J Braz Comput Soc (2010) 16: 215-227
DOI 10.1007/s13173-010-0021-3

ORIGINAL PAPER

StoryToCode: a new model for specification of convergent

interactive digital TV applications

Manoel C. Marques Neto - Celso A.S. Santos

Received: 4 December 2009 / Accepted: 30 August 2010 / Published online: 23 September 2010

© The Brazilian Computer Society 2010

Abstract This paper presents a model, called the Story-
ToCode, which allows designing iTV programs focusing
on using software components. First, StoryToCode allows
transforming a storyboard into an abstract description of an
element set. After this, this model transforms these elements
into a specific programming language source code. In Sto-
ryToCode a software component is treated as a special ele-
ment that can be reused in other contexts (web, mobile, and
so on). StoryToCode is based on Model Driven Architec-
ture (MDA) and allows designing and implementing appli-
cations, with context free, considering iTV program specific
characteristics.

Keywords MDA - iTV - Convergence - Storyboard

1 Introduction

Digital technologies dissemination in many knowledge ar-
eas led to changes in implementation of most modern soci-
ety activities such as work, education, health, and entertain-
ment. The first booster of this phenomenon—the Internet—
grew from the realization that it is not just a tool for ex-
clusive use of scientific community, but a convergent way
to improve the implementation of many daily activities such
as: going to the bank, talking on the phone, or even watching

M.C. Marques Neto ()

DMCC, UNIFACS, Ponciano de Oliveira st, 126, Salvador, BA,
Brazil

e-mail: manoelnetom @ gmail.com

C.A.S. Santos

DMCC, UFBA, Adhemar de Barros av room 138, Salvador, BA,
Brazil

e-mail: saibel @ufba.br

movies, animations, and so on. Another vehicle that also has
potential to play an important role in use of these technolo-
gies is the Digital TV. Among the main benefits offered by
Digital TV, it is possible to highlight audio and video qual-
ity improvement and the inclusion of new services such as
Interactive Digital TV (iTV). This service creates the pos-
sibility to execute interactive custom software together with
any other broadcaster’s schedule program [8].

Currently, designing a TV show usually means to pro-
duce and compose its audio and video main streams. A key
feature of this model design is the strong centralization of
production, composition, packaging, and media distribution
stages which are all performed by content generator. Indeed,
using such a model in the context of Digital TV hamper the
participation of “actors” who are not usually inserted in the
world of TV production process (e.g., software engineers
and programmers). Also, this model presents low flexibility
and extensibility, which leads to rework when it comes to
designing different programs for different platforms.

The problems cited previously can also be found in the
context of Web applications. Originally, the modules that as-
sembled a Web application should always be specified, im-
plemented, and executed together. In an e-commerce site,
for example, both “shopping cart” and “sell by credit card”
modules should be specified and implemented within the
same context. Extending an application to treat a different
user interface (non-functional requisite), for example, cell
phone, would mean redoing many parts of this application.
Similarly to iTV applications, this also generated strong
centralization, low flexibility/extensibility, and increased re-
work.

The solution adopted in the Web and in other sim-
ilar cases was to apply software engineering techniques
which aims at solving this kind of problem, as for example,
component-based development (CBD). The CBD is con-

@ Springer

mailto:manoelnetom@gmail.com
mailto:saibel@ufba.br

216

J Braz Comput Soc (2010) 16: 215-227

cerned with the creation of software components that can be
reused in other applications. The concept of reuse is related
to the use of software products, which are not designed for
any specific domain. To do so, a basic CBD requisite is the
use of a systematic process for designing these components.
Such a process considers the reuse in all phases of software
development. Thus, the CBD provides methods, techniques,
and tools that support not only components identification
and specification (in a specific domain) but also its design
and implementation in an executable language [2].

The reuse of software, originated in the TV environment,
in other contexts is something that should be considered
from the moment that a broadcaster is able to use other com-
munication channels in their TV shows (e.g., Websites, SMS
messages, and so on). For example, in a show with active
participation of the viewer, in which he must respond to an
opinion poll, it is very common to offer many interaction
ways such as: “Please visit www.MyTV.com and answer the
opinion poll,” “Send a SMS to number 8888 and answer the
opinion poll” or “Push the blue button on the remote control
and answer the opinion poll.” In this example, the applica-
tion has the same features in all three situations. The only
difference is the context treatment (a non-functional requi-
site).

The possibility to introduce interactive elements on a TV
show using software components must change the way these
shows are designed. However, the definition of a formal
and standardized methodology, which allows modeling and
building an iTV program aimed at using software compo-
nents is still a challenge. The problem is that this process
is not usual to TV industry, which has no culture of soft-
ware development, and also is not usual to software indus-
try, which has no culture of developing multimedia content
for TV. Some studies address the issue of modeling iTV ap-
plications such as [7, 22], and show that the shortest route to
solve this challenge is to use a development model based on
traditional software engineering techniques. Specifically, the
model defined in [22] proposes the integration of activities
related to TV and software production.

Motivated by the above shortcomings, this paper presents
a model called StoryToCode, which allows to specify iTV
applications focused on the use of software components. By
using such a model, it is also possible to transform a high-
level design model in an abstract description of elements that
compose this model and also transform those elements in
code. In StoryToCode, a software component (application)
is treated as a special element that can be reused in other
contexts (other execution platforms such as Web, mobile and
so on). The StoryToCode is based on Model Driven Archi-
tecture (MDA) [3] and allows designing and implementing
applications without taking into consideration any specific
context, and considering iTV program particularities. The
StoryToCode main goal is to reduce broadcaster responsibil-
ity through the decentralization of production steps, which

@ Springer

are outside its original working area, such as specification
and implementation of software objects). As a consequence,
it is expected that its use allows (a) the participation of other
actors in the iTV production process, (b) the decrease of ef-
fort expended during this process, and (c) the reuse of gen-
erated software components in domains other than TV.

This paper is an extended version of [11], which was
presented at Brazilian Symposium on Multimedia and Web
2009. It widens the scope of the former paper by: (i) pro-
viding a more detailed process used to generate the code
for iTV applications, (ii) providing a new section of related
work, and (iii) making clear what are the differences be-
tween the Nested Context Presentation Model [19] and the
StoryToCode hierarchy of abstract elements.

