recognize a sentence by its time
duration. A lower xRT indicates a faster recognition.

The most common metric for evaluating a language
model is the probability p(T) that the model assigns to some
test data T = {T1, . . . , TS} composed of S sentences. Inde-
pendence among the sentences is assumed, which leads to
p(T) = p(T1), . . . , p(TS). Two measures are derived from
this probability, perplexity and cross-entropy [2]. The cross-
entropy Hp(T) is defined as

Hp(T) = − 1

WT
log2 p(T),

where WT is the number of words in T.
The perplexity (PP) is the inverse of the average condi-

tional probability of a next word and is related to the cross-
entropy Hp(T) by

PP = 2Hp(T).

Lower cross-entropies and perplexities indicate less uncer-
tainty in predicting the next word and, for a given task

1Within dialogue applications like dialog management, it is possible to
evaluate the system according to parameters as task completion.
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(vocabulary size, etc.), typically indicate a better language
model.

2.3 Used tools

The HTK software [37] was used to build and adapt the
acoustic models presented in this work. The SRI Language
Modeling Toolkit (SRILM) was used to build the n-gram
ARPA format language models. The SRILM [38] is a toolkit
for building and applying statistical language models. This
software also enables the use of many n-gram smoothing al-
gorithms.

For decoding, the system developed in this work adopts
Julius rev.4.1.5 [39], which is typically capable of operat-
ing in real time and is open-source. Experiments were also
made with another decoder: HDecode (part of HTK). The
current version of HDecode [37] can be run in full decod-
ing where an n-gram language model (up to trigram) is used
for recognition but has no support for real-time operation. In
this paper HDecode was used only for comparison purposes.

After this description of ASR, the next section describes
the resources developed for BP and the third party corpora
used to perform the experiments.

3 Linguistic resources for BP

In order to increase the number of ASR resources for
BP, some specific resources were built. First, this section
presents the developed phonetic dictionary, text and speech
corpora. Finally, the Spoltech and West Point corpora are
described. The Spoltech and West Point speech corpora are
protected by copyright and can be purchased from LDC. The
major revision and corrections that were performed on these
corpora along this research is documented at [17].

3.1 UFPAdic: a phonetic dictionary for BP

An essential building block for services involving speech
processing techniques is the correspondence between the or-
thography and the pronunciation(s). For instance, in order
to develop LVCSR for BP, one needs a pronunciation (or
phonetic) dictionary, which maps each word in the lexicon
to one or more phonetic transcriptions (pronunciations). In
practice, building a pronunciation dictionary for ASR is very
similar to developing a grapheme-to-phone (G2P) module
for TTS systems. In fact, a dictionary can be constructed by
invoking a preexistent G2P module. However, the task of de-
signing a G2P module is not trivial, and several techniques
have been adopted over the last decade [40, 41].

This work presents a G2P converter with stress determi-
nation for BP that is based on a set of rules described in [42].
The rules did not focus in any BP dialect. One advantage of

rule-based G2P converters is that the lexical alignment is not
necessary [42], which is a requirement of some approaches
based on machine learning.

The proposed conversion is based on phonological pre-
established criteria, its architecture does not rely on inter-
mediate stages, i.e., other algorithms such as syllabic divi-
sion or plural identification. There is a set of rules for each
grapheme and a specific order of application is assumed.
First, the more specific rules are considered until a general
case rule is reached, which ends the process.

The general format of each dictionary entry suggested by
the HTK software [37] is illustrated by the example below:

leite l e j tS i sp

Therefore the developed G2P converter deals only with sin-
gle words and does not implement coarticulation analysis
between words.

The rules are specified in a set of regular expressions us-
ing the C# programming language. Regular expressions are
also allowed in the definition of nonterminal symbols (e.g.,
#abacaxi#). The rules of the G2P converter are organized in
three phases. Each phase has the following function:

– a simple procedure that inserts the nonterminal symbol #
before and after each word.

– the stress phase consists of 29 rules that mark the stressed
vowel of the word.

– the bulk of the system, which consists of 140 rules
that convert the graphemes (including the stressed vowel
brand) to 38 phones represented using the SAMPA pho-
netic alphabet [32].

The following example illustrates the regular expression
specification used to analyze the word “abacaxi” which
identifies i as the stressed vowel. First, the “Regex” object
is created with the pattern to be found within the word an-
alyzed. After that, the “Match” object receives the response
pattern comparison with the word presented. Being true,
the stressed vowel is determined; otherwise, other rules are
tested until they run out the possibilities and the general case
is applied. An example is shown below:

Regex rule_8=new Regex("[^aeiou][iu][#]");
Match m8 = rule_8.Match(word);
if(m8.Success) {

index_strVw = m8.Index+1;
strVw = word.Substring(index_strVw,1);
break;

}

The code presented above describes the rule 8 applied
for the determination of the stressed vowel [42] and can be
explained as follows. The end of the word is indicated by the
symbol #. So, the grapheme i or u is the last character of the
word, and the next to the last character cannot be a vowel.
The “Match” object index is a pointer for the first component
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of the pattern analysis, in this case, the character that is not
a vowel. Finally, the last character is defined as the stressed
vowel. For example, considering the last syllable 〈xi〉 in the
word “abacaxi”, since this case falls into rule 8, the stressed
vowel is the letter i.

