J Braz Comput Soc (2010) 16: 261-277
DOI 10.1007/s13173-010-0022-2

ORIGINAL PAPER

A UPnP extension for enabling user authentication
and authorization in pervasive systems

Thiago Sales - Leandro Sales - Hyggo Almeida -
Angelo Perkusich

Received: 6 April 2010 / Accepted: 14 September 2010 / Published online: 7 October 2010

© The Brazilian Computer Society 2010

Abstract The Universal Plug and Play (UPnP) specifica-
tion defines a set of protocols for promoting pervasive net-
work connectivity of computers and intelligent devices or
appliances. Nowadays, the UPnP technology is becoming
popular due to its robustness to connect devices and the
large number of developed applications. One of the major
drawbacks of UPnP is the lack of user authentication and
authorization mechanisms. Thus, control points, those de-
vices acting as clients on behalf of a user, and UPnP devices
cannot communicate based on user information. This pa-
per introduces an extension of the UPnP specification called
UPnP-UP, which allows user authentication and authoriza-
tion mechanisms for UPnP devices and applications. These
mechanisms provide the basis to develop customized and se-
cure UPnP pervasive services, maintaining backward com-
patibility with previous versions of UPnP.

Keywords Pervasive computing - Universal Plug and
Play - Authentication and authorization

T. Sales (X)) - H. Almeida - A. Perkusich

Federal University of Campina Grande, Aprigio Veloso Street,
Campina Grande, Brazil

e-mail: thiagobruno@embedded.ufcg.edu.br

H. Almeida
e-mail: hyggo@dsc.ufcg.edu.br

A. Perkusich
e-mail: perkusic@dee.ufcg.edu.br

L. Sales

Federal University of Alagoas, Lourival Melo Mota Avenue,
Maceid, Brazil

e-mail: leandro@embedded.ufcg.edu.br

1 Introduction

In recent years, the wide dissemination of mobile devices
with wireless technologies has allowed the conception of
pervasive computing solutions [2]. Technologies like Blue-
tooth, Wi-Fi, and 3G allow people to migrate their tasks
from desktop-based platforms to mobile ones, accessing ser-
vices and information anytime, anywhere. The concept of
pervasive computing is becoming practical, with computing
systems more and more integrated in people’s daily lives,
seamlessly interacting with devices and users in the envi-
ronment [1].

Due to its robustness and still simple networking archi-
tecture, the Universal Plug and Play (UPnP) technology [3]
is a promising solution to provide pervasive services for a
new generation of electronic devices. A UPnP network is a
collection of interconnected computers, network appliances,
and consumer electronic devices that use standard protocols
to discover, advertise, and access network services. The goal
is to provide an easy-to-use framework for creating tools
to support the communication of network-based devices.
UPnP supports communication between devices such as cell
phones and internet tablets, and conventional peripherals,
such as printers and wireless household electronic gadgets
for controlling appliances, lights, doors, and curtains.

The main motivation for conceiving the UPnP specifica-
tion was the lack of protocols for service discovery in per-
vasive networks, mainly considering interoperability, decen-
tralization, and language-independence issues. Some exist-
ing implementations of Service Discovery Protocols (SDPs)
do not address these issues, such as Jini [4], Salutation [5],
and SLP [6]. UPnP is based on the standard eXtensible
Markup Language (XML), with control protocols defined
using SOAP [7]. SOAP is an Internet-based protocol that
promotes interoperability in distributed systems on top of

@ Springer

mailto:thiagobruno@embedded.ufcg.edu.br
mailto:hyggo@dsc.ufcg.edu.br
mailto:perkusic@dee.ufcg.edu.br
mailto:leandro@embedded.ufcg.edu.br

262

J Braz Comput Soc (2010) 16: 261-277

Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP) stacks. In this way, besides supporting com-
munication between consumer electronics devices, UPnP
enables Internet-based services.

As a widely available and easy-to-implement stack of
protocols, UPnP has been used in many open-source and
proprietary projects available on the Internet. One worth-
citing project is BRisa,! a UPnP framework implemented in
Python, C++, and Java, developed by the Embedded System
and Pervasive Computing Laboratory at UFCG, Brazil.

Despite the strong popularity and growth of manufac-
tured UPnP-compatible devices, UPnP does not provide a
standard for user authentication and authorization mech-
anisms, limiting the development of customized and se-
cure applications. Examples of these applications include:
recommendation systems [8]; customized adjustment of
environment appliances, such as fuzzy light level or air-
conditioner temperature; and rule-based access control for
UPnP devices, such as printers; among others. For these ap-
plications, it is mandatory to identify the user and his pref-
erences. By supporting these requirements, UPnP solutions
would provide customized and secure UPnP services.

This paper introduces UPnP-UP (Universal Plug and
Play—User Profile), an extension of the UPnP technology
that enables user authentication and authorization for UPnP
devices and applications, providing the basis to develop cus-
tomized and secure UPnP services. Basically, the UPnP-UP
extension provides a seamless connectivity model for man-
aging user profiles to customize UPnP services and allowing
access control to UPnP appliances based on user profile. As
a consequence, future UPnP solutions can provide different
behaviors by collecting user profiles and acting proactively.
Moreover, UPnP-UP has been designed to modify the cur-
rent UPnP specification as little as possible, still providing
backward compatibility with the UPnP core stack.

After presenting some features of UPnP in Sect. 2, some
related works are discussed in Sect. 3. Sections 4 and 5 de-
tail the specification of UPnP-UP and two case studies, re-
spectively. Section 6 discusses the results of this work. Sec-
tion 7 describes the current and future work, while Sect. 8
concludes by summarizing the major topics covered in this
research.

2 Technology overview

This section presents an overview of the main technologies
and concepts involved in the development of the UPnP-UP
solution.

Uhttp://brisa.garage.maemo.org/.

@ Springer

2.1 Universal Plug and Play (UPnP)

The UPnP protocol is defined as a set of different steps [3].
First, after attaching an IP address, a control point searches
for available UPnP devices during the discovery mechanism
(Step 1). After finding the available devices, the control
point can use the description process (Step 2) to learn about
the devices’ capabilities. In order to execute services from
devices, the control point uses the control phase (Step 3)
through the SOAP protocol. In the event process (Step 4),
the control point keeps listening to state changes of hooked
up devices, updating the graphical user interface accordingly
in the presentation process (Step 5).

To discover UPnP devices, a control point sends a mul-
ticast SSDP-based request message to a standard multicast
address and port. In addition, a control point may unicast
a discovery message to a specific IP address on port 1900
(Listing 1). When a new UPnP device is added to the net-
work, it sends multicast messages to a standard address and
port (Listing 2) for each embedded device and service.

UPnP A/V [8] is the UPnP specification for audio and
video, which is illustrated in Fig. 1. The control point
browses multimedia items from a media server (Step 3) and
these items can be rendered in the Media Renderer (Steps 5
and 6). This specification is focused on the UPnP tech-
nology dedicated to distributing and executing digital con-
tent (music, videos, and images) through the network. Some
solid solutions that implement the UPnP A/V specification
worth mentioning are BRisa [9] and Google Media Server,
announced by Google for sharing local multimedia items
among users.

Despite offering zero configuration and a flexible way of
connectivity, the UPnP does not provide user authentication
and authorization mechanisms. These requirements would
allow customized UPnP applications by collecting user pref-
erences and information from the environment. For instance,
consider an application for recommending multimedia con-
tents based on user preferences, such as music genres rock
and blues.

Moreover, since the basic idea for UPnP is to support an
open networking architecture, UPnP services do not cope
with the user properties when accessing them. For exam-
ple, there is no way to grant or deny access to a UPnP ser-
vice based on user attributes and information from the en-
vironment. A simple scenario is a UPnP Printer device that
provides the CreateJob service for printing. In the current
UPnP specification, anyone with access to the control point
can request the CreateJob service as many times as desired,
without user authentication or authorization.