The paper is structured as follows: Sect. 2 deals with soft-
ware production for Digital TV. In Sect. 3, we present the
StoryToCode model proposed in this paper. Section 4 shows
how StoryToCode can be used for specifying an opinion poll
in iTV and Web context. The next section contains the re-
lated work, and the last section is reserved for conclusions.

2 Digital TV content production
2.1 Digital content production

Before content digitization age, the different communication
services available formed a chain of discrete components
that restricts different content types to specific networks and
terminals. In many cases, as for example in telephony, the
service provider company was vertically integrated through-
out the production chain. This production chain (Fig. 1)
did not permit information transfer from one service to an-
other. One example was the use of a telephone service on a
TV show to allow the viewer participation. This integration
could only exist through the use of human components in
the TV show production.

Content digitizing allowed its storage and distribution in
many telecommunications systems. This fact coupled with
technological innovation of telecommunications networks

ANALOGIC DISTRIBUTION

ey TERMINAL
VOICE
DATA % TELEPHONY | [| TELEPHONE
MONEY | [Human N BOOKS
| DISTRIBUTION LONG PLAYS
MAGAZINE v
/f BROADCASTERS = v
VIDEO
RADIO
/ : STATIONS = RADIO
AUDIO R

Fig. 1 Production chain before content digitization age

http://www.MyTV.com

J Braz Comput Soc (2010) 16: 215-227

217

has increased the digital convergence phenomenon. Digital
TV emergence is another advance that confirms the increase
of this fact. Two main consequences of digital convergence
can be highlighted:

—

. The possibility to access the same content on different
platforms (TV, Smartphone, PC, and so on) and also;

. The functional overlap use of different networks and ter-
minals (e.g., using Internet to talk on the phone or using
TV to access Internet).

[\

Thus, it is possible to say that the old vertical segmenta-
tion chain was replaced by a new a convergent digital model
composed of six distinct segments (Creation, Production,
Packing, Services, Distribution, and Interfaces) as shown in
Fig. 2.

Figure 2 illustrates that there are software parts in the
whole production chain. In Digital TV context, this new
chain creates the possibility to introduce interactive ele-
ments on a TV show using software components (iTV ser-
vices), and as a consequence, will certainly change the way
to design and produce these shows.

* Images N
¢ Actors
* Texts « Desi
* Music Me5|_gr?ers
S P usicians
\ldes N * Programmers
* Films e
* Editor
* Cartoons :
* Director
* Games
¢ Programmer
* Shows
. * Others
* Documentaries AT
L'd
¢ TV Chanel * TV Editor
+* DBMS ¢ Director
+ Online Services * Multimedia Company
* Others * Others
s
N
* API-EPG * Telephony
* Interactive * Internet Provider
* Others « Cable TV Provider
e
* Cable N
* Satellite * Satellite Operator
* Internet » Cable TV Operator
* WI-MAX * Others
* Others D 4 _
* Receptors N7
» Game Consoles * Electronics Industries
« TVD * Industries hardware
* Cell Phones * FC
¢ Others ik Others

Fig. 2 New production chain

2.2 iTV software production

Digital TV represents a greater possibility of democratiza-
tion in content generation and distribution. This can be ob-
served in the potential increase of channels number, in the
opportunity to suite program content for a specific context
(e.g., viewer, receiver, region), in providing interactive pro-
grams (iTV) and so on.

In computational terms, an iTV show is a software,
specifically a multimedia application, through which a
viewer can interact via remote control [16]. It means that
a viewer can receive from broadcaster, in addition to au-
dio/video main streams, a software that allows him to inter-
act with the presented content.

According to [10], iTV software applications may be di-
vided into three groups:

1. Applications that have no relation with the semantic con-
tent of audio and video presented e.g., E-mail and TV-
banking

2. Applications that have a relation with the semantic con-
tent of audio and video presented, but without strength
synchronization restrictions, e.g., the shares price dis-
played during a financial TV show and;

3. Applications that have a relation with the semantic con-
tent of audio and video presented and that are displayed
on a synchronized way, as for example: interactive Adds
of products displayed in specific moments of a film.

This third applications group may be further subdi-
vided into two subgroups:
(a) Applications with object content known in advance
and;
(b) Applications with live generated content

The building process for software that belongs to the first
category does not differ from traditional process. In this way,
the only difference between iTV software and traditional
software is the treatment of nonfunctional requisites such as,
“execution platform” (TV), “input and output mechanisms”
(remote control), and so on.

Moreover, the building process for software that belongs
to other categories is prepared in order to achieve some de-
tails of TV environment. These fine points directly influence
the production process and, therefore, these two categories
should receive special treatment from designers. Among
these fine points, it is possible to highlight:

1. The software is part of traditional TV show, which has its
own format and context.

2. They use a TV receiver as the only interface, which is
traditionally used in a collective way.

3. They require specific transmission infrastructure and
software/hardware components for proper operation.

4. They change traditional TV shows in a way to enable
them to deal with:

@ Springer

218

J Braz Comput Soc (2010) 16: 215-227

(a) Different levels of interactivity and
(b) A nonlinear content organization.

A specific production process for interactive TV software
should not only consider these fine points, but also provide
an exclusive support for each one of them. The problem is
that this process is not usual to TV industry, which has no
culture of software development, and also is not usual to
software industry, which has no culture of developing mul-
timedia content for TV.

The research proposed in [22] addresses, specifically,
the conceptual stages of modeling iTV applications. It
presents a model for developing iTV programs, based on
agile methodologies, which includes activities related to
TV production process and software development. The
model is outlined in four aspects: Work philosophy, Process,
Roles/Responsibilities, and Artifacts.

The definition of work methodology is very important
on both modeling and implementing process. Indeed, this
process should have well-defined phases and cycles with
details of activities that must be undertaken. The profile de-
scription of involved human resources (programmer, test en-
gineer, consultant, writer, director, and so on) as well as the
responsibility of each one within the defined activities avoid
distortions during model implementation and allow the en-
tire team to construct, collaboratively, an iTV program. The
end of each activity results in the production of artifacts
(documents, codes, media, and submodels generated during
the process) among which we can highlight: storyboards,
timeline, interactivity flow, and interface rough (draft) to be
implemented.

