J Braz Comput Soc (2010) 16: 117-131
DOI 10.1007/s13173-010-0011-5

ORIGINAL PAPER

EvolTrack: improving design evolution awareness in software

development

Rafael da Silva Viterbo de Cepéda - Andréa Magalhaes Magdaleno -
Leonardo Gresta Paulino Murta - Claudia Maria Lima Werner

Received: 20 December 2009 / Accepted: 23 April 2010 / Published online: 11 June 2010

© The Brazilian Computer Society 2010

Abstract Software differs from most manufactured prod-
ucts because it is intangible. This characteristic makes it
difficult to detect, control, and understand how it evolves.
This paper presents an approach based on software visu-
alization that can detect and externalize design evolution
made in a software project during its initial development
or at any further phase. By using this approach, a devel-
oper can be aware of the current state of the software as
a whole and can additionally verify if the current design,
also called emerging design, is evolving according to the
team expectations and leader guidance, preventing problems
caused by misunderstandings of the expected software so-
lution. The approach was evaluated with free/open source
software (FOSS) projects. The results indicate that the ap-
proach behaves as expected when applied to real software
development projects, with minor performance bottlenecks.

Keywords Software evolution - Software visualization -
Design evolution

R.S.V. de Cepéda () - A.M. Magdaleno - C.M.L. Werner
COPPE/UFRJ—Systems Engineering and Computer Science
Department, Zip 21945-970, P.O. Box 68511, Rio de Janeiro, RJ,
Brazil

e-mail: rcepeda@cos.ufrj.br

A.M. Magdaleno
e-mail: andrea@cos.uftj.br

C.M.L. Werner
e-mail: werner @cos.uftj.br

L.G.P. Murta

IC/UFF—Instituto de Computacao, Universidade Federal
Fluminense, Niter6i, RJ, Brazil

e-mail: leomurta@ic.uff.br

1 Introduction

Software design is a problem-solving activity that links the
problem domain with the solution domain [23]. In other
words, it could be thought as a process that transforms the
output of the requirements analysis phase into detailed spec-
ification of the solution, which serves as input to program-
mers. As it can be observed, the design process is also a
communication instrument, usually employed as a guide to
the programming activities. Due to that, any kind of mis-
understanding or divergence (i.e., a failed communication)
between the initial idea of the solution and the current im-
plemented solution can lead to future problems. These is-
sues are amplified when looking at a real programming dy-
namics, that is, when software evolution is considered and
also when distributed development takes place, leading to
severely harmed communication.

In this context, software evolution can be defined as
‘the dynamic behaviour of programming systems as they
are maintained and enhanced over their lifetimes’ [9]. Al-
though the fact that this concept is usually applied to de-
scribe a situation after the initial development, here we use
the term broadly, i.e., also encompassing the initial devel-
opment phase. Then since the software evolves over time,
and because its design is an intrinsic part of it, the software
design itself can evolve over time, too.

However, how can a developer be aware of such evolu-
tion? What mechanisms can be used today to clearly identify
the current state of the software design being initially devel-
oped or maintained? How can developers be sure that the
current state matches the initial idea of the solution? Briefly
speaking, our research problem concerns how to effectively
communicate, amongst the software team, the result of each
contribution made to the project that has some impact in its
design. When dealing with co-located teams, this may be

@ Springer

mailto:rcepeda@cos.ufrj.br
mailto:andrea@cos.ufrj.br
mailto:werner@cos.ufrj.br
mailto:leomurta@ic.uff.br

118

J Braz Comput Soc (2010) 16: 117-131

a less relevant problem (as communications can be usually
done face-to-face). However, when distributed software de-
velopment is present, that problem must be considered. That
is why, in this scenario, face-to-face communication is usu-
ally too expensive and usual communication made by email,
phone, and instant messaging becomes less effective than it
was in collocated scenarios when anyone can just pick up
a white board and sketch whatever one judges necessary to
make one’s point. Thus, what we mean by less effective, in
this case, is that someone can easily talk about what has been
just done, but cannot effectively show the consequences of
that in the existing structure of the software being made.

To address this issue, we present an approach, called
EvolTrack that, based on software visualization, captures
and communicates with minimal human intervention each
contribution made to a specific software project. Here, con-
tribution means any action (in fact, this can be configured)
resulting in a software evolution. EvolTrack can be deployed
in collocated or distributed settings but its main focus is
when distribution is in place. The communication is made to
all members of the team using EvolTrack and is achieved si-
multaneously, showing everybody the emerged design from
each individual contribution. Actually, it keeps track of all
intermediate designs generated until the most current one,
enabling the user to navigate, if necessary, through all the
evolution history. Moreover, it provides some visual features
that enhance the awareness of what has been changed from
one evolution to another and, with the zooming feature, also
allows working with large projects.