Based on this information, the next phase is the G2P con-
version, which follows the sequential order of the word (left-
right). The following example presents one of the rules ap-
plied for the transcription, where the letter x is converted
into the corresponding phone S.

letter = word.Substring(index,1);
Regex idX = new Regex("x");
Match gX = idX.Match(letter);
if(gX.Success)
{

phone[index] = "S";
index++;

}

Note that default rules need to be the last, and in some
cases in which the contexts of different rules overlap par-
tially, the most specific rule needs to be applied first. Be-
sides, the presence of a stressed vowel changes the G2P con-
verter interpretation, e.g.:

<e(V_ton)><l><C-h,Pont> - [E]

<e(V_aton)><l><C-h,Pont> - [e]

distinguishes an open vowel e represented as phone E
from e.

The conversion is temporarily stored in an array of
strings until the last G2P converter step, which removes the
graphemes in order to produce a sequence of phones. Fi-
nally, the word and its corresponding G2P conversion are
written in the form:

abacaxi a b a k a S i sp

which is the format suggested by the HTK software [37],
where the phone sp (short pause) must be added to the end
of every pronunciation.

During the research, some rules proposed by [42] were
improved, and others were added. A summary of the added
or modified rules can be seen in Table 2. For example, origi-
nally, rules used to treat the nasal vowels a and u did not take
into account whether the following grapheme is a vowel or
consonant. However, it was found that this distinction is im-
portant for the transcription process. For instance, according
to [42], the word “adotando”, where the stressed nasal vowel
a is followed by the consonant d, would be converted to

adotando a d o t a~ n d u sp

where the transcription of the letter n was not skipped. Using
the improved rule, described in the first row of Table 2, the
word was converted to

Table 2 New rules for graphemes [i, a, u, x]

Letter Rule Sequence for the algorithm Phone

a 3 . . . (a(V_ton))(m,n)(V,h)... [a∼]

i 1 Exception: gratuito(a) [ j ]

u 2 . . . (u(m,n))(C-h). . . [u∼]

u 4 . . . (u)(m,n)(V,h). . . [u∼]

u 5 . . . (V-u)(u). . . [w]

u 6 . . . (q,g)(u)(a). . . [w]

u 7 . . . (g)(u)(o). . . [w]

x 1 . . . (V,C-f,m)(i)(x). . . [S]

x 2 . . . (f,m)(i)(x). . . [k s]

x 3 . . . ((W_bgn)e,ê)(x)(V,C_v). . . [z]

x 4 . . . ((W_bgn)ine)(x)(o,C_v). . . [k s]

x 5 . . . ((W_bgn)ine)(x)(a,e,i). . . [z]

x 6 . . . ((W_bgn)(e,ê,ine))(x)(C_uv). . . [s]

x 7 . . . ((W_bgn)e)(x)(Hf)(V,C_v). . . [z]

x 8 . . . ((W_bgn)e)(x)(Hf)(C_uv). . . [s]

x 9 . . . (V-e)(x)(Hf)(Ltr). . . [k z]

x 10 . . . (V-e)(x)(V). . . [k s]

x 11 . . . (b,f,m,p,v,x)(e)(x)(V). . . [S]

x 12 . . . (V)(e)(x)(V). . . [z]

x 13 . . . (C-b,f,m,p,v,x)(e)(x)(V). . . [k s]

x 14 . . . ((W_bgn)x). . . [S]

x 15 . . . (e,é,ê)(x)(C). . . [s]

x 16 . . . (x)(Pont). . . [k s]

x 17 . . . (x). . . [S]

adotando a d o t a~ d u sp

It was also observed the absence of rules to model
the grapheme u as a semi-vowel, represented here by the
phone w. Accordingly, three new rules were drawn up
and incorporated before the general case rule applied to
grapheme u. For instance, according to [42], the word “qua-
tro”, would be converted to

quatro k u a t r u sp

where the diphthong formed by the grapheme sequence 〈qu〉
is modeled as the diphone sequence 〈ku〉. Now, using the
rule 6 shown in Table 2, the word was converted to

quatro k w a t r u sp

Another point that proved to be important was the
processing of grapheme x. According to [43], the let-
ter x represents the most variable consonant sound in Por-
tuguese. Since [42] uses an exception word list to convert
the grapheme x, this work contributes with 17 new rules.
The theoretical support to improve and add those rules was
extracted from [43].
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Regarding the rules for determining the stressed vowel,
the only modification with respect to [42] was the treatment
of the monosyllable “que”.

Using the described G2P converter, a phonetic dictio-
nary was created. It has 65,532 words and is called UF-
PAdic. These words were selected by choosing the most fre-
quent ones in the CETENFolha corpus [44], which is a cor-
pus based on the texts of the newspaper Folha de S. Paulo
and compiled by NILC/São Carlos, Brazil. The G2P con-
verter (executable file) and the UFPAdic are publicly avail-
able [17].

3.2 LapsNews

The language models of recognition systems are typically
built using interpolated models of speech corpora word level
transcriptions and newspaper texts. Our initial newspaper
corpus was CETENFolha, which was expanded by fully
automatizing the collection of crawling ten daily Brazilian
newspapers available on the Internet. After obtaining the
text files, some examples of the formatting operations are:

– Removal of punctuation marks and tags ([ext], [t], [a], and
others).

– Conversion to lowercase letters.
– Expansion of numbers and acronyms.
– Correction of grammatically incorrect words.

An example of the result of these operations is given be-
low:

Before: A <<caixa>> do Senado tem R$ 2.000
After: a caixa do senado tem dois mil reais

The resulting BP text corpus has nearly 672 thousand for-
matted sentences and is called LapsNews. The LapsNews
corpus is publicly available [17].

3.3 LapsStory

The LapsStory corpus is based on spoken books or audio-
books. Having the audio files and their respective transcrip-
tions (the books themselves), a considerable reduction in hu-
man resources can be achieved.