The model divides the life cycle of iTV software devel-
opment in 5 short phases (Fig. 3), with continuous iterations
and tight integration between users (viewer) and develop-
ment team. These phases are:

Design

i

Development Release

" b ———— ———

' LI

Construction Prototyping /
Testing

b

-

Fig. 3 Life cycle of iTV software development

@ Springer

. Design

. Development

. Construction

. Prototyping/Testing and
. Release

W AW =

The main objective of design stage is the awareness of
opportunity to create an iTV program. This step defines
what iTV content will be presented to user/viewer. The most
relevant activities of this stage are: (i) search for opportuni-
ties, (ii) initial project creation, and (iii) test design. It is
understood as (i) the use of methods (meetings, brainstorm-
ing, and so on) to encourage the search for new business op-
portunity and also the innovation of an existing program. In
activity (ii) a storyboard, which represents the initial design
with program central idea, services intentions and features
to be offered to the user, is created. Activity (iii) is responsi-
ble for validating the initial project. Participate in this stage,
the producer, the creation manager, the writer (e.g., novel-
ist), the project manager and the user/viewer.

The development phase tries to predict the many factors
that may affect the development of iTV programs. Among
the main activities of this phase, it is possible to mention:
(1) planning, (ii) script creation, (iii) architectural design,
and (iv) visual programming. Activity (i) consists of esti-
mating programs schedule and cost, creating a release plan
of program iterations, defining the roles of each work team
as well as recruit involved professionals. It is understood as
(ii) the textual description of the program with information
that shows special needs of interactive application (e.g., use
of interactive channel, database, outsourcing services, and
so on). This artifact can be compared to the requisite docu-
ment and, as such, may undergo several revisions until the
release of an iTV program. Activity (iii) consists of creat-
ing an architectural design to describe exactly what should
be built on the application as a whole (e.g., software, inter-
activity level, media elements, and so on). The architectural
design should contain complete information about the sys-
tem (middleware) to be used, the interactivity level of an iTV
program, the required functionalities, the existing infrastruc-
ture, and security design. Finally, activity (iv) includes the
creation of graphics and visual elements to be presented in
an iTV program. All staff participates in this phase.

The construction phase includes the implementation of
components (software and media) defined in the previous
phase. Four activities are highlighted at this stage: (i) me-
dia consolidation, (ii) program (software) consolidation,
(iii) TV shows production, and (iv) software and TV shows
integration. It is understood as (i) the execution of the appli-
cation graphic project. This project focuses on issues such
as: images fine-tuning with different available configuration
settings, use of television screen area, sound quality adjust-
ment and so on. Activity (ii) focuses on methods for coding

J Braz Comput Soc (2010) 16: 215-227

219

the modules that compose the software. Some practices, in-
herited from the agile methodologies, are adopted here to
prevent that failures in software implementation disturbs the
TV show. The life cycle of the production process for con-
ventional TV show is represented by activity (iii). Finally,
activity (iv) represents the integration of software and en-
coded medias. The team of graphic design and software as
well as publishers and producers are the main participants in
this phase.

Some remarks should be highlighted on the construction
phase, specifically on coding activity of the software that
may be part of an iTV show. This activity can be structured
through synchronized compositions of nodes that represent
encoded medias (video, audio, text, images, data, compo-
nents, and software services). However, a perfect conception
of an iTV show should be different from the way that tra-
ditional hypermedia/multimedia presentations are designed.
The design of an iTV show must consider requisites that are
specific to the TV environment as described above.

The implementation an iTV program can be done through
two paradigms: declarative and procedural. In procedural
programming, the programmer encodes each step to be exe-
cuted by the execution machine, which is done through the
algorithmic decomposition of a problem. The advantage of
this paradigm is the largest code control exercised by the
programmers, which allows establishing all the control and
execution flow of a program. Among the most common pro-
cedural languages available for implementing a iTV pro-
gram, it is possible to highlight: Lua [13], Java [6], EC-
MAScript [9]. In declarative paradigm, the programmer pro-
vides the set of tasks to be performed at a higher abstraction
level that does not consider details of how these tasks are
actually performed. In other words, the language empha-
sizes the descriptive statement of a problem rather than its
decomposition in algorithmic implementations [20]. Some
examples of declarative languages for iTV are: NCL [18]
and XHTML [14].

The Prototyping/Testing phase is one of the most im-
portant steps of the process. It occurs in parallel with the
previous steps and the main participants in this step are the
software engineer and producer. The activities performed in
this phase are: prototyping, unit testing, integration testing,
performance testing, usability testing, typing review, and in-
frastructure testing.

The release occurs after the conclusion of all tests, indi-
cating that the program is completed. When the iTV pro-
gram is ready to be delivered, the producer is responsible
for commercially promoting the program with potentially
users/viewers.

Although the approach described above [22] is useful,
since it allows defining the conceptual stages of modeling
1TV applications, it is not focused on the structuring of soft-
ware components in TV context, but on defining what are

the general activities of the production process and not how
these activities should be performed. The following model,
StoryToCode, allows to specify iTV programs focused on
the use of software components. It focuses on development
and construction stages and it main goal is to reuse these
components in other contexts.

The StoryToCode is concentrated in activities that oc-
cur after the design and development phases. These activ-
ities can be grouped into two modules: activities of me-
dia production/generation (images, videos, texts, and so on)
and activities of software producing. The StoryToCode deals
specifically with the activities of the second module. The
software project staff in collaboration with the entire TV
crew is responsible for its implementation.

3 The StoryToCode model

The StoryToCode (proposed model in this paper) main ob-
jective is to allow the specification and construction of soft-
ware components for use in iTV programs and in other con-
texts. For StoryToCode, the word context means the soft-
ware execution platform (TV, Mobile, Web, and so on).
The StoryToCode starting point is the storyboard. From this
point, the model uses concepts of systems modeling to:
(i) create a set of elements to represent both media and soft-
ware components that compose an interactive program, and
also (ii) highlight some systemic views (structure, events,
and so on) in order to reuse the generated artifacts in other
contexts. One of the advantages of using StoryToCode is the
possibility to design software systems based on information
extracted from storyboards. Since the storyboard is one of
the most used artifact in the multidisciplinary atmosphere
of a TV show, it was chosen as the starting point in Sto-
ryToCode. In fact, the idea is that this model facilitates the
work of the team, making it easier to understand and im-
proving an application development process. Another ad-
vantage, inherited from MDA, is the ability to generate dif-
ferent views of the same software facilitating their reuse in
other contexts.