Therefore, we believe that the EvolTrack approach can
effectively supplement the regular communication done in
ordinary software projects, especially when distributed de-
velopment is being used. Note that we are not intending to
eliminate communication; instead we hope to provide ad-
ditional means to make this activity more effective and con-
stant during the software development phase. In this context,
to evaluate the feasibility of EvolTrack in real scenarios, we
executed a qualitative study using free/open source software
(FOSS) projects.

The rest of this paper is organized as follows. Section 2
presents a motivating example to ground the remaining dis-
cussions. Section 3 introduces the EvolTrack approach and
some important aspects of its implementation. Section 4
shows a qualitative study referring to the approach evalua-
tion in real projects. Section 5 discusses related work, and
we conclude the paper in Sect. 6, summarizing what has
been done so far and what our next steps should be.

2 Motivation

Suppose a situation in which a small geographically dis-
tributed software team was hired by MediaTech to create

@ Springer

a version control system, called MediaTech-VCS, which is
intended to manage artefacts other than source code. The
team was divided as follows. One technical leader, called
John, was responsible for gathering and analyzing the soft-
ware requirements. In addition, he was also responsible for
creating an initial conceptual software design representing
the expected solution to the problem. The remaining of the
team consisted of two categories of developers: main de-
velopers and secondary developers. The first category was
in charge of creating the main structure of the system, that
is, those core features representing the software kernel. The
second category, in turn, was asked to create auxiliary fea-
tures, such as those that do not impose influence onto the
system architecture but enhance its usability instead. Note
that the main developers, in their majority, were the most
experienced programmers, while the second category of de-
velopers was less experienced in the adopted technology or
in the software domain being developed.

Scenario 1: Elton is a software developer initially in-
side the second category of developers. While refactoring
his previous code, he received a request from John to cre-
ate, ASAP, a feature where the user could enter information
about the company clients. The result of this feature should
be reflected on the already created client report. However, to
implement this feature John informed Elton he would need
to use the services of fifteen well-defined classes from the
conceptual solution that, at this point, were being developed
by three main developers of the project. John also empha-
sized that the current refactoring activity should be held in
favour of this new feature, and this should occur just after
the necessary set of classes were made available by the main
developers.

To be aware of this appropriate time to start coding the
new feature, Elton devised two possible strategies. The first
strategy is to periodically ask the main developers if the set
of classes and services had already been created. However,
Elton identified some very disturbing problems that could
complicate the execution of this strategy. For instance, iden-
tifying who was responsible for creating each class is usu-
ally not an easy task, especially if the project is developed in
a distributed way, as it is the case. Another problem is that,
in order to establish this kind of communication, he is also
interrupting the work of other developers and, because of
the frequency of it, delaying the whole development process.
Moreover, an additional problem would be the mismatching
between what the main developer says and what is really
implemented.

The second strategy devised by Elton is to periodically
do a check-out of the project from its version control system
to verify if the set of classes and services was implemented.
As a good decision-making person, he established again the
key problems associated with this strategy. At this point, he

J Braz Comput Soc (2010) 16: 117-131

119

noticed that by reading all the source codes, the task of un-
derstanding the current implemented solution would prob-
ably be complicated. A global view of the software being
developed would also be compromised as only a subset of it
would actually be under his review. Finally, despite not be-
ing part of his duties, by using this strategy, he would prob-
ably not be able to identify divergences between what John
said to him about the solution (i.e., the expected solution of
the software) and what is really implemented by the main
developers. As it can be seen, any of these strategies would
probably cause problems to Elton, to the team, or even to the
project itself when adopted.

Scenario 2: After one year of development, John asked
Elton to create an important feature of the project. That is,
despite of his post as secondary developer, a key set of evo-
lutions should now be implemented by Elton. To implement
it, Elton should first understand how the software structure
has been implemented so far, indentifying the key elements
of this structure and their relationships with the rest of the
system. Putting the enthusiasm for this unique opportunity
aside, he wondered how he could achieve this kind of knowl-
edge in a reasonable time frame with the existing tools.

Once again, two strategies came up to his mind. He could
ask John to schedule a meeting with all the main project
developers to gather the information needed to understand
the currently implemented solution and how this solution
was conceived. However, there were some problems asso-
ciated with this strategy that might be considered. In a dis-
tributed development scenario, this kind of meeting could
become very expensive to the project or even impossible to
be executed due to budget or time constraints. Also, as it is
a transfer of knowledge based on informal communication,
characterized by a face-to-face meeting, as explained before,
there are chances of misunderstanding. Additionally, there is
no guarantee that all the important elements of the software
structure will be fully remembered by their creators, as con-
siderable time may have passed until then.