The original audio files were manually segmented to cre-
ate smaller files that were resampled from 44,100 Hz to
22,050 Hz with 16 bits. Currently, the LapsStory corpus
consists of 7 speakers, which corresponds to 15 hours and
42 minutes of audio.

Unfortunately, the LapsStory corpus cannot be com-
pletely released in order to protect the copyright of some
audiobooks. Therefore, only part of the LapsStory corpus
is publicly available, which corresponds to 9 hours of au-
dio [17].

It should be noted that the acoustic environment of audio-
books is very controlled, so the audio files have no audible

noise and high signal-to-noise ratio. Thus, when such files
are used to train a system that will operate in a noisy en-
vironment, there is a problem with the acoustic mismatch.
This difficulty was circumvented by the technique proposed
in [45], which showed that speaker adaptation techniques
can be used to combat such acoustic mismatch.

3.4 LapsBenchmark

Another developed corpus is the LapsBenchmark, which
aims to be a benchmark reference for testing BP systems.
The LapsBenchmark’s recordings were performed on com-
puters using common (cheap) desktop microphones, and the
acoustic environment was not controlled.

Currently, the LapsBenchmark corpus has data from
35 speakers with 20 sentences each, which corresponds to
54 minutes of audio. We used the phrases described in [46].
The used sampling rate was 22,050 Hz, and each sample
was represented with 16 bits. The LapsBenchmark speech
database is publicly available [17].

3.5 Spoltech system

The Spoltech corpus [47] was created by the Federal Uni-
versity of Rio Grande do Sul, Brazil, Federal University of
Caxias do Sul, Brazil, and Oregon Graduate Institute, USA.
The corpus has been distributed by LDC (LDC2006S16).

The utterances consist of both read speech (for pho-
netic coverage) and responses to questions (for spontaneous
speech) from a variety of regions in Brazil. The acoustic en-
vironment was not controlled, in order to allow for back-
ground conditions that would occur in application environ-
ments.

Although useful, the Spoltech corpus has several prob-
lems. Some audio files do not have their corresponding
orthographic and phonetic transcriptions, and vice versa.
Another problematic aspect is that both phonetic and ortho-
graphic transcriptions have many errors. So a major revi-
sion and correction of multiple files was made. In this re-
search, the corpus was composed by 477 speakers, which
corresponds to 4.3 hours of audio. The speech signal was
resampled from 44,100 Hz to 22,050 Hz with 16 bits.

3.6 West Point corpus

The West Point Brazilian Portuguese Speech corpus [48]
was created by the USA government and has been distrib-
uted by LDC (LDC2008S04). The utterances consist of read
speech (296 phrases) and was composed by 60 male and
68 female, native and nonnative speakers.

The West Point corpus also has audio files that do not
have their corresponding orthographic and phonetic tran-
scriptions. Other problematic aspect is the existence of
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Fig. 3 The acoustic model development process

records with faults such as noise and unclear speech. Thus,
a preprocessing stage was performed, and 7,920 audio files
with native speakers were selected, which corresponds to
8 hours of audio. The speech signal was resampled from
22,050 Hz to 11,025 Hz with 16 bits.

4 An acoustic model for BP

This section describes the development of an acoustic model
for BP (see Fig. 3). Estimating a good acoustic model is con-
sidered the most challenging part of the design of an ASR
system. For training an acoustic model, it is required a cor-
pus with digitized voice, transcribed at the level of words
(orthography) and/or at the level of phones. In the sequel,
some aspects of developing a model for BP are discussed.

The current version of the Julius decoder works only with
MFCC front ends, and, therefore, MFCC was adopted for
convenience. More specifically, the front end consists of the
widely used 12 MFCCs [49] using C0 as the energy com-
ponent, and computed every 10 milliseconds (i.e., 10 ms is
the frame shift) for a frame of 25 ms. These static coeffi-
cients are augmented with their first and second derivatives
to compose a 39-dimensional parameter vector per frame.
Finally, the cepstral mean subtraction technique was used to
normalize the MFCCs coefficients [37].

The acoustic models were iteratively refined [50]. A flat-
start approach was adopted, starting with continuous single-
component mixture monophone models, the HMMs were
gradually improved to finally have mixtures of multiple
Gaussians to model the output distributions. The set of
HMMs was composed by tied-state triphones. During all the
training process, the embedded Baum–Welch algorithm [51]
was used to re-estimate the models.

The initial acoustic models for the 39 phones (38 mono-
phones and a silence model) used 3-state left-right HMMs.
The silence model was trained and then copied to create the
tied short-pause (sp) model with only one acoustic state.
The sp has a direct transition from the entry to the exit state.
After that, cross-word triphone models were built from the
monophone models. Transition matrices of triphones that
share the same base phone were tied.

Given a set of categories (also called questions), a de-
cision tree specific for BP was designed for tying the tri-
phones with similar phonetic characteristics. To illustrate,
some vowels and consonants classification rules used to
build the decision tree are listed below:

...
QS "R_V-Close" ∗+i,∗+e,∗+o,∗+u
QS "R_V-Front" ∗+i,∗+E,∗+e
QS "R_Palate" ∗+S,∗+Z,∗+L,∗+J
QS "L_V-Back" u-∗,o-∗,O-∗
QS "L_V-Open" a-∗,E-∗,O-∗
...