Figure 2 illustrates a basic scenario where a UPnP Inter-
net Gateway Device (IGD) can be used for a DNS Injection
attack [10]. The UPnP IGDs [11] provide (1) information of

http://brisa.garage.maemo.org/

J Braz Comput Soc (2010) 16: 261-277 263

1 MSEARCH * HTTP/1.1

2 HOST: 239.255.255.250:1900

3MAN: ”ssdp:discover”

4 MX: seconds to delay response

5ST: search target

6 USER-AGENT: OS/version UPnP/1.1 product/version

Listing 1 UPnP discovery message based on SSDP

1 NOTIFY * HTTP/1.1

2 HOST: 239.255.255.255.250:1900

3 CACHE-CONTROL: 500

4 LOCATION: http://10.20.30.40/ device_-description .xml
5NT: ssdp:all

Listing 2 Notify device and services through the SSDP NOTIFY message

Fig. 1 Basic communication
scheme for UPnP A/V devices

Network

Devices
Discovered

Discovery o T l o

Control Point

Browsing Controlling

NOEITY: NOFITY
Media requests
Brisa Media Streaming media
Server Brisa Media Renderer
status and events on connections, (2) control of initialization Seme,
and tear drop of connections, and (3) management of host Port 53
configuration services (DHCP, Dynamic DNS). A remote
user, from an external network, requests a domain name —>
. d - 150.165. xxxx53 @ "/"/V-bank.com
translation for www.bank.com (Step 1), receiving back the % WWW. bank com 200.234.xx.xx
IP address from the DNS server available at the private net- % NS S
work (Step 2). However, a UPnP IGD specification allows Ip: 192. 15%”?’;09
a user on the local LAN to request a port mapping without AddPortMappmg fort 53
user authentication or authorization. This is a security is- (“",53,UDP,53,
sue. An attacker can request a port mapping to a UPnP IGD 192.168.1.109,

service, called addPortMapping, to add a port forward that 170)

redirects all the DNS traffic to a malicious DNS server. For
example, a user requests a port mapping for port 53 (Step 4)

Fig. 2 UPnP IGD attack

to redirect to the IP 792.168.1.109. As a result, all external
subsequent requests to port 53 (Step 5) will be forwarded

to the malicious server (Step 6), running a fake DNS server,
which resolves the given URL to a fake website.

@ Springer

http://www.bank.com

264

J Braz Comput Soc (2010) 16: 261-277

Nowadays many network administrators disable the
UPnP support of the UPnP IGD devices. Nevertheless, by
providing a port mapping with the addPortMapping service,
a UPnP device behind IGD can enable Nat Traversal, al-
lowing external applications to establish a connection with
it.

The aforementioned scenarios can also be extended to
other UPnP application domains. For example, intelligent
appliances for home automation (IAHA) aims at connecting
devices around residential environments, providing a way
to control lights, curtains, air-conditioner, TVs, doors, etc.
Due to the absence of an access control mechanism for pro-
tecting resources in the UPnP network and the lack of user
information to recognize each of them in the environment,
these devices are unable to protect or provide customized
behavior, allowing anyone to freely access them.

Mechanisms for authentication and authorization must be
addressed to guarantee medium or high level security on
the pervasive applications, due to the heterogeneity of de-
vices, services, and users in pervasive environments. Re-
cent advances in pervasive computing have brought new
solutions which use UPnP as the technology for discover-
ing devices and services. Nevertheless, such solutions use
non-standard mechanisms for device and user authentica-
tion and authorization processes. Since UPnP defines several
standards (called UPnP profiles) for devices and services, it
would be important to provide a specification and an archi-
tecture that leverage UPnP-based technologies for authen-
tication and authorization to UPnP services, allowing better
device-to-device interoperability in a scalable networked en-
vironment.

2.2 Authentication and authorization in pervasive
environments

In computer security, access control includes, among other
features, the authentication and the authorization mecha-
nisms. Identification and authentication are the processes
of checking something (or someone) as authentic. In short,
authentication is the basic building block of security. In
the electronic world, the authentication of an entity can be
processed by using shared secrets (including passwords),
public key cryptography schemes, biometrics, and so forth.
User identification and authentication in pervasive environ-
ments are also important due to the range of devices and
services to which users have access. Currently, many so-
Iutions use IP addressing identification and authentication,
which are not enough in pervasive computing. This model
works well for traditional deskbound personal computers,
where the user usually works with a static IP address in the
same machine. On the other hand, in a pervasive comput-
ing environment, users have different devices and connect
to different networks.

@ Springer

An authorization process can be seen as the mechanism
to allow or deny an access to a set of available resources of
a computational entity (called objects). If a subject (a user, a
device, etc.) tries to get access to these resources, they will
be allowed if they have some degrees of permissions. Ac-
cess control models can be divided into two classes: those
based on the capability and those based on an access con-
trol list (ACL). The former is a non-falsifiable reference (or
capability) that a subject gains from an object to access it,
which is analogous to having a password for a physical safe.
The ACL-based access control allows a subject to gain ac-
cess to an object if its identity is on a list associated with the
object. The access control in pervasive computing should
also take into account the context of the objects in the en-
vironment, such as current time and user activities. These
requirements bring new challenges into the computer se-
curity domain due to the high heterogeneity of such ob-
jects.

Computers are increasingly entering our environments,
ubiquitously embedded into devices and appliances avail-
able in people’s everyday lives. In addition, the diversity
of people in a pervasive environment requires novel secu-
rity solutions in order to protect available resources (e.g.,
files, devices, services) in the network. To protect the en-
vironment from illegal accesses and a variety of threats, re-
searchers have proposed many frameworks and architectures
that can be used in pervasive applications [12-15]. However,
these solutions provide non-standard technologies, which
bring challenges to achieve interoperability with other so-
lutions. In order to safely deploy UPnP services and appli-
ances based on user profiles, it is required to build an ar-
chitecture that uses UPnP-based technologies to be easily
integrated with UPnP networks.

3 Related work

Within the context of this research, some important works
have been proposed. Microsoft’s patent [16] for UPnP au-
thentication and authorization proposes a secure handshake
service based on digital signatures to provide authentication
for devices. Devices allow control points to access a given
service if the control point features match the requirements
of the service, including device model, supported media for-
mats, etc. User information is not defined or available during
the handshake process.

Another patent offers a dedicated solution for user au-
thentication and authorization in UPnP networks [17].
A UPnP device must provide a hierarchy of authentication
folders configured in a control directory server. A user PIN
(Personal Identification Number) is used for authentication
and for providing data access control according to the au-
thentication level. However, only data access control is not

J Braz Comput Soc (2010) 16: 261-277

265

enough in pervasive environments, where a proliferation of
services are available all the time. Services access control
also plays an important role in pervasive systems. A con-
siderable drawback for those solutions is that the patents
are protected by intellectual property laws, requiring fees in
order to use them in third-party applications.

In the UPnP Forum solution, the devices enforce their
own access control through the UPnP Device Security [18]
and Security Console [19] specifications. Device Security
provides services for authentication, authorization, replay
prevention, and privacy of SOAP actions. In order to es-
tablish and maintain the access control policies, a special
control point called Security Console manages all security-
aware devices, those that implement Security Device spec-
ification, available in the entire network. In spite of being
a standardized UPnP specification, no user-related informa-
tion is required during the authentication and authorization
sessions to provide access control.

The authentication and authorization mechanisms dis-
cussed in previous works are not enough in pervasive envi-
ronments. Pervasive applications require information about
the users and the environment such as their current activ-
ities, personal information, time, weather conditions, etc.,
in order to provide “anytime and anywhere customized ser-
vices”. As new pervasive applications use UPnP as the main
technology for devices and services discovery [20, 21], it
would be important to provide an architecture that lever-
ages UPnP-based technologies to provide user authenti-
cation and authorization mechanisms in UPnP networks.
Nowadays, these applications use proprietary solutions to
cope with user information, bringing new challenges to
achieve device-to-device interoperability when dealing with
user profiles.

Fig. 3 UPnP-UP
communication scheme

UserProfile.xml

UuID / getProfile()

4 An extension for the UPnP technology

This section presents UPnP-UP, an extension for providing
user authentication and authorization for UPnP appliances.
The user authentication and authorization mechanisms pro-
vide the basis to develop customized UPnP services. UPnP-
UP defines the User Profile Server and a set of UPnP ser-
vices and events in order to build customized and secure
UPnP services.

4.1 The UPnP user profile server

The User Profile Server is introduced as a new UPnP de-
vice profile called UPServer. It is similar to the UPnP Media
Server [8]; however, it is responsible for storing user profile
information, such as full name, login, and password. More-
over, specific information regarding any UPnP specification,
such as preferences for UPnP Home Automation can also be
stored. The UPServer also keeps authorization policies re-
garding the available services in the local network, such as
controlling access to UPnP Light devices [22]. Once the UP-
Server is defined, Fig. 1 must be modified to insert the new
UPnP device to the basic UPnP A/V solution. The result of
this change is illustrated in Fig. 3.