He could, instead, build that body of knowledge by read-
ing current and past source code versions of the software as
a whole. A similar strategy was suggested before when he
wished to identify the creation of a specific set of classes
among all the software artefacts. However, even in medium-
scale projects, this kind of activity would use a large amount
of time and, because of the software complexity, the abil-
ity to understand it through this strategy might be severely
harmed. Moreover, this kind of activity usually requires a
degree of experience on both the technology used and the
conceptual design created for this software. Unfortunately,
this was not the case of Elton.

Scenario 3: In the same period, John decides that he
should monitor the progress of the project concerning its de-
sign. He wants to observe if the main developers were fol-
lowing the conceptual design created by him. He thought

of two strategies to do it. He could periodically schedule
a status meeting with the main developers to retrieve this
information or he could try to periodically read the source
code produced in the project. Besides all the problems re-
lated to this last strategy, as presented before, a team leader
like John does not often have the necessary skills to execute
this task. Due to that, the expected time to execute this strat-
egy becomes impractical in a real development situation.
The first strategy, in which status meetings are scheduled,
comes with the same problems of Elton’s proposed meet-
ings with the main developers to understand the project as
a whole. In addition, in this case, in order to understand the
progress effectively, John should keep formal records of the
results from all the meetings performed until this moment.
He should also keep track of what changed in the project
from one meeting to another. These kinds of bureaucratic
tasks would involve a huge amount of time that could be
used to really understand project dynamics and problems in-
stead.

3 EvolTrack overview

EvolTrack is a software visualization tool that provides a
time based approach to observe the emerging design [21] at
different moments during the development life cycle. Basi-
cally, it periodically extracts project information from a spe-
cific data source and then, after doing some pre-processing
and transformation, presents the corresponding software de-
sign for that period of the project. This period of time can
always be adjusted according to project needs and behav-
iour.

In this context, a data source could be any kind of ex-
ternal system capable of providing structural information
on the project. In other words, it is a place where informa-
tion about software artefacts, such as classes and packages,
can be found. Examples of those places are Version Control
Systems (e.g., Subversion, CVS, and ClearCase) and De-
velopment Workspaces (e.g., Eclipse and NetBeans-based
workspace).

Therefore, once all this structural information is obtained
at a given moment in time, the next step performed is to
transform all of this information into a visual representa-
tion. In this case, a UML based class diagram is used to rep-
resent the software design emerging from the development
activities. Moreover, authorship and date information is also
provided. However, this authorship information refers to the
evolution cause and not to a specific element in the design.
For example, if a Subversion repository is used as the data
source component, usually every check-in made by a project
member will affect the software design, causing its evolu-
tion. Therefore, in this case, the author of a specific software
design will be the developer that performed the check-in; in

@ Springer

120

J Braz Comput Soc (2010) 16: 117-131

other words, the person who triggered the last design evolu-
tion.

As it can be noted, the main functionality provided by the
tool is to visualize the evolution of software design during
the whole development lifecycle. Another interesting func-
tionality provided is the use of the design visualization to ob-
serve metric and its evolution over time, using colour scales
to represent each possible metric that can be visualized. This
topic is better exemplified in Sect. 3.2. Furthermore, a zoom-
ing functionality can be used to explore large visualization
contents.

This approach could be continuously or periodically in-
troduced into a software development process during the
construction phase. For instance, if a developer wants to
keep track of every evolution being made to prevent rework-
ing or to understand what is going on with the project in real
time (scenario 1 of Sect. 2), he/she will probably take advan-
tage of a side-by-side view of the code and of the software
design being evolved, as illustrated by Fig. 1. This config-

Fig. 1 A two-monitor software visualization schema [20]

Fig. 2 EvolTrack architecture

]

uration would enable the developer to be aware, while de-
veloping, of any design evolution made to the project. On
the other hand, if some developer or manager wants to learn
about the design evolution only at specific time intervals
(scenarios 2 and 3 of Sect. 2), as for instance on a weekly
basis, they could just turn on EvolTrack at the end of each
work week, configuring it to generate each design evolution
based on data about the entire week instead of creating one
design evolution for each single change inside the project
structure.

It is important to notice that EvolTrack does not intend
to replace other communication tools such as email, wiki,
phone, instant messaging, etc. It can and should be used as
a supplementary tool for communication. Moreover, it does
not suppress other software engineering techniques such as
inspections, design reviews, and architecture evaluations.
Actually, EvolTrack can be seen as a tool to help enacting
these techniques in a distributed setting.