Notice that for a triphone system, it is necessary to in-
clude questions referring to both the right and left contexts
of a phone. The questions should progress from wide, gen-
eral classifications (such as consonant, vowel, nasal, diph-
thong, etc.) to specific instances of each phone. Ideally, the
full set of questions loaded using the HTK QS command
would include every possible context that can influence the
acoustic realization of a phone and can include any linguis-
tic or phonetic classification that may be relevant.

After tying, the number of component mixture distri-
butions was gradually increased up to 14 Gaussians per
mixture to complete the training process. The scripts used
for developing the acoustic model and the decision tree,
specifics for BP, were made available [17].

5 A language model for BP

Training the language model requires the chosen dictionary
(lexicon) and a file with the sentences from which the words’
counts will be extracted [52]. The dictionary is required be-
cause the words found in the training sentences that are not
in the dictionary will not be counted. Figure 4 illustrates
the general form of the language model training and test
processes.

The n-gram models are straightforward to construct ex-
cept for the issue of smoothing, a technique used to better
estimate probabilities when there is insufficient data to ac-
curately estimate them. An enormous number of techniques
have been proposed for smoothing n-gram models [53]. The
Kneser–Ney smoothing technique was used in this work. It
is an extension of the absolute discounting algorithm and



J Braz Comput Soc (2011) 17: 53–68 61

Fig. 4 The language model development process

adopts the heuristic that a unigram probability should not
be proportional to the number of occurrences of a word, but
instead to the number of different words (contexts) that it
follows [54].

A more detailed description of the language models de-
veloping process can be seen in Sect. 7.2. In the sequel,
an API is proposed in order to facilitate using the high-
performance Julius speech decoder.

6 An application programming interface for the
recognizer

While trying to promote the widespread development of ap-
plications based on speech recognition, the authors noted
that it was not enough to make available resources such as
language models. These resources are useful for speech sci-
entists, but most programmers demand an easy-to-use API.
Hence, it was necessary to complement the documentation
and code that is part of the Julius package [39].

The recent version of the Julius decoder is fully SAPI 5.1
compliant, but it assumes that the language is Japanese. It is
troublesome to use SAPI with Julius in the case of other lan-
guages, such as Portuguese. Hence, Julius does not support
neither SAPI nor the JSAPI recognition specifications, but it
has its own API, which is for C/C++ programming.

As explained, the current work aims flexibility with re-
spect to the programming language. Besides, the goal is
to support Windows, Linux, and potentially other operat-
ing systems. The solution was to propose a simple API,
with the required functionality to control Julius, and with
implementations for C++ on Linux and the .NET platform
on Windows. Another implementation of the API, target-
ing Java programmers, is under development. The support
for Windows is based on the adoption of the Common Lan-
guage Runtime specification, which enables communication

Fig. 5 The designed API for easing the task of driving the Julius
speech recognizer

Table 3 Main API methods and events

Methods and events Basic description

SREngine Engine’s setup and control

loadGrammar Load a grammar file

startRecognition Start the recognition process

stopRecognition Stop the recognition process

OnRecognition Receive the recognition results

OnSpeechReady Indicate that the engine is active

between the languages supported by the .NET platform (C#,
Visual Basic, J#, and others).

The proposed API allows the real-time control of the
Julius ASR engine and the audio interface. As shown in
Fig. 5, the applications interact with the Julius decoder
through the API.

Since the API supports the component object model au-
tomation, it is possible to access and manipulate (i.e., set
properties of or call methods on) shared automation objects
that are exported by other applications. From a program-
ming point of view, the API consists of a main class referred
to as SREngine. This class exposes to the applications a set
of methods and events that are described in Table 3.

The SREngine class enables applications to control as-
pects of the Julius decoder. The application can load the
acoustic and language models to be used, start and stop
recognition, and receive events and recognition results.

The loadGrammar method loads a context-free gram-
mar2 file specified in SAPI XML format. To make this pos-

2The context-free grammar acts as the language model. It provides the
recognizer with rules that define what the user is expected to say.



62 J Braz Comput Soc (2011) 17: 53–68

sible, a flexible converter was developed by the authors. This
toolkit allows users to convert a recognition grammar spec-
ified in XML, according to the SAPI Text Grammar For-
mat [55], into the Julius format.3 The conversion procedure
uses the SAPI grammar rules to find the allowed connec-
tion of words, using word category names as terminal sym-
bols. It also defines word candidates in each category, with
their pronunciation information. It should be noted that the
converter does not support recursive rules in the grammar, a
feature that is supported by Julius.

The startRecognition method, responsible for starting
recognition, activates the grammar rules and opens the audio
stream. Similarly, the stopRecognition method deactivates
the rules and closes the audio stream.

In addition to the methods, some events treatment is also
supported. The OnSpeechReady event signals that the en-
gine is active to recognize. In other words, it occurs when-
ever the startRecognition method is invoked. Now the On-
SRecognition event occurs whenever a recognition result is
available with an associated confidence measure. A con-
fidence measure of the recognition results is essential to
real applications because there are always recognition er-
rors and therefore the recognition results need to be ac-
cepted or rejected. The utterance and confidence score are
passed from the API to the application through the RecoRe-
sult class.

namespace Test {
public partial class Form1 : Form {
private SREngine engine = null;
public Form1() {

SREngine.OnRecognition += handleResult;
}
public void
handleResult(RecoResult result) {

Console.Writeline(result.
getConfidence() + " | "

+ result.getUterrance() + "\n");
}
private void
but_Click(object sender, EventArgs e) {

engine=new
SREngine(@".\LaPSAM\LaPSAM1.5.jconf");
engine.loadGrammar(@".
\Gramatica\grammar.xml");
engine.startRecognition();

}
}

}

With the limited set of methods and events presented
above it is easy to build compact speech recognition ap-
plications using the Julius decoder. Listing above presents a
sample code that recognizes from a context-free XML gram-

3Julius supports both n-gram and grammars for command-and-control
applications.

mar and shows the results on screen. The API resources like
source codes, libraries, and sample applications are publicly
available [56].