According to Fig. 3, after discovering available UPnP de-
vices (Steps 1 and 2), a control point invokes the auth web
service method (Step 3). Later, the control point sends the
username and password to the UPServer. The control point
receives back a user authentication token ID (UUID gen-
erated by the UPServer). This identification will be used to
identify the user after a successful authentication (Step 4). In
this way the UPnP-UP enabled application will be capable
of getting user profile and providing access control.

Discovery

-+
Devices
Discovered

Network

Control Point

UuID / UPRP-UP
Server URL

Media requests

Brisa Media Server

Streaming media

Brisa Media Renderer

@ Springer

266

J Braz Comput Soc (2010) 16: 261-277

l1<root xmlns="urn:schemas—upnp—org:device —1-0">
2 <!—— basic UPnP description fields were omitted —>

<device>
<deviceType>

urn:schemas —upnp—org:device:UPServer:1

<!— some device information were omitted —>

<serviceList>

3

4

5

6 </deviceType>
7

8

9 <service>

10 <serviceType>

11 urn:schemas—upnp—org:service:UPAuthentication:1

12 </serviceType>

13 <serviceld>

14 urn:upnp—org:serviceld:11

15 </serviceld>

16 <SCPDURL>/UPServices/up—authentication . wsdl</SCPDURL>
17 <controlURL>/UPServices/up—authentication/control

18 </controlURL>
19 <eventURL>/UPServices/up—authentication/event

20 </eventURL>

21 </service>

22 <service>

23 <serviceType>

24 urn:schemas—upnp—org:service:UPAuthorization:1

25 </serviceType>

26 <serviceld>

27 urn:upnp—org:serviceld:22

28 </serviceld>

29 <SCPDURL>/UPServices/up—authorization . wsdl</SCPDURL>
30 <controlURL>/UPServices/up—authorization/control

31 </controlURL>
32 <eventURL>/UPServices/up—authorization /event

33 </eventURL>

34 </service>

35 <service>

36 <serviceType>

37 urn:schemas—upnp—org:service:UPProfile:1

38 </serviceType>

39 <serviceld>

40 urn:upnp—org:serviceld:33

41 </serviceld>

42 <SCPDURL>/UPServices/up—profiles . wsdl</SCPDURL>

43 <controlURL>/UPServices/up—profiles /control

44 </controlURL>

45 <eventURL>/UPServices/up—profiles /event</eventURL>

46 </service>

47 </serviceList>

48 <presentationURL>URL for presentation</presentationURL>

49 </device>
50</root>

Listing 3 UPServer XML description

All UPnP devices expose an XML file that describes
them and the services they provide. Listing 3 shows the UP-
Server device description. From this information, the con-
trol points can get access to the service description and
invoke the respective service (see the values of the tags
<SCDPURL> and <controlURL>). Besides the basic in-
formation about the device, such as the device name and
manufacturer (these tags were omitted), Lines 11, 24, and
37 of Listing 3 define the authentication-based services (UP-
Authentication), the authorization-based services (UPAutho-
rization), and services based on user profiles (UPProfile),
respectively.

Besides the auth web service, UPServer also provides
the getProfile, renewSession, and logout services. The for-
mer allows UPnP devices to retrieve the user profile, while
the second one is invoked by control points to renew the

@ Springer

session with the UPServer every time this session expires.
The UUIDs sent by the UPServer to the control points
are valid for 300 seconds. In case of a timeout, the con-
trol point must invoke the renewSession method to renew
its communication UUIDs. Additionally, this web service
is also useful when the control points suddenly discon-
nect from the network without invoking the logout ser-
vice. It also adds a security level in case a user with-
out authentication acquires a valid UUID. All UPServer
services are described according to the UPnP services
template, available at http://upnp.org/resources/documents/
Service-Template-1.01_000.doc.

Concerning the authorization policies, the UPServer pro-
vides the getACL and Authorization services, which al-
lows UPnP devices to retrieve the access control list and
to request for an access control decision for a specific

http://upnp.org/resources/documents/Service-Template-1.01_000.doc
http://upnp.org/resources/documents/Service-Template-1.01_000.doc

J Braz Comput Soc (2010) 16: 261-277

267

user over a given service, respectively. ACLs are described
using XACML (eXtensible Access Control Markup Lan-
guage) [23]. By exposing the user profile and the access con-
trol policies through web services, the UPServer can store
this information on any back-end the developer wishes to
use. For the prototype developed and described in Sect. 5,
an LDAP back-end was used to store the user profiles.

Regarding the UPnP events for UPServer, the UPnP-UP
extension provides three events:

e The onChangeProfile event occurs every time a user pro-
file is changed. This event may be useful to the UPnP de-
vices that want to cache user profile information to avoid
retrieving the user profile from the UPServer every time
it is necessary to be read,;

e The onUserEnter event is triggered when a new user is
authenticated in the UPServer, allowing UPnP services
and the control points to be aware of it;

e The onUserExit event indicates the exit (logout) of the
current user from the UPnP network.

4.2 UPnP-UP design

The UPnP-UP extension was designed to provide backward
compatibility with old versions of the UPnP technology.
That is, the UPnP-UP extension must satisfy the require-
ments for letting UPnP devices and UPnP-UP enabled de-
vices communicate with each other.

Our proposal is based on different steps of customizing
the UPnP stack. The first step is to modify the UPnP NO-
TIFY message sent from the UPnP devices to the network.
If the UPnP device is UPnP-UP compatible, this device must
send a modified version of the NOTIFY message to the tar-
get control point. The new version of this message must be
one as illustrated in Listing 4, Line 6. The proposed NO-
TIFY message contains a new field named UP (User Pro-
file), which indicates whether the remote UPnP end-point is
UPnP-UP compatible or not. The absence of this field means
the UPnP device is not compatible with the UPnP-UP exten-
sion, allowing backward compatibility with the UPnP core
stack. If a UPnP device is not UPnP-UP compatible, control
points that are aware of the UPnP-UP extension must work
properly and must not consider the authentication process.
Older UPnP devices must be changed (new firmware, for in-
stance) to provide customized services, setting the UP field

to the NOTIFY messages and providing new services im-
plementations. If a control point is not UPnP-UP compati-
ble but the UPnP device is aware of the UPnP-UP extension,
then the UPnP device will just allow access to those services
that are “free” (no access control) and do not need authenti-
cation, blocking other service requests that need user identi-
fication.

Once the control point has been notified with the UP field
for UPnP-UP extension, it is able to invoke the remote auth
service to the UPServer. In Fig. 3 the control point invokes
this service and receives back a random UUID (Steps 3
and 4), indicating that the authentication occurred success-
fully. Next, the control point accesses a Media Server ser-
vice, say the browse service, which returns a list of avail-
able multimedia items. When the control point invokes the
browse web service, it sends its UUID to the UPnP Media
Server. The UPnP Media Server requests the user profile
(Steps 6 and 7) to provide some kind of customized ser-
vice, like recommending multimedia content based on the
user profile (Steps 8 and 9). The idea behind the UPnP-UP
extension can be used with other UPnP devices, such as to
adjust autonomously a UPnP fuzzy light level or to adapt a
desired environment temperature of the air conditioner ac-
cording to the user preferences.

4.2.1 The new model of UPnP devices

After the user authentication process is finished, UPnP de-
vices should interact between each other according to the
UPnP-UP extension. To achieve this process, the control
point must send the user identifier in every message trans-
mitted and the other UPnP end-points should use the user
identifier to adapt their responses according to the user pro-
file. Also according to Fig. 3, the mechanism may cache the
user profile the first time the media server retrieves it. Hence,
for the second time and so forth the media server retrieves
the user profile from the cache, avoiding unnecessary data
transfer in the network. In addition to caching the user pro-
file, the control point should register to the onChangeProfile
event to be notified if the user changes its profile.