3.1 EvolTrack architecture

Figure 2 shows the main elements of the EvolTrack archi-
tecture. It consists of four key components: Kernel, Data-
source Connector, Model Transformer, and View Connec-
tor. The Kernel component is still divided into four addi-
tional, not displayed, modules: Datasource Manager, Model,
Persistence, and View Manager. In general, the Datasource
Connector is responsible for extracting project information
from a specific kind of data source and transforming it on

EvolTrack

O\ <<component>> EI @

Datasource Connector

Kernel
Datasource ‘vfe w
(@)
Transflormer
<<component>> gl <<component>> EI <<component>> a

Model Transformer View Connector

Eclipse Platform

@ Springer

J Braz Comput Soc (2010) 16: 117-131

121

the expected representation (i.e., a UML Model). Due to
that, for each kind of data source, an appropriate Datasource
Connector must be designed and implemented. For example,
EvolTrack currently has Datasource Connectors for Subver-
sion, Odyssey-VCS [12], and Eclipse workspaces.

Each of these connectors was implemented using the
plug-in infra-structure provided by the Eclipse Platform.
This infrastructure is based on the concept of extension
points, on the provider side, and extensions on the client
side. Using this approach, the Kernel module can automati-
cally identify and select the appropriate components needed
to execute the whole functionality. Moreover, it is possible
to easily extend the approach by coding additional connec-
tors.

The same idea also applies to the Model Transformer
element. This optional component can add information or
aggregate value to those models initially created by Data-
source Connectors, usually enriching those models with de-
tails about the project, such as, for example, metric.

Usually, the information flows from the data source to
the Datasource Connector which, having performed a re-
verse engineering action, creates a UML model represent-
ing a specific state of the software design. The kernel then
stores this information and, based on the observer [7] design
pattern, notifies all View Connectors that an evolution in the
software design occurred and that a new model has become
available.

Currently, just one view connector is available in Evol-
Track, the one based on the Eclipse platform as the basis

Y
Data
Source

Fig. 3 Information flow
through EvolTrack

View

Connector

for the visualization mechanism. After receiving the notifi-
cation, this connector translates the UML model into a UML
Class Diagram with some annotation, such as the collected
metric (produced by Model Transformers) and author and
date (produced by the Kernel itself).

The previously described process is the basic usage sce-
nario of EvolTrack. However, as it can be seen in Fig. 3,
the Model Transformer component can change this flow by
adding other annotations to the model before it is catalogued
by the Kernel component. The resulting model is called
Marked UML Model as it is actually marked with UML
stereotypes and tagged values according to a specific UML
Profile. Each stereotype or tagged value usually represents a
metric or a measure associated to the project. For example, if
someone wants to test a new method to calculate a coupling
level for classes and visualize the results for each version of
the design, a Model Transformer could be implemented, cre-
ating, for instance, a UML stereotype called ‘coupling level’
and associating it with each class found in the model, using
the new method to set the appropriate tagged value of the
metric in each case.

At the other end, the View Connector is responsible for
creating a visual representation of the design based on the
UML Model retrieved from the Kernel. The idea is to have
one connector for each kind of desired representation. As
previously discussed, just one View Connector is currently
available in EvolTrack. It uses a representation based on
the UML Class diagram to translate the information into vi-
sual data. Additionally, it offers a timeline mechanism where

Extraction & Transformation Tier
Input: Code, VCS Logs
Output: UML Model

i External Transformation Tier
Input: UML Model
! Output: Marked UML Model

Kernel Tier
Input: (Marked) UML Model
Output: (Marked) UML Model

Visualization Tier
Input: (Marked) UML Model
Output: (Marked) Visual Representation

@ Springer

122

J Braz Comput Soc (2010) 16: 117-131

the user can navigate through all design evolutions occurred
during the development lifecycle.

The use of a UML class diagram stems from its compat-
ibility with our internal data model, also based on a UML
standard, and its relative consensus amongst the software
community on describing design information. Another im-
portant point in using UML is because it is a well-known
modelling language used by software engineers and, there-
fore, one that would probably save time as there is no need
to learn a new notation.

The Kernel module orchestrates all this information flow
and maintains all models created at the end of the transfor-
mation phase. It uses a Datasource Manager to keep track of
all installed Datasource Connectors. The process is as fol-
lows: at the initialization time, this manager reads Eclipse
plug-in records to find if some extension of type Datasource
Connector is available. If one or more connectors are found,
they are catalogued and the last running connector is started.
If EvolTrack is being initialized for the first time, no con-
nector is started and the user must choose one Datasource
Connector from the Preferences menu. Thus, subsequent ex-
ecutions will always keep the last choice of the user. The
Datasource Manager is also responsible for checking which
Model Transformers are available and what sequence they
should be executed in.