Having presented a summary of the most important de-
veloped resources for BP, the next section discusses some
results achieved.

7 Experimental results

This section presents the baseline results. The first experi-
ment evaluates the G2P converter effectiveness and the in-
fluence of the phonetic dictionary in a speech recognition
system performance. All the tests were executed on a com-
puter with Core 2 Duo Intel processor (E6420 2.13 GHz)
and 1 GB of RAM.

7.1 Evaluation of the G2P converter and corresponding
dictionary

Three phonetic dictionaries were compared. The first one
was based on the G2P module with the proposed rules de-
scribed in Sect. 3. The second dictionary used the original
G2P described in [42]. The third dictionary followed the ap-
proach described in [57], which is based on a machine learn-
ing approach using a decision tree. The third dictionary [57]
adopts a phonetic alphabet with only 34 phones, while the
other two use 38. This reflects in the acoustic modeling, with
the third dictionary having 34 HMMs, while the others were
tested with the same acoustic model (with 38 HMMs). The
three dictionaries were chosen because they represent the
evolution of our research in this topic, with the third dictio-
nary being the first attempt, which was followed by imple-
menting the proposed in [42] and improving it.

If there is a labeled dataset with the correct transcrip-
tions, it can be used for tests and play the role of an “oracle”
that provides the right answer. However, this approach can
be questioned with respect to the correctness of the labeled
dataset. Alternatively, this work assesses the dictionaries by
observing their impact on WER, which is the adopted figure
of merit for the ASR systems.

The acoustic models were built using only the West Point
corpus, which was divided into two disjoint data sets for
training and test. In the experiments, the West Point train-
ing set was composed by 6,334 files, corresponding to 384
minutes, and the test set used the remaining 1,586 files cor-
responding to 96 minutes.

The vocabulary was the 679 words present in the West
Point transcriptions. Bigram language models were used,
with the number of sentences for training varied from 1,000
to 180,000. One thousand disjoint sentences were used to
measure the perplexity of each configuration. The sentences
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Fig. 6 A comparison among
two dictionaries based on rules
and one based on machine
learning [57]

Table 4 Evaluating the language model perplexity against the number
of sentences used to train it

Number of sentences

1 k 10 k 30 k 60 k 90 k 120 k 150 k 180 k

PP 50 33.3 26.2 21.7 19.2 16.4 15.7 14.8

were extracted solely from the CETENFolha corpus. It is
important to observe that, in terms of sentences, the West
Point transcriptions and the CETENFolha corpus can be
considered disjoint. Table 4 shows the perplexities found in
these experiments. As expected, the perplexity diminishes as
the number of sentences used in the training increases [9].

Because there was no interest in real-time operation, the
HDecode decoder was used to perform the tests and the re-
sults are shown in Fig. 6, with the WER decreasing as the
number of sentences used to train the language model in-
creases.

On the executed experiments, the results remained nearly
constant in some intervals. The reason for that could be re-
lated to a saturation of the language model, when almost
all common n-gram sequences already appear in the lan-
guage model, but rare ones are still unlikely to be seen in the
training corpus. However, these uncommon n-grams are the
ones whose probability is the hardest to estimate correctly,
so adding small quantities of new data does not correspond-
ingly improve the language model.

The comparison between the different approaches should
consider as well the size of the resulting transducers and
other properties which may also be quite relevant [40], such
as the fact that the machine learning approach requires lexi-
cal alignment, whereas the rule-based approach does not.

As expected, best results were obtained with the rule-
based approach, but one should take into account the fact

that the machine learning one was trained with a hand-
labeled pronunciation dictionary [57]. Furthermore, the sug-
gested changes to the set of rules described in [42] consis-
tently improved the performance of the ASR system.

7.2 Evaluation of the overall ASR system

While the previous results were obtained with a simplified
setup, the next ones were obtained with all the developed
resources. The acoustic model was initially trained using
only the LapsStory corpus and the UFPAdic. After that, the
HTK software was used to adapt the acoustic model, us-
ing the MLLR and MAP techniques with the Spoltech cor-
pus, according to the steps described in [37]. This adapta-
tion process was used to combat acoustic mismatches and
is described in [45]. Both MAP and MLLR were used in
the supervised training (offline) mode. The LapsBenchmark
corpus was used to evaluate the systems.

Several language models were tested, and the results are
shown in Table 5. The first language model (LM1) was de-
signed solely with the LapsNews text corpus, the second
model (LM2) with sentences extracted from CETENFolha,
Spoltech, LapsStory, West Point, and OGI22 [58] corpora,
and the last one (LM3) was a combination of previous mod-
els, in other words, it encompasses the phrases present in
LM1 and LM2.

The sentences used to measure the perplexity of each
configuration were ten thousand sentences extracted from
the CETENFolha corpus, unseen during the training phase.
All the language models were designed with Kneser–Ney
smoothing. The WER was also evaluated for the language
models using the Julius decoder. Julius decodes using two
passes (forward and backward search) with bigram and tri-
gram language models on the first and second passes, re-
spectively.
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The LM2 and LM3 achieved equivalent results, and, for
the next experiments, the LM3 language model was adopted,
and the performance measures were the WER and xRT. The
scripts used to build and apply these statistical language
models are publicly available [17].