The control point must use a SOAP Security exten-
sion [24] to transport user UUID in the SOAP header. It is
also highly recommended to use a digital signature and/or
data encryption provided by W3C XML Encryption Rec-
ommendation to transport the sensitive user information,

1 NOTIFY * HTTP/1.1
2 HOST: 239.255.255.255.250:1900
3 CACHE-CONTROL: 500

4 LOCATION: http://10.20.30.40/ device-description .xml

5NT: ssdp:all
6 UP: Yes

Listing 4 New UPnP NOTIFY message

@ Springer

268 J Braz Comput Soc (2010) 16: 261-277

1<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy”>

2 <Subject>

3 <SubjectMatch ...>

4 <AttributeValue ...>organization.org</AttributeValue>
5 </SubjectMatch>

6 </Subject>

7 <Resources>

8 <Resource>

9 <ResourceMatch MatchId="...">

10 <AttributeValue DataType="...”>Printer
11 </AttributeValue>

12 </ResourceMatch>

13 </Resource>

14 </Resources>

15 <Rule Ruleld=”PrintRule” Effect="Permit”>

16 <Target>

17 <Action>

18 <ActionMatch ...>

19 <AttributeValue ...>CreateJob</AttributeValue>
20 </ActionMatch>

21 </Action>

22 </Target>

23 <Condition ...>

24 <AttributeValue ...>studentOrProfessor
25 </AttributeValue>

26 </Condition>

27 </Rule>
28 <Rule Ruleld="DenyOtherActions”
29</policy>

Effect="Deny” />

Listing 5 Access policy for controlling UPnP printer CreateJob service

such as passwords and UUIDs. By adopting this strategy, G'S:mzd’ g';;gnﬁ: 4,‘,3%?::
the UPnP-UP extension expects to provide a mechanism to -— PEP ~— POP ol
. —» | Policy EnforcomentPoint| | PolioyDecisonPoint | . | PO Poi':;""‘ on
avoid network attacks like data modification during trans- 1. Request 2. XACHL 3. Policy
. 113 . . ” - i [
portation, UUID spoofing, and “man-in-the-middle” [25]. Request Recovery !

Considering our principle of providing backward com-
patibility with non UPnP-UP enabled devices, adding a new
type of UPnP device does not impact the UPnP current spec-
ification. The unique point of the UPnP specification that
must be changed is the original content of the UPnP NO-
TIFY message by the addition of a new field called UP. This
field is used by the control points and UPnP devices to deter-
mine whether a certain UPnP device supports the UPnP-UP
extension.

4.2.2 Access control for UPnP services

The UPnP-UP authorization mechanism is based on
XACML. The XACML specification is a standard to sup-
port authorization mechanisms based on XML (eXtensible
Markup Language). The XACML provides a model for de-
scribing policies to a target resource. It is also a protocol
for requests and responses during an authorization process.
XACML is maintained by the OASIS? consortium.

The security access policies and their respective rules can
be stored by the local UPnP network manager, recovering
available UPnP services from other devices and applying
desired rules. For a better understanding of the UPnP-UP

2Organization for the Advancement of Structured Information Stan-
dards.

@ Springer

Fig. 4 Interactions between UPnP-UP authorization modules

authorization process, Listing 5 describes the security pol-
icy based on XACML for the following rule: only graduate
students and professors at the domain organization.org are
allowed to print using the UPnP printer available on the
network.

The domain in which the security policy is being applied
is specified between Lines 2 and 6. The policy is applied
for all users in the domain organization.org. An example
of the relationship between a policy and a resource (ser-
vices, files, devices, etc.) is depicted between Lines 7 and
13 for a UPnP Printer device. A rule for that policy is de-
fined between Lines 15 and 27: the waited action CreateJob
at Line 19, and the condition to allow the access to the re-
source, studentOrProfessor at line 24. Note that one or more
rules may be defined (e.g., DenyOtherActions rule, Line 28).

As illustrated in Fig. 4, the UPnP-UP authorization sub-
system has three modules. When a new request is received,
the Policy Enforcement Point (PEP) module creates an
XACML request (Step 1), described in Listing 6, which in-
cludes user personal information (Lines between 2 and 6),

J Braz Comput Soc (2010) 16: 261-277

269

1<Request xmlns="urn:oasis:names:tc:xacml:1.0:context” ...>

<Subject>
<Attribute ...>

<AttributeValue>user@organization .org</AttributeValue>

2

3

4

5 </Attribute>

6 </Subject>

7 <Resource>

8 <Attribute ...>
9

<AttributeValue>Printer</AttributeValue>

10 </Atribute>
11 </Resource>
12 <Action>

13 <Attribute ...>
14 <AttributeValue>CreateJob</AttributeValue>
15 </Attribute>

16 </Action>
17 </Request>

Listing 6 XACML request for accessing CreateJob service

1<Response>

<StatusCode Value="urn:oasis:names:tc:xacml:1.0:

2 <Result ResourcelD="UPnPrinter”>
3 <Decision>Permit</Decision>

4 <Status>

5

6 status:ok” />

7 </Status>

8 </Result>

9</Response>

Listing 7 Example of XACML response for Media Renderer Play service

the target resource (Lines between 7 and 11), and the action
that the user wishes to access (Lines between 12 and 16).

The XACML request is forwarded to the Policy Deci-
sion Point (PDP) module (Step 2, Fig. 4). PDP retrieves the
authorization policies from the Policy Administration Point
(PAP) module (Steps 3 and 4) and decides to allow or deny
the access to the specific resource. Then, the PDP module re-
turns back an XACML response to the PEP module (Step 5),
as described in Listing 7. The resource identifier and the au-
thorization process result are defined in Lines 2 and 3, re-
spectively. The PEP module returns the final result of the
authorization process, allowing or not allowing the access to
the target resource.

4.2.3 User profile for UPnP-UP enabled devices

The user profile uses an XML format and it is divided into
two types of profile descriptions: (1) the UPnP-UP Per-
sonal User Profile, which aims at keeping user-related in-
formation, such as id, username, email address, etc.; and (2)
the UPnP-UP User Profile by Specification where for each
UPnP specification, such as UPnP A/V, UPnP Light, and
Printer, users have their associated preferences divided into
containers. The goal is to split the user profile into different
containers to facilitate the process to retrieve user informa-
tion, optimizing the user profile access and the transmission
of useful profile information to the UPnP end-points. In this
case, the UPnP devices access the preference container they

need to retrieve. For instance, the user profile of Listing 8
shows some personal information and user preferences for
multimedia applications.

The user profile described in Listing 8 shows some per-
sonal information between Lines 4 and 9 (up:personal_data)
and external user profiles information between Lines 11
and 15 (up:external_profiles). In addition, the user prefer-
ences information is described between Lines 17 and 36
(up:preferences_data), which is divided into different con-
tainers. For instance, container id equal to O defines the
user preferences for multimedia contents. As previously dis-
cussed, the UPnP technology defines the UPnP A/V specifi-
cation for UPnP multimedia applications. Multimedia con-
tents in UPnP A/V are described as DIDL (Digital Item
Declaration Language) [26] digital information metadata.
Therefore, multimedia contents in user profile preferences
also have DIDL metadata attached to container id 0O, as
shown between Lines 20 and 29. This user gave 4 as the
weight for the first <item>. The weight of each item means
how much a user likes that item, and it can be used to pro-
vide customized multimedia services.