Once the final model (obtained after the execution of all
transformers) is obtained by the Datasource Manager, it is

Fig. 4 Visualization of a metric

recorded by the Model component as a new model or an
evolution. This component then stores it in the file system
using a Persistence module, indexing each model according
to a linear sequence based on a creation date ordering. Due
to that, every time EvolTrack is re-executed, and it does not
need to extract and transform already-processed evolutions
all over again.

3.2 Visualizing metric evolution

The visualization of metric behaviour over time is an im-
portant feature provided by EvolTrack that, combined with
other features discussed below, helps developers to be aware
of what is going on with the project, possibly indicating
some future problems or situations. Returning to the exam-
ple discussed earlier, if we have a Model Transformer that
enriches each model with coupling information for every
single class, some problems that could occur in the future
would probably be inferred by observing the colour varia-
tion during a certain period of time. Figure 4 illustrates this
behaviour.

The figure presents a set of design evolutions made to a
project and the corresponding application of those coupling
metric as discussed before. Initially, in Version 1, just two
classes exist in the project: GUI and Manager. Note that,
based on the colour scale defined for this metric both have
a low coupling level. However, as the project evolves over

evolution i Version1 . Version3
| eul DB
GUI Manager
Model
Version2 i Version4
| DataManager
GUI Manager
GUI DB ;
i Coupling
Level
Model
LightGUI Model

@ Springer

,,

J Braz Comput Soc (2010) 16: 117-131

Fig. 5 Metric configuration
panel
Profile

Current Profile: :)mpare.profile.hml

Current Metricc Changed

& Control Panel |II Metric Control 3

123
|II Metric View =&
Setup
Metric: Changed -
Color Scale: BTC -

Load Profile | [Enable Metric View |

Range Values @ Specific Values

time, it is possible to see in Version 3 that the class Manager
increasingly becomes a strongly coupled element, just by
observing that its colour rapidly reaches the top of the colour
scale. This simple colour variation could be a sign indicating
that the emerging design is probably becoming inadequate
or that future problems may rise in the project due to the
lack of maintainability of certain software elements.

In this context, project managers or even developers us-
ing the EvolTrack metric visualization feature could quickly
understand and respond to this situation by suggesting the
application of some refactoring or reengineering procedure
on the coupled elements. This mechanism constitutes an im-
portant and useful source of awareness of the way software
has been implemented. There are many possibilities. By us-
ing this infrastructure, different information regarding the
project could be visualized from an evolutionary perspec-
tive.

The tool, in turn, provides a simple way to import a list
of metrics and associate a colour scale for each one. As the
Model Transformer should create a UML Profile to apply
metrics to the model (it is important to remind that a metric
is implemented via UML stereotype and tagged values), the
same UML Profile is used to import the metric in the GUI,
as shown in Fig. 5. Thus, the first step is to load the UML
Profile in the tool. After that, the user has to configure each
metric by selecting one of nine possible colour scales and
defining a value range for it.

Each colour scale has advantages and disadvantages. For
instance, one of the biggest advantages of the provided grey
scale for representing a single scalar variable is the ef-
fectiveness of the human visual system at making judge-
ments about shape from lightness variation [18]. However,
this colour scale offers a limited number of distinguish-
able display values (approximately 100). To address this
issue, EvolTrack also provides optimal colour scales [10],
like OCS (Optimal Colour Scale) and LOCS (Linear Op-
timal Colour Scale—used in the Fig. 4 example), which
maximizes the total number of JNDs (Just Noticeable Dif-
ferences) while preserving a natural order. In addition, the
heated-object scale has a more strongly perceived natural
ordering than a rainbow scale due to the monotonic increase
in brightness and because there is a basis for remembering

|Reset |

the colour order that is based on experience. It increases
monotonically with luminance, but not with any of the other
opponent colour channels.

Actually, the user can associate a value range or spe-
cific values to the colour scale. That is because some metric
may have two or more nonconsecutive values or even non-
numeric values. For example, the Model Transformer cre-
ated for the Orion tool [15] provides metrics for each ele-
ment regarding the concurrency level, merge effort, and sug-
gested configuration management policy. The last one indi-
cates if an element, in this case a class, should be subjected
to a pessimistic (i.e., lock) or optimistic (i.e., merge) pol-
icy. Consequently, the corresponding values for this metric
are: ‘pessimistic’, ‘optimistic’, or ‘any’. This is a practical
case where specific values were used. For each one of the
three values, a different colour was associated according to
a specific colour scale. Therefore, in this implementation,
we were able to see over time whether a class is expected
to be developed in a concurrent manner, indicated by an op-
timistic policy, or not, as indicated by a pessimistic policy.
The inconclusive cases are painted with the colour corre-
sponding to the ‘any’ value. Again, the mechanism may im-
prove awareness in a team that uses Orion suggestions to
build its configuration management policies (Fig. 6).