The StoryToCode architecture is separated into three
parts, which are connected to each other, as illustrated in
Fig. 4: storyboard, elements, and source code generation.
Such an architecture is based on RoundTrip Engineering
(RTE) [3] concept, and as consequence, it allows the bidi-
rectional exchange between more abstract definitions (archi-
tecture and design) and (possibly) the source code. In other
words, it defines how the transformation of a storyboard into
a set of abstract elements should be done and also illustrates
the transformation of these elements in a source code. On
the other hand, it also allows generating the elements from
source code and after that generates the storyboard.

This research considers the expression “transformation”
as the generation (automatic or manual) of a target model
from a source model.

@ Springer

220

J Braz Comput Soc (2010) 16: 215-227

STORYBOARD

N &
I

wihi
Clastefcid i

ELEMENTS
C2 C3

[1

c4a| |cs5| |ce]| |c7 |

)

JAVA CODE NCL CODE
OTHER CODE

Fig. 4 StoryToCode architecture

3.1 Storyboard

In an environment focused on generating content for iTV, a
storyboard can be defined as a technique used to describe
the basic sequence of scenes that best represent a TV show.
This technique provides a high-level description of the ele-
ments that compose each scene and the interactivity flows
that arise during the software use. Although the storyboard
can be considered an “informal” and “weakly structured”
technique, it is used to model the presentation scenes flow
(transition), the interactive effects and temporal narratives
(e.g., dubbing, narration), scenes layout, and so on. The in-
formation contained in a storyboard range from the list of
scenes that compose the program through its draft visual-
ization until the description of its contents (pictures, videos,
text, graphics, animations, links [from — to]). Figure 5 il-
lustrates the structure of a possible storyboard. Such an ex-
ample is also used to motivate the model adoption.

The problem of transforming a storyboard in a set of soft-
ware elements is solved in the first part of StoryToCode. The
model defines that the storyboard should be used, as a requi-
site repository that must be met in order to construct a set of
elements. In the current version model, this transformation is
still a manual process (see Fig. 6). Thus, the software project
staff should use the storyboard (built at the design stage) to
extract the requisites and generate an abstract representation

@ Springer

Producer: Manoel Neto
Date: 26/11/2009

Project title: ITVWebPoll

Screen Title: Election
Size: 800 x 600 Screen: 3 of 7

Links *« OPTION 1
from: * OPTION 2
Selact « OPTION 3
option
Links to: Im
Results

Navigation: no Graphics: yes Screen Description

Animation: no Audio: yes At this scene the viewer may vote
Video: yes Functionality: yes through a menu. After each
Interactivity: yes Hyperlinks: no |computed vote, the show presents
the opinion poll partial result

Fig. 5 Example of a storyboard frame

TV Team TV Team

Start 4
===

StoryToCode
Elements

d
~
Approves?
Fe———==>

Extends
———
Storyboard

UML Elements

Eclipse
Maodeling
Framework

]
]
1
¥
sl
i

Software Staff

Fig. 6 A storyboard used as the repository of requisites

of all elements contained in the program scenes with their
relations and interactive events. This set of elements repre-
sents the second part of StoryToCode, and is presented in
the following section.

3.2 Set of software elements

It is relevant to mention that a set of elements is not only
a document to assist in the understanding, maintenance, or
development of software, usually found in conceptual mod-
els for software specification. It is also an artifact that can
be directly compiled into other models or into codes of pro-
gramming languages. To do so, its construction must use an
unambiguous and standardized notation to allow the code
processing for different platforms. The StoryToCode define
a hierarchy of abstract elements represented by the UML no-
tation (visual) and the XMI format (source code of UML no-
tation) that can be extended to suit the specific requisites of a

J Braz Comput Soc (2010) 16: 215-227

221

O

Event

Element
VARVAN V

Appllcatlon Contamer

Link

Fig. 7 StoryToCode elements hierarchy

| Image | | Video | | Text

storyboard. The StoryToCode elements hierarchy is similar
to Nested Context Presentation Model (NCPM) [19] class
hierarchy and can be seen in Fig. 7. To allow the specifi-
cation and extension of elements in UML and also in XMI
formats, the StoryToCode uses a framework named Eclipse
Modeling Framework (EMF) [21] (see Fig. 6).

At the root of StoryToCode hierarchy is the element “El-
ement,” whose main function is to serve as base model for
creating other elements, pooling their common character-
istics and behaviors. An Element is an entity that has the
following attributes: a unique identifier, a descriptor (which
contains the information to determine how an entity must be
presented), and a list of anchors. An anchor is defined as a
region (in time or space) used to mark contents of an element
and to “tie” the links (Link). Anchors are represented in Sto-
ryToCode by the element Anchor. An Element can also be
specialized in three entities: Media, Application, and Con-
tainer. Media elements are those whose primary responsi-
bility is to abstract medias during a presentation. A Media
element has attributes such as “content” and “anchors list”
(inherited from Element), whose values definition are de-
pendent on the dynamics of a specific program instance. The
StoryToCode allows specializing a Media element in order
to abstract the numerous media types covered in a story-
board (e.g., video, image, text, and audio). The Application
element in that hierarchy is used to define data structures of
a software component, whose operations (instructions) are
responsible for handling interactive events specified in a sto-
ryboard. To do so, such an element needs to be specialized
and each concrete element created from an Application el-
ement must meet the Event interface. This interface should
also be specialized to define what are interactivity events
and how they should be treated. The focus of the Event and
Application elements is to allow the representation of data
structures typically found in software elements. These struc-
tures can be directed to both business components as visual
components. Thus, these software components can abstract
storyboard elements and actions that arise from the use of
each element, as for example, selecting buttons, displaying
progress bars, displaying alerts, credit card operations, and

so on. Finally, the Container is an element that represents
a composition between Media and Application elements,
whose cardinality is 1 — N (one to many). It can be used
to assembly storyboard elements ranging from menus, but-
tons, and images, even the entire program scenes. To do so,
a Container has as attributes: (i) a list of links between ele-
ments (Link), responsible for defining a connection between
an origin and a destination element, and (ii) another list of
elements Container.