It is important to note that a given user can play different
roles depending on the environment that he or she has been
assigned. For example, if a user is at her home, she has all
the access privileges for controlling electronic conventional
peripherals, such as the home front door, printers, and TVs.
On the other hand, when she moves to other places, such as
at work or at a given university, she plays a different role and

@ Springer

270

J Braz Comput Soc (2010) 16: 261-277

1<?xml version="1.0"
2<up:profile up—id="TBMS1302”

encoding="UTF-8">
xmlns:up="urn:schemas —upnp—up—org:up —1-0">

3

4 <up:personal_-data id="personal_profile”>

5 <up:name>Thiago Bruno Melo de Sales</up:name>

6 <up:username>thiagobrunoms</up:username>

7 <up:email>thiago .sales@ee . ufcg.edu.br</up:email>

8 <!— Other perfonal information omitted —>

9 </up:personal-data>

10

11 <up:external_-profiles>

12 <up:profile name="Embedded /UFCG” at=150.165.63.2/>
13 <up:profile name="Home” at=200.199.88.88/>

14 <up:profile name="1C/UFAL” at=200.17.114.38/>

15 <up:/external_-profiles>

16

17 <up:preferences_-data>

18 <up:container-list>

19 <up:container id=0 name=AV>

20 <DIDL—Lite xmlns="urn:schemas—upnp—org:metadata—1—0/DIDL—Lite/”
21 xmlns:dc="http://purl.org/dc/elements /1.1/7>

22 <item weight=4>

23 <dc:title>GenRosso — StreetLight — Brazilian Show</dc:title>
24 <dc:description>A musical based on the true story of
25 Charlies Moats.</dc:description>

26 <dc:format>video</dc:format>

27 </item>

28 <!— Other multimedia items omitted —>

29 </DIDL—Lite>

30 </up:container>

31 <up:container id=1 name=HVAC>

32 <!— UPnP HVAC preferences go here, such as environment
33 temperature —>

34 <up:container>

35 </up:container_list>

36 </up:preferences-data>
37</up:profile>

Listing 8 A user profile example that describes personal and preferences information

Fig. 5 UPnP-UP user profile
architecture

P Embedd)
{, UPnP Network UFCG 2
) Embeaded d v'
\._UFCG Lab '(
N Role:
\ - _|Projecl Lider

must have other access privileges. Due to this requirement,
the user profile for UPnP-UP extension has the concept of
“external profiles”, which associates the user profile to other
remote user profiles (described in Lines between 11 and 15)
and depicted in Fig. 5. Each local UPServer stores this pro-
file and retrieves it when the user authenticates herself, ac-
cording to the user UPnP-UP identification (up-id attribute).
Finally, the proposed user profile was defined based on the

@ Springer

: —~
Id
.‘/-W-
~
/ e
5 {
. (UPnP Network
T { IGIUFAL Lab
N
Role: S~ 1
_J "Ovwner n

available set of UPnP specifications, which allows one to de-
compose and to retrieve an appropriate user information as
quickly and efficiently as possible.

4.2.4 Considerations for providing service customization
with UPnP-UP

By enabling user profiles in the UPnP architecture, new
types of systems can be designed, which should make use

J Braz Comput Soc (2010) 16: 261-277

271

of the UPnP technology to search and discover devices in
a network. For instance, suppose a UPnP system is capa-
ble of sharing multimedia items such as music, movies, and
images. According to the user profile obtained by the UPnP-
UP, the system can offer songs based on the genre given by a
user as the genre of his preference. In this way, it is possible
to develop a more sophisticated system that can rate all the
songs listened to by the user through the media renderer and
then infer which genre he prefers, such as rock, jazz, etc.

Taking into account the availability of user authentication
and authorization mechanisms in the UPnP network, many
other new requirements can be developed in UPnP applica-
tions, such as customized services on top of UPnP, since the
proposed extension allows the user identification in this type
of network. For instance, consider home automation appli-
cations. Briefly, a UPnP-based application that adapts the
fuzzy light level, according to the user preference, can be
deployed in a living room, acting upon the user when he en-
ters the environment. Furthermore, the mechanism of autho-
rization also furnishes the entire application with a security
high level service, like determining whether the user has per-
mission to control the light or to change the air-conditioner
temperature.

5 Case studies

In the case studies, the BRisa UPnP Media Server is used
to run the experiments. The BRisa Media Server [9] is a
UPnP end-point device developed in the Embedded Sys-
tems and Pervasive Computing Laboratory, at Federal Uni-
versity of Campina Grande, which implements the UPnP
A/V specification. It has been written in Python using a
plug-in based architecture. In order to compute the recom-
mendation of multimedia items, the BRisa Media Server
was modified to support UPnP-UP following the steps de-
scribed in Sect. 4.2. It has a dynamic multi-thread plug-
in loading feature focusing on resource limited devices,
mainly for the Nokia Maemo Platform. Additionally, it
has a database scheme to avoid loading many objects into
the main memory. BRisa can be freely downloaded from
http://brisa.garage.maemo.org/, since it is distributed as an
open source software under the MIT license. In what fol-
lows, two case studies are presented, highlighting the main
features of UPnP-UP.

5.1 Case study 1—multimedia content recommendation

Recommendation systems are capable of recommending
items based on user profiles and by using information fil-
tering techniques. In face of this type of scenario, the user
profile is compared to a given multimedia content (content-
based filtering [27])—which can be basically some tex-
tual information, such as genre and author—and compared

to the interests of other users, collecting user preferences
(collaborative-based filtering [28]).

Neighborhood-based methods [29] are the most prevalent
algorithms based in the collaborative approach. They create
a subset of appropriate users (neighbors) based on their sim-
ilarities to the current user. The cosine or Pearson correla-
tion [30] can be used to achieve this goal. In (1), W, , is
the weight of the current user a to a given user u, r,; is the
rating of the user a to the (multimedia) item i, and 7, is the
average of the ratings of the active user a.

_ Z;n:l(ra,i —Tg)* ("‘u,i —Ty)
VI Cai=F)? g /i i —Fa)?

(Pearson correlation). €))]

Wu,u

After finding the similarities for all users, a weighted ag-
gregate of neighbors ratings is used to generate predictions
for the current user (2). This predicted value would be the
evolution that the user would give to an item, if he consumes
it.

Zrulzl (ru,i —ry) * Wu,u
> Wal

(a weighted aggregate of neighbors ratings). 2)

Pa,izfa+

Another approach related to content filtering is called
Content-Based Filtering. It is based on the information re-
trieval (IR) field [31]. A user profile is composed of a set of
keywords and associated weights that indicate the strength
of the word in the filtering process. The user profile is
matched against a collection of documents, and the most
similar are recommended. There are many ways to compute
the similarity between two strings. The most common ap-
proach is the TF—IDF (Term Frequency—Inverse Document
Frequency) algorithm [32], which is based on (3). The term
frequency (TF) in the given document is the number of oc-
currences of a given term in that document, and the Inverse
Document Frequency is a measure of the general importance
of the term in a set of documents (D is the total number of
documents in the collection and N, is the number of docu-
ments in which the term occurs). The more rare the term is,
the greater will be its IDF.

idf(p) =1 L
1 = —_—
P ng

(Inverse Document Frequency). 3)

The user profile and each document are represented by
a vector containing the most relevant term. The cosine cor-
relation computes the similarity between these two vectors.
This correlation ranges between 0 and 1.

When a new user wishes to have multimedia files recom-
mendations, he needs to set up his multimedia profile. As

@ Springer

http://brisa.garage.maemo.org/

272

J Braz Comput Soc (2010) 16: 261-277

Fig. 6 The browsing process
using the Recommendation
Subsystem

Items retriaved by the selected plugin

Browsing Req
@]

Items formatted into DIDL-XML

a result, this process consists of building his user profile for
music, videos, or audios of his preference. In this case study,
the user profile is collected from a private website, available
to users internally, at the Embedded Systems and Pervasive
Computing Laboratory, at the Federal University of Camp-
ina Grande. Future work will allow a user to associate his
profile through the BRisa Control Point.

The first step in the BRisa Recommendation Subsystem
is the collaborative filtering approach. For each multimedia
consumed item, a listened-to song, a watched video clip,
etc., the user specifies a weight to the consumed item con-
sidering his preferences. The possible values can be speci-
fied ranging from O to 10, which indicates the importance
of the multimedia items to him. The collaborative filtering
approach generates prediction values for those multimedia
items that the user did not consume in the past.

Secondly, the content filtering approach is processed by
selecting those items for which the calculated prediction
value is higher than or equal to a previously given thresh-
old, say 5. The idea is to find similar items with the TF-IDF
algorithm. To achieve this last approach, the multimedia file
metadata is obtained through a DIDL description.

Another important feature of the BRisa Media Server
implementation is the plug-in based architecture, which is
shown in Fig. 6. There was developed an extensible and flex-
ible architecture which enables third-party developers to im-
plement plug-ins. These plug-ins can share multimedia data
from a particular source.

In the first step, a BRisa plug-in developer creates a plug-
in file and puts it into the plug-in directory. Then, the devel-
oper implements a Python class assigning a plug-in name
and implementing the methods load, unload, execute, and
browse. In our case study, we developed a set of plug-ins
that support browsing of multimedia contents.