However, it is important to notice that EvolTrack only
provides the mechanism which other tools and approaches
can make use of to visualize their metric in UML diagrams.
As described before, a Model Transformer can be used to
accomplish that, as the Orion tool did. Therefore, EvolTrack
does not provide or propose any kind of metric associated
to software dimensions such as architecture or its evolu-
tionary aspects. It is only a generic infrastructure that en-
ables the visualization of any metric in the form of tagged
values associated to the elements found in the model. For
example, if the model has a tagged value named COHE-
SION associated to its class elements, the user can configure
EvolTrack to paint this tagged value according to a specific
colour scale. Due to that, the user will be able to observe
the cohesion of the different classes in the model and how it
changes over time, although EvolTrack has no understand-
ing of the meaning of cohesion and on how to collect this
metric.

@ Springer

124

J Braz Comput Soc (2010) 16: 117-131

Fig. 6 Orion results in the
EvolTrack tool | = EvolTrack - EvciTrack-Stage/diagrems

File Edt Diagram Mavigate Search Project Run Window Help

|4 *hotelumiclass_diagram 23

2

%

[classmodel

E ciient
attributes
| -name : 5tring
operatons
classes

— Guest

attributag
emall :5tmng
operations

classss

2 Control Panel lll Metric Control 23

Metric List

o Concurrency - Name:
> Merge effort |=

Ao = Min value:
> Critical Level

+» Policy v Max value:
« i L] K

Color Scale:

sl
4
= Hotel —
= attributes L — i:cm = L
name : String o . attnbutas I
rooms : Room [0..%] [0.4 -number : Integer =
I operators | -roomType : RoomType
E comes ____Dpenations
clacsas
A X
Te.1
7
y - A
[0.7] ¥
ol ¥
I * s
H resenvaton = roomType
attributes attributes
. code : Integer " -name : Sting
-room : Room [0..1] -price : Integer
guest 1 Guest operatons
operators classes
classes
= AR =
m| lll Metric View 1]
Metric Value
Critical Leve 7 Concurrency 0.25
00 T Mergeeffort 08
Policy Pessimistic
D B z
1 V| Critical Leved 0.2

3.3 Perceiving design evolution

As the software development goes on, EvolTrack period-
ically collects structural information about it. This struc-
tural information includes class names, attributes, methods,
packages, and relationships. All this information is used to
reverse engineer the corresponding software design, also
called emerging design. Each time a new design version is
generated, it is stored in a data structure called project lifecy-
cle. Therefore, at a given moment in time, a project lifecy-
cle contains a set of intermediate software design versions
where each version represents a previous state of the soft-
ware.

Resuming the example presented in Sect. 2, using the
EvolTrack approach, Elton could be aware of any evolu-
tion made to the project by simply observing the change
on the state of the current model presented by EvolTrack
(Scenario 1). In that case, he wanted to detect the correct
time to start his new feature implementation. As explained
before, this moment would be marked by the implementa-
tion of fifteen well-defined classes and their services in the
project. Each time a design evolution occurs in the project,
EvolTrack detects it and produces a visualization. In this
case, each element painted red was created from the previ-
ous state of the project and elements painted yellow had just
been changed. As it can be seen, our approach allows defin-
ing fancy diff representations in the design at different points
in time via the configuration of specific metric and colour

@ Springer

scales. Figure 7 shows that the last evolution made to the
project added three classes and modified four other classes.
As it can be seen, the person responsible for such evolution
was a developer named Gustavo. Suppose that the Branch-
Command class is one of the fifteen classes Elton was wait-
ing to develop. By just observing those red classes, Elton
could easily detect that BranchCommand was created at the
last evolution made (Fig. 8). Exploring it with the zooming
feature improves even further the ability to understand and
navigate through the diagram.