The approach used on StoryToCode model to treat soft-
ware data structures represents an important difference be-
tween NCPM and StoryToCode. The NCPM model does
not clearly support the extension of data structures that
abstract business components or even visual components.
We assume that this could be done through the Script el-
ement, defined in NCPM hierarchy. A Script is an element
whose function is to store a program written in any language
and whose instructions (operations), when executed, gener-
ate messages invoking the activation of presentation objects
valid methods [19]. Thus, while a NCPM Script is a non-
extensible element with focus on the temporal/spatial (vi-
sual) aspects of presentation objects, a StoryToCode Appli-
cation element can be extended in order to better abstract
both the visual interface as the business logic of an applica-
tion.

The StoryToCode defines that each model element must
be specialized to contain its own features list in order to
properly abstract a storyboard. This ability to extend the
model to make it adjustable to any specification regards both
media as software components structuring. This capacity to
describe each storyboard element in great detail is what al-
lows the use of transformations to achieve a lower abstrac-
tion level, which means in this model, to produce an appli-
cation code for a specific context.

3.3 Code

Once the elements collection is produced by the software
staff and approved by the TV team, it is possible to reach
the third StoryToCode stage: source code generation. This
step consists of generating an application code for a specific
context, using the set of generic elements generated in the
previous step. For this, the StoryToCode defines a special
component called transformation machine, which takes the
elements collection as input and outputs the source code.
Figure 8 shows the complete process dynamics of generating
source code from storyboards on the StoryToCode model.
In order to use an element set as input into a transfor-
mation machine, it is essential to convert it from UML for-
mat (visual) to the XMI format (textual). For this, the Story-
ToCode defines that the software staff should use the EMF
framework. This framework contains an XML parser that al-
lows to generate XMI source code from visual specifications

@ Springer

222

J Braz Comput Soc (2010) 16: 215-227

Fig. 8 The complete Li
st of Elements
StoryToCode process dynamics TV Team TV Team Software Staff in Memory
Yes
Start o NS »% -
-=> R ; s |
4 A lUses :
1 ’ (1 1
T EgE
3! K g! EMF +JDOM = T
g 1
at 4 o1 \Convert = 1
1 ’ al | 1
v <! * ' !
1, 1 Ju <?XML version="1.0"?> | f
¥ g S | <UML:Class name="E1"> : 15
Storvboard °E‘ £ | <UML:Class name="€2"> - = : 2
v 1] ‘ T | </UML:Class> 7
T -
w S | </XML> L J
3 ENE .
5 Transformation
(o Machines

Uses

st

Software Staff

made in UML. In fact, the XMI format was chosen because
many frameworks and CASE tools allow creating UML dia-
grams and exporting them to XMI. Thus, despite of using the
EMF framework, the StoryToCode becomes flexible since it
is possible to decide which CASE tool or framework should
be used to create an element set.

After converting the set of elements to XMI format, it
must be loaded into memory, and thus be used as input to
a transformation machine. For this, the StoryToCode uses
the JDOM library [12]. The JDOM is a Java open source
API, which is based on standards SAX and DOM, used to
manipulate XML documents. Thus, the JDOM allow to load
into a DOM tree (in memory) the set of XMI elements and
this tree is used as input to a transformation machine.

After receiving the input XMI file and loading it into
memory, the software staff choose one of the available in-
stances of transformation machine to generate code to a spe-
cific platform. Each instance contains a set of transformation
rules, based on the source (element set) knowledge, and a
destination element structures (code for a specific platform).
The transformation machine allows adding rules (and other
important information) to enable mapping an element to a
corresponding programming language source code. Thus, a
transformation of a single element set can be made for dif-
ferent platforms, since the transformation machine instance,
which is specific to each of these platforms, is available.

Figure 9 illustrates the architecture of a transforma-
tion machine. Each transformation machine concrete ele-
ment (e.g., StoryToHTML, StoryToJava) must implement
the TransformationMachine interface, responsible for defin-
ing the generateCode method and which receives as input

@ Springer

fe

2

Cre

—

7]

5]

0

o

Q.

[°]
o]
| =
~
el
c
=

----- StoryTolava
Output
HTML Code [€===== StoryToHTML
Qutput
Other Code =R StoryToOther

Transformation Machines
Interface

generateCode(Element set)

->
->
-2

Jayipohiols
ere[o]AIOIS
TWLHOLAIONS

4

generateCode(Element set){
for each element in set{
If (element is a Container){
“Create a container in platform”;
Jelse If (element is an Image){
“Create an Image in platform”;
telse if (...)

Fig. 9 Transformation machines architecture

the element set loaded from XMI. In this method, the trans-
formation machine works as a parser, whose main goal is
to decide how to deal with each element of the set. For this
reason, they are classified and treated as a token in a parse
process. The treatment of each token found consists into call
a method to perform the mapping from one element to the
corresponding element on the target platform. For example,
if the token is a Container element a method create con-
tainer in a specific platform should be called, if the token is
an Image element a method to create an image in a specific
platform should be called and so forth.

J Braz Comput Soc (2010) 16: 215-227

223

Figure 10 illustrates an example of a parse process where
the generateCode method is used to generate a HTML im-
age. Assume that E1 is part of the set of elements and that it
is modeled as an extension of a StoryToCode Image with at-
tributes: content (image file name) and hint (message that
must appears when the image is selected). After convert-
ing E1 to XMI and load it into memory, the generateCode
calls the method createlmage using E1 as a parameter. This
method contains the rules that allow mapping E1 Image ele-
ment on a HTML image (img) tag. For this, the method uses
a loop to go through and sort all the attributes of E1. Each
attribute of El is mapped to the corresponding attribute in
HTML:

1. content = “figl.jpg” is mapped to src = “figl.jpg” and

El
StoryToCode Extends String content="fig1.jpg";
Image Element String hint="describes img”
Convert Load

<?XML version="1.0"?>

<UML:Class name="E1” upperType="Image”>

<ownedAttribute name="content" type="String” value="figl.jpg"/>
<ownedAttribute name="hint" type="String” value="describes img"/>
</UML:Class>