Basically, three plug-ins have been developed: one to
gather multimedia content from the local file system, a sec-
ond to retrieve YouTube videos from a personal user ac-
count, and a third for retrieval of pictures from a personal

@ Springer

Plugins
— Plugin 1
o — Plugin i o
_— _—
@ — Plugin n

Database
Content Directory
Subsystem

ol o o

Recommendation
Subsystem

Browsing Response

User Profile
Server

FlickR user account. Each plug-in has its own data source.
For instance, the file system plug-in data source is the disk,
and for the YouTube plug-in its data source is the list of
available videos from the youtube.com website. Regardless
of the plug-in selected by the BRisa Media Server, as il-
lustrated in Fig. 6, the browser method invokes the Recom-
mendation Subsystem at the UPServer. It recommends mul-
timedia items to the user based on the user preferences. The
whole process can be summarized as follows:

1. the BRisa Media Server receives a browsing request from
the control point, also provided in the BRisa Applica-
tion package. Listing 9 presents an example of the UPnP
browse action. Lines 6 and 7 specify the UPServer UDN
and the user UUID, respectively;

2. the BRisa Media Server selects the proper plug-in to han-
dle the request;

3. aplug-in i is selected to invoke the recommendation sub-
system in order to determine which multimedia content
will be retrieved from its specific repository;

4. the Recommendation Subsystem at the User Profile
Server executes the recommendation mechanism as de-
scribed before and sends back to plug-in i the results of
the recommendation process;

5. the plug-in i accesses its respective data source and col-
lects the filtered items;

6. the selected items are sent back to the BRisa Media
Server;

7. the set of items is formatted into a Browsing Response
considering the UPnP A/V specification and it is returned
to the user control point.

5.2 Case study 2—exploring UPnP-UP authorization

A prototype for providing user authorization on the Create-
Job service of a UPnP printer has also been developed. As a
proof of concept, we have used CUPS, which is a standard-
based, open source printing system developed by Apple for

J Braz Comput Soc (2010) 16: 261-277

273

1<?xml version="1.0" encoding="utf—8"7>
2<s:Envelope s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/”
3 xmlns:s=" http://schemas.xmlsoap.org/soap/envelope/”>

4 <s:Header>

5 <Session>

6

7

8 </Session>

9 </s:Header>

10 <s:Body>

11 <ns0:Browse xmlns:ns0=

<udn>c78dc82a—11c4—4d7c—bc68-9d7404442340</udn>
<uuid>497277f0 —8f57 —4d6e —96c9—cb6efl7cbedde</uuid>

12 ”urn:schemas—brisaupnp—com:service:Multimedia:1”>x</ns0:Browse>

13 </s:Body>
14</s:Envelope>

Listing 9 Browse Action Request. User UUID available in header tag allows UPnP end-points to identify who is requesting for multimedia items

Fig. 7 UPnP-UP authorization
process for UPnP printer device
access control

/ BRisa UPnP-UP N

Authorization
Subsystem

Proces: -
é UPNnP-UP Server

Allowed/Denied

UPNP Printer

MacOS and other UNIX-like operating systems. We used
the CUPS API to implement a UPnP module and driver. The
CUPS API provides the convenience functions needed to
support applications, filters, printer drivers, and back-ends
that need to interface with the CUPS scheduler. Our UPnP
module and driver for CUPS are responsible for some tasks
such as:

1. advertise the printer as a UPnP device and handle Cre-
ateJob service;

2. find and connect to the UPServer, as well as retrieve user
profiles and ACLs for a specific user and device;

3. handle CreateJob requests sent by the UPnP control
points and check whether the user is allowed to create
a printing job.

Figure 7 illustrates the basic interaction between the
UPnP Control Point and the two UPnP devices used in our
case study. The XACML messages used in this case were
discussed in the previous section (Listings 3, 4, and 5). Basi-
cally, after authenticating in the UPServer, the control point
tries to access the createJob service (Step 5). Our UPnP-UP-
compatible printer device invokes the authorization service

Authorization U

eA

uth()

o\
uuIiD

uuip /
Authorization(CreateJob)

Network

Devices
Discovered

Control Point

UuIb / UPnP-UP
Server URL /
CreateJob

Allowed/Denied

of the UPServer to verify the current user access permis-
sions and, finally, receives a response from the UP-Server.
This response allows or denies the access to the CreateJob
service (Steps 8 and 9).

6 Experiments and results

Since the UPnP-UP extension requires additional UPnP re-
quests for user authentication, authorization, and user profile
sharing, it is important to discuss the amount of extra data
sent by a UPnP device (or a set of them) to the network
in order to achieve the proposed solution. Consider as the
UPnP-UP startup phase the process of establishing a user
authentication and invoking any UPnP action of any UPnP
device for the first time. Thus, let d be the total number of
UPnP devices, and n be the total number of UPnP control
points at a given time ¢. So, the maximum number of UPnP
requests during startup at a given time ¢1is (2% d + 1) *n re-
quests. For instance, if there are 5 UPnP devices (d = 5), one
UPServer, and one control point (n = 1) at a given instant ¢,
the UPnP-UP startup requires (25 + 1) x 1 =11 UPnP

@ Springer

274

J Braz Comput Soc (2010) 16: 261-277

requests. Figure 8 depicts the number of UPnP actions for
n =1 in both the UPnP and UPnP-UP startup processes.
After the startup process, UPnP-UP behaves in the same
way as the current UPnP specification, although it adds new
data to the UPnP requests in order to identify the current
user. This extra data size is about 16 bytes for each UPnP
action, which corresponds to the UUID size attached to the
SOAP header, as described in Listing 6. Moreover, to eval-
uate our proposed UPnP-UP extension, a series of experi-
ments has been performed. The first set of experiments aims
to observe the impact of the user authentication and autho-
rization response time in UPnP networks. The experiments

920

UPNnP-UP (Startup) ——
UPNP - |

Number of UPnP actions

10 15 20 25 30 35 40 45 50
Number of UPnP devices

Fig. 8 The number of UPnP-UP requests during startup

were performed by considering the number of UPnP con-
trol points and devices in a local area network with traffic
isolated to only the UPnP peers defined as follows: three
desktop PCs (Intel Core 2 processor, E7400 2.8 GHz, and
1 GB of memory) running UPnP device instances; and three
Nokia N810 mobile devices running UPnP control point in-
stances.

The results are described in Tables 1, 2, and 3. Basically,
we considered the scenario depicted in Fig. 7, assuming 10,
20, and 30 UPnP printer devices and 1, 3, 5, and 10 UPnP
control points. The tables describe the average times for con-
trol points to authenticate a user in a UPServer and request
the CreateJob service available by the 10, 20, or 30 UPnP
printer devices for the first time. In addition, the same num-
ber of control points and UPnP printer devices was consid-
ered when using the current UPnP specification, allowing
observation of the impact on the time for providing user au-
thentication and authorization in UPnP networks. The av-
erage times are in seconds and, based on a z-distribution,
Tables 1, 2, and 3 also present the 95% confidence intervals
for each set of collected samples.

As expected, due to the processing time and the network
congestion, the average time increases when new control
points and UPnP printer devices are available in the network.
The growth of processing time is more evident in UPnP-UP
architecture due to the XML processing of the user profiles
and access control policies. Moreover, control points must

Table 1 Average time for

UPnP-UP startup process with Control points 10 UPnP printer devices
10 UPnP printer devices UPnP UPnP-UP
) ©n=0.108356 s nw=0.778184 s
0.103003 s <1 (s) <0.113710 s 0.582597 s <t (s) <0.973770 s
3 ©n=0.158032s n=1.138857s
0.143945 s <1 (s) <0.172119 s 1.066515 s <t (s) <1.211200 s
5 ©n=0.130992 s nw=1.190738 s
0.089611 s <1 (s) <0.172372 s 1.053702s <t (s) < 1.327775 s
10 1 =0.180954 s n=2.156792 s

Table 2 Average time for
UPnP-UP startup process with

0.159699 s <1 (s) <0.202209 s

1.959179 s <t (s) <2.354406 s

Control points

20 UPnP printer devices

20 UPnP printer devices UPnP UPnP-UP
1 n=0.219176 s u=1384315s
0.211158 s <t (s) <0.227194 s 1.185720 s <t (s) < 1.582909 s
3 n=0.274146 s u=2220593 s
0.260461 s <t (s) <0.287831 s 1.993325 s <t (s) <2.447861 s
5 n=0.297919 s u=23.095876s
0.256718 s <t (s) <0.339120 s 2.986757 s <t (s) <4.332378 s
10 n=10.560082 s u=>5.186616s

@ Springer

0.527621 s <t (s) <0.592544 s

4.969243 s <t (s) <5.403990 s

J Braz Comput Soc (2010) 16: 261-277

275

Table 3 Average time for
UPnP-UP startup process with
30 UPnP printer devices

0.806331 s <1 (s) <0.887970 s

Control points 30 UPnP printer devices
UPnP UPnP-UP
| 1 =10.530408 s n=1999712s
0.452629 s <t (s) <0.608187 s 1.952061 s <t (s) <2.047364 s
3 1 =0.559336 s n=2.839887 s
0.452067 s <t (s) < 0.666604 s 2.753026 s <1t (s) <2.926748 s
5 n=0.574434 s n=4.119828 s
0.558496 s <t (s) <0.590372 s 3.907278 s <t (s) <4.332378 s
10 n=0.847150s n=06.519950 s

6.304011 s <1 (s) <6.735888 s

check if the target UPnP device is UPnP-UP compatible by
checking the UP field. From the user perspective, it is impor-
tant to note that the average times using UPnP-UP are still
very acceptable even when the average time hits 5 seconds
above the current UPnP specification (10 control points and
30 UPnP printer devices).