Additionally, by using this approach Elton did not need
to interrupt the work of anybody or even read any piece of
code. He could also use EvolTrack to help him with the sec-
ond task assigned to him by John (Scenario 2). This task
involves the creation of an important feature in the project.
Prior to doing that, Elton had to understand the current im-
plemented solution and what the steps to achieve it were.
Using EvolTrack he could reduce the amount of informa-
tion to be understood and, therefore, reduce the complexity
of doing such activity. However, EvolTrack is not supposed
to solve the information overload problem that may emerge
with a large amount of data displayed. One of the main goals
here is to address the awareness problem when such scenar-
ios appear, although we provide the zooming feature to help
with visualizing the design.

Moreover, with the timeline feature (see Fig. 7), it is
possible to navigate through all past design versions of the
project. This can be used as a tool to comprehend the in-

J Braz Comput Soc (2010) 16: 117-131 125

& EvolTrack - EvolTrack-Stage/diagrams/evoltrack umidlass_diagram - Eclipse SDK

File Edit Diagram MNavigate Search Project Run Window Help
Q- B E~ A =] - - 5 | & EvolTrack
o N B3| 15% - &' Java
& project 52 = O || ld) evoltrack.umiclass diagram 53 =g

ii|ls
& MediaTech-VCS

< w b

& Control Panel 2 |II Metric Control |II Metric View =0
Timeline Info

] Author: qustavo
Date: 2008-04-08 04:47PM

I vesen: 3

86M of 112M [7]

Fig.7 Current design of MediaTech-VCS project marked with the evolved and created elements

& EvolTrack - EvolTrack-Stage/diagrams/evoltrack.umiclass_diagram - Eclipse SDK

File Edit Diagram MNavigate Search Project Run Window Help

vl v % v v [| & EvolTrack

3 R R L R R PR R S =Rl - B & o
& Project 2 = B d) "evoltrack.umiclass_diagram 7 =0
ii|fg - j A
& MediaTech-VCS [OpenCommand E] saveCommand E UnlockCommand |_! BranchCommand] MergeCommand
attributes attributes attributes attributes attributes £
-fileName -fileName -user operations. -mergeResultByMergeArqument g
operations operations -ci createBranchTransaction() baseObjectByConfiqurationltem o
run() run() operations listAllContainments() sourceObjectByConfiqurationltem
classes classes unlock{) branch() targetObijectByConfigurationltem
getLockOwnerName() getBase() -conflicts B
classes createNewVersion[) -force
associateNewVersionWithElement() : DiffCommand
associateVersionVersionTree() -phase
associateWithOldVersion() operations
diff() merge()
classes mergeldentity()
mergeValues()
deleteUnprocessedObijects()
mergeAtributes()
mergeAtribute()

mergeReferences()
mergeReference()
processMetadata()
createConfiqurationltem()
createVersion()
associate{)
getMergeArqgument()
classes

« m
& Control Panel i2 ||I Metric Control ||I Metric View =8

Timeline Info

H Author: qustavo
T Date: 2008-04-08 04:47PM

<] [l [0 [Version: 3

86M of 112M (]

Fig. 8 Zoom at BranchCommand class sector of the diagram

@ Springer

126

J Braz Comput Soc (2010) 16: 117-131

termediary steps used to build the current solution. Elton
can explore this navigation manually or automatically. In
the last case, he can define the beginning design version and
click on the play button found below the bar. EvolTrack then
starts to automatically present each evolution made up to the
most current one. Again, by default, EvolTrack shows for
each version which elements were created or changed from
the previous evolution, according to the current metric view
configuration.

The last situation presented in Sect. 2 shows a scenario
where John, the technical leader, wanted to monitor the
project progress focusing on its design (Scenario 3). He
wanted to verify if the conceptual solution he conceived
was truly being followed. Observing the current design of
the project as visualized by EvolTrack and his conceptual
model, he could identify the elements present in both and
the elements present in just one of them. He could also use
the timeline to investigate the moment where some concep-
tual divergence was introduced into the project. Over again,
this solution avoids the need of a regular status meeting to
gather this information or even reading any source code, al-
leviating project schedule and budget.

4 Feasibility evaluation

We conducted a qualitative study using free/open source
software (FOSS) projects to evaluate the use of EvolTrack
in a real scenario. The context of FOSS projects was cho-
sen because they publish their development artefacts, in-
cluding source code, freely through the Internet. Therefore,
FOSS projects represent a unique research opportunity in
software engineering, considering their diversity, complex-
ity, and representativeness of global data. This data can be
mined and visualized to help understanding the evolution of
the project over time.

In general, FOSS projects are marked by unwaged and
collaborative work of geographically distributed developers
who spontaneously contribute to the software development
effort. The core activities in the FOSS development process
are massive parallel development and debugging [5]. Fur-
thermore, these projects are characterized by the high qual-
ity of the products generated, as assured by peer reviewing,
which establishes a critical mass over the software, allow-
ing for the fast identification and correction of defects, and
restrictive integration policies [17].