</XML>

String createlmage(Element element){
String html="<img" ;
for (inti = 0; i < element.getAttributesSize(); i++){
Attribute temp = element.getAttribute(i);
if (temp.getName().equals(“content”)){
htmi=html+ “src=" + “\" ” + temp.getValue() + “\" " ;
} else if (temp.getName().equals(“hint”)){
html=html+ “alt="+ “\" ” + temp.getValue() + “\" " ;

}
} html = html+ “/>";

return html;
} l

Fig. 10 Converting an Image Element to HTML image

Fig. 11 Scene flow of
ITVWebPoll

2. hint = “describes img” is mapped to alt = “describes

(1)

img

The study case discussed in the next section shows a sum-
mary of an experiment whose objective was to demonstrate
the use of StoryToCode. In this experiment, two transforma-
tion machine instances were implemented: one in TV con-
text (JavaTV) and another on Web browser (HTML).

4 Case study

To show the viability of applying StoryToCode, a TV show
(a fictitious newscast) was proposed. This show should con-
tain an opinion poll to allow a viewer vote on different op-
tions using the remote control or voting through Web. This
opinion poll is a software component called ITVWebPoll
(Interactive TV and Web Poll), which can be used in dif-
ferent contexts (TV and Web).

In this show, the storyboard says that the viewer has the
option of participating in an interactive opinion poll. This
poll is structured into two scenes: “select option,” where the
viewer can press the green button to see the opinion poll
result, and “election,” which is presented when the viewer
presses the yellow button. In “election” scene it is possible
to vote through a menu. After each computed vote, the show
presents the opinion poll partial result. Finally, if the viewer
presses the red button, at any moment, the application will
be terminated. The “election” scene description of this poll
can be seen in Fig. 5. The scenes flow to the program can be
seen in Fig. 11. In this flow, (1) indicates the automatic start,
(2) that the viewer pressed the “view results” button, (3) that
the viewer pressed the “Vote” button, (4) that the viewer se-
lected one poll option and (5) that the viewer pressed the
“Close” button.

The following functional requisites were extracted from
the storyboard: (i) allow viewers to choose the options that
suit them, without any restriction or limitation (all alter-
natives should be treated in the same way), (ii) check the
choice before confirming the vote, (iii) compute and execute
an option chosen, (iv) show an alert to the viewers informing

@ Springer

224

J Braz Comput Soc (2010) 16: 215-227

StoryToCode Element
Model Element
Za
Anch
Container

EQIN

Media K} Audio

Application L}
73 Video
ActionE\ents
FormQuiz
- game : Quiz News

- labelQuestion : Label
- btOption1 : Button

- btOption2 : Button

- btOption3 : Button

- labelHits : Label

- mainVideo : Video

- mainAudio : Audio

- component : FormQuiz
- linkList : Link

+ keySelected() : void

ITVWebPoll Model

Quiz

- questions : List
- hits : int

+ chooseAnswer(option : int) : void
+ incHits() : void

!

Question

- questionText : String
- answers : Answer

Answer

- option1 : String
- option2 : String
- option3 : String

Fig. 12 ITVWebPoll elements set

them that a vote has been computed, and (v) allow viewers
to check results.

After the use of a storyboard to extract the list of func-
tional requisites, it was possible to initiate the second
part of StoryToCode: the creation of elements set for the
ITVWebPoll. The elements set consist of: News, FormQuiz,
Quiz, Question, and Answer beyond the interface Action-
Events as can be seen in Fig. 12.

The Quiz, Question, and Answer elements represent ab-
stractions of a quiz business logic. Thus, a Question element
is an entity that has as main attributes the question text, and a
list of Answer elements. Each Answer element has three at-
tributes: two of them are false response options and the other

@ Springer

ELEMENT ATTRIBUTE HTML JAVATV
FormQuiz | Button Input HTextButon
FormQuiz Label Label HText
News FormQuiz Div HContainer
News Video Embed HVideoComponent

Fig. 13 From element set model to HTML and JavaTV

is a true one. Indeed, the Quiz element is a composition of
questions (a list of Question elements) and answers (Answer
elements), whose main responsibility is to control the num-
ber of hits (Question hits attribute) achieved by a viewer. The
FormQuiz element is a specialization of an Application that
abstracts the graphical interface used in the quiz. This in-
terface includes two labels, responsible for displaying ques-
tions and number of hits, and three buttons, which display
the answer options. The main responsibility of this element
is to treat the selecting one of the options event defined in
the interface ActionEvents through the method keySelected.
In this method, at each time one of the radio buttons (the true
option) is selected, and a hit is computed and displayed. At
this point, the elements set still contains the News element,
which is a Container that represents a composition of Au-
dio, Video, FormQuiz and a list of links (Link) required to
synchronize the opinion poll elements.

Once the elements set has been defined, it was possible
to start the third phase of StoryToCode. Two instances of
transformation machine component have been implemented
in order to make it possible to generate the ITVWebPoll
source code either in TV and Web context: (i) elements set
— Java TV and (ii) elements set - HTML. These compo-
nents receive as input a file in XMI format with ITVWebPoll
elements. To produce this file, a CASE tool was used to
convert the elements, written in UML format, into a file in
XMI format. Based on the input elements file (XMI), both
transformation machine components applied their rules to
map elements from the source model to their target source
code. Figure 13 illustrates some examples of mappings im-
plemented in these rules.

The code generation of ITVWebPoll did not mean
the end of codification work. The generated code in this
StoryToCode stage represented a part of the definitive
ITVWebPoll code. So, after this partial code has been gen-
erated, the programming team still needed to complete the
implementation work. Both planned transformations were
implemented. Figure 14 briefly shows the result of trans-
forming a XMI file that represents the News element in its
respective Java TV code.