The pruning process is implemented at each time step by
keeping a record of the best hypotheses overall and deacti-
vating all hypotheses whose log probabilities fall more than
a beam width below the best. Setting the beam width is thus
a compromise between speed and avoiding search errors, as

Table 5 Comparing the language models obtained with different text
corpora and tested with the same acoustic data

Corpus LM1 LM2 LM3

Phrases 672,718 1,526,030 2,034,611

Distinct words 151,858 214,717 271,633

Bigram PP 482 240 246

Trigram PP 385 143 145

WER(%) 42.21 29.03 29.57

Fig. 7 Variation of xRT with the beam width parameter

showed in Figs. 7 and 8. The Julius decoding parameters as
well as the beam width can be adjusted for the respective
passes. The beam width value was varied on the first pass
and was set to 200 on the second pass.

It was observed that Julius can implement more aggres-
sive pruning methods than HDecode, without significantly
increasing the xRT factor. On the other hand, Julius could
not achieve the same WER obtained with HDecode.

An extra comparison was made with the commercial soft-
ware IBM ViaVoice. The evaluation process was carried out
in two stages, speaker-independent and speaker-dependent
models. The results are shown in Table 6. The decoding pa-
rameters were optimized. The beam width value was set to
220 and 2,000 for HDecode and Julius, respectively. It was
necessary to keep the xRT factor value around one. In the
case of IBM ViaVoice, the acoustic and language models
provided by the software were used to perform the experi-
ments. The LapsBenchmark corpus was again used to eval-
uate the systems.

The IBM ViaVoice requires a session of speaker adap-
tation, which had to be tricked in order to mimic a speaker-
independent operation. Hence, for the first stage, the speaker
adaptation process for ViaVoice was carried out using the
voice of six speakers, 3 men and 3 women, which corre-
sponds to 10 minutes of audio. The xRT could not be mea-

Table 6 Systems comparison using speaker independent and depen-
dent models

Decoder Independent models Dependent models

WER(%) xRT WER(%) xRT

Julius 29.00 0.99 13.30 0.99

HDecode 20.13 1.20 6.81 0.91

ViaVoice 29.30 – 17.30 –

Fig. 8 Variation of WER(%)
with the beam width parameter
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Fig. 9 Block diagram of the
developed translation system for
spoken dialogs

sured for ViaVoice due to the adopted procedure for invok-
ing the recognizer in batch. Note that Julius and ViaVoice
had almost the same performance, while both were outper-
formed by HDecode.

Two male speakers were used in the speaker-dependent
evaluation, with each one contributing with 10 minutes of
his voice. The MLLR and MAP adaptation techniques were
again used for the models adopted in Julius and HDe-
code. In the case of IBM ViaVoice, the standard adaptation
process (guided by the software) was adopted. As expected,
the speaker adaptation increased the performance of all de-
coders and allowed Julius to outperform ViaVoice. HDecode
achieved again the best result.

The speaker independent acoustic model and the LM3

language model are publicly available [17].

8 Applications of the developed system and resources

While the previous section reported numerical results, this
one describes applications of the developed system and re-
sources given that this work aims at reaching external tech-
nology adopters.

8.1 SpeechOO

The public resources for BP developed by the FalaBrasil
project have been used by the open-source community to
develop speech-enabled applications such as the SpeechOO,
a dictation pad for OpenOffice.org [59]. It is a speech recog-
nition extension that can get utterances from Julius decoder
and append it to the current Writer tool document.

The current version of SpeechOO is available [60] and
works only under GNU/Linux systems. The prototype was
developed in the Java programming language and uses Java
Native Interface (JNI) to communicate with the proposed
API. It proves the concept of running mixed extension: Java
plus C++ wrapped with JNI.

The SpeechOO project is maintained by members of the
FalaBrasil project and the Computer Science Department at
São Paulo University (USP), Brazil.

8.2 Speech-to-speech machine translation

A second application was developed at the Federal Uni-
versity of Pará (UFPA), Brazil, to illustrate the interface
between speech processing and natural language process-
ing (NLP) in the context of statistical machine translation
(SMT) [61]. The goal of the developed system is to allow
a spoken dialog between native speakers of English and BP.
The current version has limitations, but it is operational. The
system will be fully described in another work, and it is dis-
cussed here to exemplify the advantages of having publicly
available ASR and TTS systems for BP.

As depicted in Fig. 9, a speaker can say a phrase in BP,
and the BP ASR translates it to text, which is then converted
to English by the SMT module. This text in English is the
input of an English TTS. A similar process is used in the
conversion of phrase spoken in English. The BP ASR is the
one described in this work with the acoustic model adapted
with 10 minutes of audio from the target speaker, the LM3

language model, and the Julius decoder. The BP TTS is the
one presented in [19]. The English ASR system was built
using the free speech corpus and acoustic model available
in the VoxForge repository [62], and the Julius rev.4.1.5 de-
coder. The English TTS was the open-source FreeTTS 1.2
system [63].

The preparation of the data is an essential stage of any de-
veloping SMT system. Two different data sets are required,
training and test. These data sets have to be provided as
aligned sentences (one sentence per line), in two files, one
for the BP sentences and one for the English sentences. In
this task, we used part of the PAR-C parallel corpus [64].

Although useful, the PAR-C corpus presented some
phrase alignment problems. Thus, a manual revision stage
was performed, and 881 pairs of BP-English parallel sen-
tences were selected. It is known that the number of pairs
of sentences is considered small by comparing results with
other SMT researches [65]. An improved SMT system can
be potentially designed when using all the PAR-C corpus,
but the goal here is to validate the interfaces among speech
and SMT tools.