7 Discussion and future work

Recently, UPnP has attained worldwide recognition by the
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC) due to the
increasing number of new UPnP-based applications [33].
Both institutions have acknowledged the UPnP architecture
position as the leading technology for devices and services
discovery, and control of networked devices.

Pervasive applications require mechanisms to acquire
and model user activities and profiles. In addition, infor-
mation from the environment is also interesting for provid-
ing context-aware applications. Before UPnP-UP, the UPnP
technology had no user authentication and authorization
specification. Thus, UPnP-based applications could not pro-
vide user-based access control and customized services that
leverage UPnP-based technologies. The UPnP support for
security deals with device information, which is not enough
to acquire user information.

In order to provide user authentication and authorization
in UPnP networks, the UPnP-UP extension requires the ad-
dition of a new UPnP device specification called UPServer.
The UPServer is responsible for managing the authentica-
tion and the authorization process, and also providing the
services to store, update, delete, and remove access con-
trol policies. For instance, the DNS Injection attack can be
solved by creating a set of access control policies that estab-
lish the range of allowed ports to be mapped (above 1024) by
users. However, these policies are maintained in the server,
requiring IGD devices to access them every time a user tries
to request a port mapping. As a result, it is also required to

distribute these policies along the available devices. For in-
stance, UPServer would provide a UPnP-based service for
collecting policies based on the device type or service.

From a network infrastructure point of view, the UP-
Server is a single point of failure. However, a distributed
authentication and authorization mechanism is more com-
plex and hard to manage and maintain due to the input and
output of devices. To overcome such drawbacks, it is also
possible to provide more than one UPServer in the network
and provide load balance mechanisms using IPv6 anycast,
for instance. Also, devices that will support UPnP-UP can
be considered as “managed” or “unmanaged” devices. That
is, if no UPServer device is found in the local network, it
still can allow the access to a set of selected “free” services,
if possible.

The proposed solution still has some problems. First, in
spite of the possibility of changing the user UUID at a given
time interval, an attacker can obtain other user UUIDs and
renew the authentication session. We are currently investi-
gating a solution to provide mechanisms to build a set of user
token IDs (UUIDs). In this solution, each user has a set of
identifiers that are generated based on a Lamport hash chain
model [34]. Each identifier can be used only once, for each
UPnP device to which the user has access. This mechanism
avoids some kinds of attacks, such as UUID spoofing. In ad-
dition, hash functions have low computational costs, which
can be executed by resource-constrained devices, such as
cellphones. Another important weakness of the current solu-
tion is related to replay (or playback) attacks [35, 36]; a net-
work attacker is still allowed to maliciously or fraudulently
resubmit a valid request. Within the context of the UPnP-
UP network architecture, an access to a UPnP printer device
(which takes valid UUID) can be resent by another user, or
attacker. As a result, the attacker can gain access to the de-
vice on behalf of another user.

As current and future work, the use of OWL (Ontology
Web Language) [37] has been investigated as a standard ap-
proach to describe user profiles, providing a better process of
context interpretation and inference. Within this context, the

@ Springer

276

J Braz Comput Soc (2010) 16: 261-277

authors have also investigated its impact regarding perfor-
mance, since UPnP devices can be resource-constrained and
OWL requires high hardware performance. Another point
of improvement concerns the authentication process, which
has been evolved to provide different levels of security, data
integrity, confidentiality, and prevention to replay attacks.
Moreover, the authorization service is still being evaluated
and more experiments must be performed. It is still respon-
sible for 63% of the total time consumption presented in the
experimental results.

8 Conclusion

This paper presented an extension of the UPnP technology
to enable user authentication and authorization mechanisms
for the UPnP connectivity architecture. The extension al-
lows the development of customized UPnP applications and
ensures access control for available resources for UPnP en-
abled networks. Besides extending UPnP to support user au-
thentication, a new UPnP device profile, called User Profile
Server, has been introduced. As a proof of concept, we pre-
sented two scenarios that show how the UPnP-UP extension
can be applied in order to achieve customized and secure
UPnP services. Moreover, some experimental results were
presented in order to validate the UPnP-UP extension and
show that, even with the addition of new UPnP devices (UP-
Server) and UPnP actions, the average time that a control
point takes to request for a UPnP job is still acceptable.

Nowadays, the available UPnP services that follow the
UPnP specification cannot make use of user information.
Because of this, UPnP devices are unable to dynamically
adapt the services based on the user information. As a result,
each service developer implements his own non-standard
proprietary solution, making interoperability among avail-
able UPnP services more difficult for providing customized
services. On the other hand, UPnP-UP is a research contri-
bution for user authentication and authorization mechanisms
in the UPnP networks, keeping the specification compati-
ble with the current UPnP implementations and enabling a
new set of applications to be deployed over a UPnP network.
UPnP-UP extension has become possible due to the flexible
and extensible UPnP design offered by the UPnP Forum,
allowing the addition of new devices and services through
a definition of artifacts such as XML file descriptions and
SOAP Web Services.

References

1. Loureiro E, Ferreira G, Almeida H, Perkusich A (2007) Perva-
sive computing: what is it anyway? In: Lytras M, Naeve A (eds)
Ubiquitous and pervasive knowledge and learning management:
semantics, social networking and new media to their full poten-
tial, pp 1-34

@ Springer

10.

11.

12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

the 2Ist
Rev

Weiser M (1999) The computer for
SIGMOBILE Mob Comput Commun
doi:10.1145/329124.329126

Presser A, Farrel L (2008) UPnP device architecture. http://upnp.
org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf. Last ac-
cess on May, 2008

Kumaran I, Kumaran SI (2001) Jini technology: an overview.
Prentice-Hall PTR, Upper Saddle River

Consortium S (1999) Salutation architecture specification.
ftp://ftp.salutation.org/salutesa20e1a21.ps

Guttman E, Perkins C, Veizades J, Day M (1999) Service location
protocol, version 2. RFC. http://tools.ietf.org/html/rfc2608

W3C (2007) Simple object access protocol. http://www.w3.org/
TR/soap/

Langille G et al. (2008) Mediaserver:3 device template version
1.01. http://upnp.org/specs/av/UPnP-av-MediaServer-v3-Device.
pdf. Last access on May, 2009

Guedes A, Santos D, do Nascimento J, Sales L, Perkusich A,
Almeida H (2008) Set your multimedia application free with
BRisa framework: an open source UPnP implementation for re-
source limited devices. In: 5th IEEE consumer communications
and networking conference, 2008. CCNC 2008, pp 1257-1258
(10-12 January 2008). doi:10.1109/ccnc08.2007.297

Lin JC, Chen JM, Liu CH (2008) An automatic mecha-
nism for adjusting validation function. AINAW, pp 602-607.
10.1109/WAINA.2008.89

Prakash Iyer UW (2001) Internetgatewaydevice:1 device tem-
plate version 1.01. http://upnp.org/standardizeddcps/documents/
UPnP_IGD_1.0.zip. Last access on May, 2009

Hengartner U, Steenkiste P (2004) Protecting access to peo-
ple location information. In: Lecture notes in computer science,
vol 2802. Springer, Berlin, pp 222-231