5 Related work
The papers cited in this section represent some of the main

references in iTV software domain. They show that cur-
rently the design of iTV shows do not consider the use of

J Braz Comput Soc (2010) 16: 215-227

225

<?xml version="1.0"?>
<UML:Model xmi.id="M.1" name="itvwebpoll" visibility="public"
isSpecification="false" isRoot="false"
isLeaf="false" isAbstract="false">
<UML:Class xmi.id="C.1" name="news" visibility="public"
isSpecification="false" isRoot="true"
isLeaf="true" isAbstract="false" isActive="false">
<UML:Classifier.feature>
<UML:Attribute xmi.id="A.1" name="mainVideo" visibility="private"
isSpecification="false" ownerScope="instance"/>
<UML:Attribute xmi.id="A.2" name="mainAudio" visibility="private"
isSpecification="false" ownerScope="instance"/>
<UML:Attribute xmi.id="A.3" name="componente" visibility="private"
isSpecification="false" ownerScope="instance"/>
<UML:Attribute xmi.id="A.4" name="linList" visibility="private"
isSpecification="false" ownerScope="instance"/>
</UML:Classifier.feature>
</UML:Class>
</UML:Model>

</XMI>

import java.awt.*;
import org.havi.ui.®;

public class News {

private Video mainVideo;
private Audio mainAudio;
private ArraylList linkList;
private FormQuiz componente;

Fig. 14 Code generation schema

a formal process in the development of software modules
for such shows. Their focus is on only the construction of
applications based on its visual structure. This can be seen,
for example, in papers related to tools that support iTV ap-
plication development.

The paper presented in [15] focuses on the development
of highly interactive multimedia applications. In this re-
search, an application is described as a multimedia appli-
cation that typically provide a sophisticated user interface
with integrated media objects. As a consequence, the de-
velopment process involves different experts for software
design, user interface design, and media design (the same
approach is used in StoryToCode). There is still a lack of
concepts for a structured development process to integrate
these requirements. In this paper, the author introduces the
Multimedia Modeling Language (MML), a visual modeling
language supporting the design process in multimedia ap-
plication development. It is part of a model-driven develop-
ment approach for multimedia applications. The language is
oriented on well-established software engineering concepts,
in particular UML 2.0. It integrates the results of two differ-
ent research lines: application-oriented multimedia model-
ing and model-based user interface development.

The paper presented in [5] focuses on the difficulties of
people with little experience to learn and use, effectively,
textual programming languages. The research indicates that
visual programming tools may be useful to abstract the com-

plexity of such textual languages, minimizing the effort of
specification. In this article, the authors present a visual ap-
proach for specifying high level of spatiotemporal relations
in documents Nested Context Language (NCL) [18]. The
aim of this approach is to provide a visual intuitively rep-
resentation to specify complex synchronization events be-
tween medias.

The Composer [4] is a hypermedia authoring tool used
in the encoding of interactive audiovisual program in NCL.
Its main objective is to enable users to produce NCL code
through visual abstractions. The hypothesis is that this ap-
proach requires less specialized knowledge of NCL. To
make this possible, the philosophy used by the composer is
that the user who will build the program may do so through
special views. It is important to highlight that these views
do not represent the different levels of abstraction found in
the MDA. There is no functionality to support the reuse of
interactive modules generated in other contexts.

A similar description to Composer can be made to the
NCL Eclipse plug-in [1]. It is an open source text editor
for the NCL language integrated with the Eclipse environ-
ment that also has focus on providing a tool (WYSIWYG
approach) to support the generation of NCL source code.
The plug-in also does not provide any functionality to sup-
port the reuse of code or even the more abstract design
specifications. Among the main features implemented by
NCL Eclipse are: coloring XML elements and attributes,
display/hide the XML elements (allowing certain elements
to be hidden or displayed by the user), wizards to create sim-
ple documents NCL, XML code autoformat and autocom-
plete, NCL document validation, and so on.

Another plug-in associated with Eclipse, called SAGA,
is presented by [17]. The SAGA is based on visual compo-
nents which can be spatially arranged in the visual devel-
opment environment. These components are extensions of
specific libraries for iTV. The plug-in makes up a develop-
ment environment and simulation for the Java language and
aims to assist the coding of the modules to interactive digital
TV programs for Ginga.

6 Conclusion

The main contribution of this paper includes the integration
of different skills and competencies in order to construct
interactive TV shows. Further, it presents a construction
model for these shows that is based on components. Such
a model allows the reuse of these components in other con-
texts, which is achieved through the transformation of more
abstract models in concrete models. The model transforma-
tion is an important contribution in this area, since it allows
the reuse of information between different platforms, pro-
viding greater speed and quality in software development.

@ Springer

226

J Braz Comput Soc (2010) 16: 215-227

Also, it does not require a special knowledge in the systems
modeling area from the participants of production process,
born on the TV universe.

Despite StoryToCode prove to be adequate for the spec-
ification and reuse of interactive components, it leaves two
problems unresolved. The first one (P1) is associated with
the extraction of requirements that are necessary for creating
the set of elements. The second problem (P2) is the amount
of rework required to complete the automatically generated
code.

In the model, extracting the requirements from story-
boards is one activity that is not automated. This activity
is made solely by the team of software engineers. Automat-
ing this process is still a challenge of very high computa-
tional cost for computer science, because it means imple-
menting aspects of human cognition in data recognition.The
approach adopted in StoryToCode is traditionally used for
designing systems and defines that the participation of pro-
fessionals associated to the TV domain should occur only
in the validation (approval) of the requirements specified
(see Fig. 8). This situation characterizes the P1 problem: To
present the requirements in the form of a set of elements in
UML hinders the understanding of TV professionals in the
validation process. This causes misunderstandings between
what the software engineers and TV professionals consider
as a requirement for an interactive component.

The P2 problem is also associated with use of a set of
elements to structure the requirements of an interactive pro-
gram. In StoryToCode, it is not possible to insert instance
information to the set of abstract elements generated in the
second stage. The absence of this information comes as a
consequence P2: increased workload to complete the gener-
ated code. In StoryToCode, such information, which is es-
sential in generating the code, are introduced by the pro-
gramming team, after the partial generation of code for sub-
sequent approval by the TV Team.

The next steps of this research include the creation of
mechanisms to solve the P1 and P2 problems. This will be
done through the creation of a new layer in StoryToCode.
This layer will be inserted between the storyboard and the
set of elements and will be built based on techniques of
software prototyping to the design of interactive compo-
nents. The main advantages of prototyping technique are:
the closeness of the system with the needs of users, the re-
duction of misunderstandings between users and develop-
ers and also the reduction in development effort. Prototypes
are concrete models and represent both the description of
information structure as information instance that must be
present in an application.