The final training corpus for the SMT prototype was com-
posed of 45,245 simple tokens (21,656 in BP and 23,589

http://OpenOffice.org
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Table 7 Examples of source, recognized, and translated sentences

Source sentence Recognized sentence Translated sentence

eles estão colocando armadilhas nas
fazendas onde já ocorreram os ataques

eles estão colocando armadilhas nas
fazendas onde já ocorreram os ataques

they are by placing traps in farms where
already there were the ataques

somente umas trezentas e vinte foram
inauguradas em território americano

somente dois trezentos e vinte foram
inauguradas em território americano

somente two hundred and twenty were
opened in u.s. territory

a secretaria estadual de saúde distribuirá
cem mil preservativos no carnaval

a secretaria estadual de saúde distribuirá
cem mil preservativos no carnaval

the basic state health distribuirá 100
thousand condons in carnival

a maioria dos passageiros do barco
naufragado era de crianças

a maioria dos passageiros do barco
naufragado era de crianças

the majority of passageiros of boat wrecked
was children

em florianópolis foi registrado dois graus
celsius na manhã de domingo

em florianópolis foi registrado dois graus é
ou se os na manhã de domingo

in florianópolis was recorded two graus is or
if the on sunday morning

se for eleito vocês vão ver o meu trabalho se for eleito vou ser ou ver o meu trabalho if becomes eleito am be or see my work

in English) and 793 pairs of BP-English parallel sentences.
Now the test corpus was composed of 88 pairs of BP-
English parallel sentences with 4,269 tokens (2,052 in BP
and 2,217 in English), unseen during the training phase.

This work used the Moses system [66]. Moses is an open-
source toolkit for SMT and uses standard external tools such
as the SRILM for language modeling and the GIZA++ for
word alignments [67].

8.2.1 Training

SMT training is based on building two statistical models, a
language model and a translation model [68]. These models
are built from a training parallel corpora and calculate the
probability of a given source phrase to be translated to a
target phrase.

The first step in the training process consisted of tokeniz-
ing the training corpus (separation of minimum processing
units: words, punctuation characters). The last step of pre-
processing the corpus is responsible for converting the train-
ing data to lowercase.

During the translation process, the language model is
used to order the sentences generated automatically accord-
ing to their probability of being correct sentences. The full
881 tokenized sentences were used to build the language
models. The trigram language models were designed with
Kneser–Ney smoothing.

Finally, the training is completed with the generation
of the phrase translation table. The phrase-table lists the
sentences according to their translation likelihood and out-
puts the phrase and reordering tables needed for decoding.
A training script provided by the Moses’ toolkit was used to
produce the phrase-table. The phrase-table produced from
training contains a total of 72,884 phrases for BP to English
and 73,858 phrases for English to BP.

8.2.2 Evaluation

The statistical language and translation models were evalu-
ated using the test corpus, and the performance presented by
the developed system was analyzed in respect of the bilin-
gual evaluation understudy (BLEU) and the National Insti-
tute of Standards and Technology (NIST) measures [69].

The developed translator presented a BLEU value of
0.0849 and a NIST value of 3.9124 for BP to English and
a BLEU value of 0.0839 and a NIST value of 3.8291 for
English to BP. As mentioned, the SMT can be improved fol-
lowing, e.g., the guidelines in [68, 70]. Some interesting ex-
amples are shown in Table 7. It could be observed that errors
of the ASR module significantly decreased the performance
of the SMT module, given that the recognized text sentences
may be nonsense.

9 Conclusions

As discussed, one of the biggest problems in building
LVCSR systems is the lack of data for training and testing.
Shared databases between North American and European
researchers had been one of the main reasons for the pro-
gresses achieved on the last decades in these regions [9]. For
the BP, however, there are not common databases. This pa-
per presented an LVCSR system for BP and the correspond-
ing results. All the developed modules can be obtained at the
FalaBrasil project repository [17]. In summary, the specific
tools and resources for BP that were released are:

– A phonetic dictionary with 65,532 words.
– A rule-based G2P converter (executable file).
– A newspaper text corpus with nearly 672 thousand for-

matted sentences.
– Two multiple speakers audio corpora corresponding to-

gether to approximately 16.5 hours of audio. Only part of
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these corpora is publicly available, which corresponds to
9 hours and 54 minutes of audio.

– Software recipes to design statistical acoustic and lan-
guage models.

– A speaker-independent HTK format acoustic model and a
trigram ARPA format language model.

– An open-source API in order to control the Julius speech
decoder. The API contains its own SAPI XML to Julius
grammar converter.

In fact, after making available resources, just recently the
interest on them significantly increased, due partially by the
consistent and easy-to-use proposed API. The API allows
one to abstract most of the details and achieves seamless in-
tegration of the Julius recognizer with popular programming
languages.

Although the Julius decoder presented the worst perfor-
mance in all conducted tests, it has been shown that it can
eventually outperform HDecode [71]. Currently, the authors
have not been able to make Julius achieve the same level of
performance of HDecode in the available BP data. In spite
of that, Julius has a flexible license that allows its commer-
cial use, which is important for users that intend to develop
products.

Besides presenting state of art results for BP, this work
described the successful actions to promote the develop-
ment of speech-enabled softwares for BP; for instance, the
SpeechOO project, which is a voice recognition extension
for OpenOffice.org. Another example of application is the
human–robot project conducted by the mechatronics engi-
neering students from the Brasília University (UnB), Brazil,
which has also been using the described speech recognition
resources to control a Pioneer robot via gestures and voice
commands [72].