Robinson P, Beigl M (2004) Trust context spaces: an infrastructure
for pervasive security in context-aware environments. In: Lecture
notes in computer science, vol 2802. Springer, Berlin, pp 119-129
Kvarnstrom H, Hedbom H, Jonsson E (2004) Protecting security
policies in ubiquitous environments using one-way functions. In:
Lecture notes in computer science, vol 2802. Springer, Berlin, pp
71-85

Creese S, Goldsmith M, Roscoe B, Zakiuddin I (2004) Authen-
tication for pervasive computing. In: Lecture notes in computer
science, vol 2802. Springer, Berlin, pp 439488

Klemets A, Da Costa B (2008) UPnP authentication and
authorization patent. http://www.freepatentsonline.com/y2008/
0092211.html

Karl J (2010) UPnP CDS USER PROFILE. http://www.patents.
com/UPnP-CDS-USER-PROFILE-20100125907.html

Ellison C (2003) DeviceSecurity: 1 Service Template. http://www.
upnp.org/standardizeddcps/documents/DeviceSecurity_1.0cc_
001.pdf. Last access on December, 2008

Ellison C (2003) SecurityConsole: 1 service template. http://
www.upnp.org/standardizeddcps/documents/SecurityConsole_
1.0cc.pdf. Last access on December, 2008

Nakajima T (2003) Pervasive servers: a framework for creating a
society of appliances. Pers Ubiquitous Comput 7(3—4):182-188.
doi:10.1007/s00779-003-0222-2

Chen W, Kuo SY, Chao HC (2009) Service integration with
UPnP agent for an ubiquitous home environment. Inf Syst Front
11(5):483-490. doi:10.1007/310796-008-9122-3

Sahm C, Langels HJ (2003) Dimmable light device tem-
plate. http://www.upnp.org/standardizeddcps/documents/
DimmableLight1.0cc.pdf. Last access on May, 2008

Kim K, Ko H, Choi W, Lee E, Kim U (2008) A collaborative
access control based on XACML in pervasive environments. In:
International conference on convergence and hybrid information
technology, 2008. ICHIT’08, pp 7-13

century.
3(3):3-11.

http://dx.doi.org/10.1145/329124.329126
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
http://upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-v1.1.pdf
ftp://ftp.salutation.org/salutesa20e1a21.ps
http://tools.ietf.org/html/rfc2608
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://upnp.org/specs/av/UPnP-av-MediaServer-v3-Device.pdf
http://upnp.org/specs/av/UPnP-av-MediaServer-v3-Device.pdf
http://dx.doi.org/10.1109/ccnc08.2007.297
http://upnp.org/standardizeddcps/documents/UPnP_IGD_1.0.zip
http://upnp.org/standardizeddcps/documents/UPnP_IGD_1.0.zip
http://www.freepatentsonline.com/y2008/0092211.html
http://www.freepatentsonline.com/y2008/0092211.html
http://www.patents.com/UPnP-CDS-USER-PROFILE-20100125907.html
http://www.patents.com/UPnP-CDS-USER-PROFILE-20100125907.html
http://www.upnp.org/standardizeddcps/documents/DeviceSecurity_1.0cc_001.pdf
http://www.upnp.org/standardizeddcps/documents/DeviceSecurity_1.0cc_001.pdf
http://www.upnp.org/standardizeddcps/documents/DeviceSecurity_1.0cc_001.pdf
http://www.upnp.org/standardizeddcps/documents/SecurityConsole_1.0cc.pdf
http://www.upnp.org/standardizeddcps/documents/SecurityConsole_1.0cc.pdf
http://www.upnp.org/standardizeddcps/documents/SecurityConsole_1.0cc.pdf
http://dx.doi.org/10.1007/s00779-003-0222-2
http://dx.doi.org/10.1007/s10796-008-9122-3
http://www.upnp.org/standardizeddcps/documents/DimmableLight1.0cc.pdf
http://www.upnp.org/standardizeddcps/documents/DimmableLight1.0cc.pdf

J Braz Comput Soc (2010) 16: 261-277

271

24.

25.

26.

27.

28.

29.

30.

31.

Rahaman MA, Schaad A, Rits M (2006) Towards secure SOAP
message exchange in a SOA. In: SWS’06: proceedings of the 3rd
ACM workshop on secure web services. ACM, New York, pp 77—
84. doi:10.1145/1180367.1180382

Snyder RM (2007) Security programming using python: man-in-
the-middle attacks. In: InfoSecCD’07: proceedings of the 4th an-
nual conference on information security curriculum development.
ACM, New York, pp 1-6. doi:10.1145/1409908.1409911
Hashemipour S, Ali M (2004) MPEG-21 & DIDL: dawn of a new
multimedia EVA. In: IEEE international symposium on consumer
electronics, 2004, pp 91-95

Balabanovic M, Shoham Y (1997) FAB: content-based, collabo-
rative recommendation. Commun ACM 40:66-72

Im I, Hars A (2007) Does a one-size recommendation system fit
all? The effectiveness of collaborative filtering based recommen-
dation systems across different domains and search modes. ACM
Trans Inf Syst TOIS 26(1):4. doi:10.1145/1292591.1292595
Deshpande M, Karypis G (2004) Item-based top-n recom-
mendation algorithms. ACM Trans Inf Syst 22(1):143-177.
doi:10.1145/963770.963776

Benesty J, Chen J, Huang Y (2008) On the importance
of the Pearson correlation coefficient in noise reduction.
IEEE Trans Audio Speech Lang Process 16(4):757-765.
10.1109/TASL.2008.919072

Minker J (1977) Information storage and retrieval: a sur-
vey and functional description. SIGIR Forum 12(2):12-108.
doi:10.1145/1095515.1095516

32.

33.

34.

35.

36.

37.

Yantao Z, Jianbo T, Jiagin W (2007) An improved TFIDF
feature selection algorithm based on information entropy. In:
Chinese control conference, 2007. CCC 2007, pp 312-315.
doi:10.1109/CHICC.2006.4346845

Sherwin L (2009) UPnP specifications named international
standard for device interoperability for IP-based network de-
vices. innovation validated by record-breaking number of
UPnP implementations in 2008. http://www.upnp.org/news/
documents/UPnPForum_02052009.pdf. Last access on Septem-
ber, 2009

Lamport L (1981) Password
cure communication. Commun
doi:10.1145/358790.358797
Malladi S, Alves-Foss J, Heckendorn RB (2002) On preventing
replay attacks on security protocols. In: Proc international confer-
ence on security and management. CSREA Press, pp 77-83
Syverson P (1994) A taxonomy of replay attacks. In: Proceedings
of the 7th IEEE computer security foundations workshop. Society
Press, New York, pp 187-191

Yan Y, Zhang J, Yan M (2006) Ontology modeling for contract:
using OWL to express semantic relations. In: 10th IEEE interna-
tional enterprise distributed object computing conference, 2006.
EDOC’06, pp 409—412. doi:10.1109/EDOC.2006.37

authentication with inse-
ACM 24(11):770-772.

@ Springer

http://dx.doi.org/10.1145/1180367.1180382
http://dx.doi.org/10.1145/1409908.1409911
http://dx.doi.org/10.1145/1292591.1292595
http://dx.doi.org/10.1145/963770.963776
http://dx.doi.org/10.1109/TASL.2008.919072
http://dx.doi.org/10.1145/1095515.1095516
http://dx.doi.org/10.1109/CHICC.2006.4346845
http://www.upnp.org/news/documents/UPnPForum_02052009.pdf
http://www.upnp.org/news/documents/UPnPForum_02052009.pdf
http://dx.doi.org/10.1145/358790.358797
http://dx.doi.org/10.1109/EDOC.2006.37

	A UPnP extension for enabling user authentication and authorization in pervasive systems
	Abstract
	Introduction
	Technology overview
	Universal Plug and Play (UPnP)
	Authentication and authorization in pervasive environments

	Related work
	An extension for the UPnP technology
	The UPnP user profile server
	UPnP-UP design
	The new model of UPnP devices
	Access control for UPnP services
	User profile for UPnP-UP enabled devices
	Considerations for providing service customization with UPnP-UP

	Case studies
	Case study 1-multimedia content recommendation
	Case study 2-exploring UPnP-UP authorization

	Experiments and results
	Discussion and future work
	Conclusion
	References