Acknowledgements This research was supported by CAPES (Project
N. 23038.042785/2008-21) and FAPESB (PES0001 / 2007). The au-

thors also acknowledge the participation of Flavia M.S. Nascimento

who made an extensive review of this paper.

@ Springer

References

1. Azevedo GR, Teixeira MM, Soares Neto SC (2009) Ambiente
integrado para o desenvolvimento de aplicages para TV digital
interativa em nested context language. In: SBRC ’09: Simpdsio
Brasileiro de redes de computadores. SBC, pp 53-57

2. Brown AW (2000) Large-scale, component based development.
Prentice Hall PTR, Upper Saddle River

3. Frankel D (2003) Model driven architecture: Applying MDA to
enterprise computing. Wiley, New York

4. Guimaraes RL, Costa RMR, Soares LFG (2008) Composer: Au-
thoring tool for iTV programs. In: EUROITV ’08: Proceedings of
the 6th European conference on changing television environments.
Springer, Berlin, pp 61-71

5. Guimaraes RL, Soares Neto CS, Soares LFG (2008) A visual ap-
proach for modeling spatiotemporal relations. In: DocEng *08:
Proceeding of the eighth ACM symposium on document engineer-
ing, New York, NY, USA. ACM, New York, pp 285-288

6. Jones J (2002) Dvb-mhp/java tv'™data transport mechanisms. In:
CRPIT ’02: proceedings of the fortieth international conference on
tools pacific, Darlinghurst, Australia, 2002. Australian Computer
Society, Inc, Sydney, pp 115-121

7. Jung C-Y, Kim J-S, Yoo C-S, Kim Y-S (2006) Model of gener-
ating smil document using temporal scripts of animation com-
ponent. In: Computational science and its applications—ICCSA
2006. Springer, Berlin, pp 990-1000

8. Leite LEC, de Souza Filho GL, de Lemos Meira SR, de Artjo
PCT, de Lima JFA, Filho SM (2006) A component model proposal
for embedded systems and its use to add reconfiguration capabili-
ties to the flextv middleware. In: WebMedia ’06. ACM, New York,
pp 203-212

9. Lopez-Nataren C, Viso-Gurovich E (2005) An ecmascript com-
piler for the .net framework. In: ENC ’05: Proceedings of the sixth
Mexican international conference on computer science, Wash-
ington, DC, USA, 2005. IEEE Computer Society, Los Alamitos,
pp 235-239

10. Marques Neto MC, Santos CA (2008) An event-based model for
interactive live tv shows. In: MM ’08: Proceeding of the 16th
ACM international conference on multimedia, New York, NY,
USA, 2008. ACM, New York, pp 845-848

11. Marques Neto MC, Santos CA (2009) Storytocode: Um mod-
elo baseado em componentes para especificacao de aplicacoes de
tv digital e interativa convergentes. In: WebMedia ’09: Simpésio
Brasileiro de sistemas multimidia e Web, Porto Alegre, RS, Brazil,
2009. SBC, pp 59-66

12. Marques Neto MC, Passos C, Santos CA (2003) Tecnologias para
Processamento de Documentos XML: Uma Abordagem JAVA. In:
ERI ’03: III escola regional de informatica, Vitoria, ES, Brazil,
2003. SBC, pp 63-94

13. Mascarenhas F, Ierusalimschy R (2008) Efficient compilation of
lua for the clr. In: SAC ’08: Proceedings of the 2008 ACM sym-
posium on applied computing, New York, NY, USA, 2008. ACM,
New York, pp 217-221

14. Pemberton S (2002) Xhtml 1.0: The extensible hypertext markup
language, 2nd edn. World Wide Web Consortium, Recommenda-
tion REC-xhtml1-20020801, August 2002

15. PleuB A (2005) MML.: A language for modeling interactive multi-
media applications. In: ISM ’05: Proceedings of the seventh IEEE
international symposium on multimedia, Washington, DC, USA,
2005. IEEE, New York, pp 465-473

16. Rodrigues RF, Soares LF (2006) Producdo de contetdo declara-
tivo para TV digital. In: SemiSH—XXXIII seminario integrado
de software e hardware, Campo Grande, MS, Brazil, 2006. SBC,
pp 287-300

17. Santos ALDS, dos Reis EM, das Virgens LS, Gomes EA, Mar-
ques Neto MC (2009) Plug-in saga—editor visual de aplicaes

J Braz Comput Soc (2010) 16: 215-227

227

18.

19.

interativas para TV digital baseado no middleware ginga. In:
IX escola regional de computao Bahia—Alagoas-Sergipe, SBC,
pp 1-6

Silva HVO, Rodrigues RF, Soares LFG, Muchaluat Saade DC
(2004) Ncl 2.0: integrating new concepts to xml modular lan-
guages. In: Symposium on document engineering *04, New York,
NY, USA, 2004. ACM, New York, pp 188-197

Soares LFG, Rodrigues RF, Saade DCM (2000) Modeling, author-
ing and formatting hypermedia documents in the hyperprop sys-
tem. Multimed Syst 8(2):118-134

20.

21.

22.

Soares LFG, Rodrigues RF, Moreno MF (2007) Ginga-ncl: the
declarative environment of the Brazilian digital TV system.
J Brazil Comput Soc 12:37-46

Steinberg D, Budinsky F, Paternostro M, Merks E, Gronback RC,
Milinkovich M (2009) EMF: Eclipse modeling framework, 2nd
edn. The eclipse series. Addison-Wesley, Upper Saddle River
Veiga EG, Tavares TA (2006) Um modelo de processo para o de-
senvolvimento de programas para TV digital e interativa. In: Web-
Media ’06: Workshop de teses e dissertaes, New York, NY, USA,
2006. ACM, New York, pp 53-57

@ Springer

	StoryToCode: a new model for specification of convergent interactive digital TV applications
	Abstract
	Introduction
	Digital TV content production
	Digital content production
	iTV software production

	The StoryToCode model
	Storyboard
	Set of software elements
	Code

	Case study
	Related work
	Conclusion
	Acknowledgements
	References