Future works include expanding both the audio and text
corpora, aiming at reaching the performance obtained by
ASR for English and Japanese, for example. The pho-
netic dictionary refinement is another important issue to
be addressed, considering the existing dialectal variation in
Brazil. In parallel, improving the free TTS for BP and ap-
plications such as the SMT-based dialog translator will also
help disseminating the technology.

Acknowledgements This work was supported by Conselho Na-
cional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil,
project no. 482148/2009-8, Fundação para a Ciência e a Tecnologia
(FCT), Portugal, project no. PTDC/PLP/72404/2006, and Fundação de
Amparo à Pesquisa do Estado do Pará.

References

1. Rabiner L, Juang B (1993) Fundamentals of speech recognition.
PTR Prentice Hall, Englewood Cliffs

2. Huang X, Acero A, Hon H (2001) Spoken language processing.
Prentice-Hall, New York

3. Dutoit T (2001) An introduction to text-to-speech synthesis.
Kluwer Academic, Dordrecht

4. Taylor P (2009) Text-to-speech synthesis. Cambridge University
Press, Cambridge

5. Allen J, Hunnicutt MS, Klatt DH, Armstrong RC, Pisoni DB
(1987) From text to speech: the MITalk system. Cambridge Uni-
versity Press, Cambridge

6. Odell J, Mukerjee K (2007) Architecture, user interface, and en-
abling technology in Windows Vista’s speech systems. IEEE Trans
Comput 56(9):1156–1168

7. www.google.com/chrome. Visited in June 2010
8. Schramm M, Freitas L, Zanuz A, Barone D (2000) A Brazilian

Portuguese language corpus development. In: International con-
ference on spoken language processing, vol 2, pp 579–582

9. Teruszkin R, Vianna F (2006) Implementation of a large vocab-
ulary continuous speech recognition system for Brazilian Por-
tuguese. J Commun Inf Syst 21:204–218

10. Ynoguti CA, Violaro F (2008) A Brazilian Portuguese speech
database. In: XXVI simpósio Brasileiro de telecomuniçacões

11. Neto J, Meinedo H, Viveiros M, Cassaca R, Martins C, Caseiro D
(2008) Broadcast news subtitling system in Portuguese. In: IEEE
international conference on acoustics, speech, and signal process-
ing

12. Neto J, Martins C, Meinedo H, Almeida L (1997) The design of a
large vocabulary speech corpus for Portuguese. In: Proceedings of
the European conference on speech technology

13. Paul D, Baker J (1992) The design for the Wall Street Journal-
based CSR corpus. In: Proceedings of the international conference
on spoken language processing

14. Ribeiro ITM, Duarte I, Matos G (1998) Corpus de diálogo
CORAL. In: III encontro para o processamento computacional da
língua Portuguesa escrita e Falada

15. Trancoso I, Martins R, Moniz H, Silva A, Ribeiro M (2008) The
LECTRA corpus: Classroom lecture transcriptions in European
Portuguese. In: Language resources and evaluation conference

16. Valtchev V, Odell JJ, Woodland PC, Young SJ (1997) MMIE train-
ing of large vocabulary recognition systems. Speech Commun
22(4):303–314

17. www.laps.ufpa.br/falabrasil. Visited in June 2010
18. Vandewalle P, Kovacevic J, Vetterli M (2009) Reproducible re-

search in signal processing—what, why, and how. IEEE Signal
Process Mag 26:37–47

19. Couto I, Neto N, Tadaiesky V, Klautau A, Maia R (2010) An
open source HMM-based text-to-speech system for Brazilian Por-
tuguese. In: 7th international telecommunications symposium

20. www.microsoft.com/speech/. Visited in June 2010
21. Neto N, Sousa E, Macedo V, Adami A, Klautau A (2005) Desen-

volvimento de software livre usando reconhecimento e síntese de
voz: O estado da arte para o Português Brasileiro. In: 6th forum
internacional software livre

22. www.microsoft.com/portugal/mldc/downloads.mspx. Visited in
June 2010

23. Santos S, Alcaim A (2002) Um sistema de reconhecimento de
voz contínua dependente da tarefa em língua portuguesa. Rev Soc
Brasil Telecomun 17(2):135–147

24. Fagundes R, Sanches I (2003) Uma nova abordagem foneticofono-
logica em sistemas de reconhecimento de fala espontinea. Rev Soc
Brasil Telecomun 95:225–239

25. Silva E, Baptista L, Fernandes H, Klautau A (2005) Desenvolvi-
mento de um sistema de reconhecimento automático de voz con-
tínua com grande vocabulário para o Português Brasileiro. In:
XXV congresso da sociedade Brasileira de computação

26. Abad A, Trancoso I, Neto N, Ribeiro M (2009) Porting an Euro-
pean Portuguese broadcast news recognition system to Brazilian
Portuguese. In: Interspeech, Brighton, UK

http://www.google.com/chrome
http://www.laps.ufpa.br/falabrasil
http://www.microsoft.com/speech/
http://www.microsoft.com/portugal/mldc/downloads.mspx


68 J Braz Comput Soc (2011) 17: 53–68

27. Rabiner L (1989) A tutorial on hidden Markov models and se-
lected applications in speech recognition. Proc IEEE 77(2):257–
86

28. Juang H, Rabiner R (1991) Hidden Markov models for speech
recognition. Technometrics 33:251–272

29. Deshmukh N, Ganapathiraju A, Picone J (1999) Hierarchical
search for large-vocabulary conversational speech recognition.
IEEE Signal Process Mag 84–107
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