Although FOSS projects have been subjected to extensive
study, there is little common understanding of the policies
that govern its evolution and architecture design. One estab-
lished knowledge item is that the evolution of FOSS systems
is not well planned, as they evolve in response to the need
of users in the FOSS community [13]. Besides, there is usu-
ally a person or a group responsible for deciding whether the
change requests will be accepted or not.

@ Springer

One problem already identified with the FOSS architec-
ture is that it is not clearly documented. Lack of documen-
tation on the software architecture is a problem as it makes
changing the software an error-prone and counterproductive
activity. Thus, this study is also an opportunity to increase
the awareness about it.

4.1 Study definition and planning

The definition phase provides the general direction of the
study and its scope. The definition of the objectives can
be presented in accordance with the structure proposed by
Wohlin [24]:

Analyze the use of EvolTrack in a real scenario

With the purpose of evaluating

With respect to feasibility, performance, and usability
From the point of view of software developers

In the context of FOSS projects

The study planning entails three steps. The first step con-
sists of the initial selection of FOSS projects to be used
in the study. These projects were randomly chosen from
the SourceForge portal, according to two technical limita-
tions: the source code must have been written in Java and
the adopted version control system must be Subversion, as
the available EvolTrack connectors are prepared to work
with this programming language and repository. As a result,
the seven selected projects are: Adempiere, Atunes, Floggy,
Freecol, Jedit, JFreeChart, and PDF Split and Merge.

The second step is environment preparation, as it can
be seen in Fig. 9, which means manually configuring the
project details in EvolTrack, specifying the following infor-
mation: URL of the Subversion site, username, and pass-
word (which are usually anonymous to read FOSS projects),
project name, the path for the modules we would like to re-
verse engineer, first revision to be explored, and the interval
between revisions.

Finally, in the third step, EvolTrack is responsible for ex-
tracting project information through reverse engineering of
its source code. During this phase, each design version of
the UML class model is constructed and presented.

Evoltrack-SYN O -

Repository: https://floggy.svn.sourceforge.net/svnroot/floggy/trunk/eclipse-floggy-plugin
Username:

Password:

Project: Floggy

Reverse Engineering root: src

Start Revision: 300

Interval between revisions: 10|

Fig. 9 Environment configuration panel

J Braz Comput Soc (2010) 16: 117-131

127

4.2 Study execution

This study was conducted to ascertain the feasibility and us-
ability of EvolTrack approach in real projects. The main is-
sue we wanted to observe was whether the tool could work
with a large amount of data and whether the resulting model
could be understood (scalability in terms of performance
and visualization, respectively). To perform the study, we
gathered data in March 2009 from the seven projects hosted
at the SourceForge portal. Table 1 provides some general in-
formation on the projects analyzed, aiming to characterize
it.

Based on the information shown in Table 1, it is possible
to see that the projects vary greatly in their number of de-
velopers. Four of them have a small number of developers,
two of them have a medium team size and one of them, the
largest, has 157 developers in the team.

Besides, the number of developers usually influences the
number of available versions. However, it is not possible to
detect a correlation between the number of developers and
the number of files or repository size. The information on the
number of files, number of available versions, and repository
size has significant variability among the selected projects.
This diversity helps to amplify the scope of the study but
can also threaten the study as it is not possible to focus on a
specific type of project or generalize the results. According
to the percentage of activity inside the project development,
all of them are active projects.

This heterogeneity of projects is an interesting context to
evaluate the EvolTrack approach as we can observe features
such as feasibility, performance, scalability, and usability in
a real scenario. However, even with the random choice of
projects and the heterogeneity amongst their characteristics,
due to the limited number of projects involved in the study,

it is not possible to say that they are representative enough
to allow the generalization of the study results to any FOSS
project.

During the study, each project was individually config-
ured and executed. The results obtained are summarized
in Table 2. In regard to feasibility, the results show that
EvolTrack correctly worked in all seven projects. In all
cases, it was possible to conclude the three steps planned for
the study and to obtain a complete class model. One exam-
ple of a resulting model, based on the JEdit project is shown
in Fig. 10.

In regard to performance, the results indicate that some
time consuming activities must be executed during the ini-
tial design recovering phase. However, subsequent activities
are executed in a reasonable time frame. In fact, this ini-
tial design recovering phase took more than one hour in al-
most all the projects for the first execution, except Floggy,
which was very small. This delay is acceptable because, tak-
ing JEdit as an example, this first load means checking-out
each of the 15,338 configurations from the repository and,
for each configuration, reverse engineering all 2,715 files
presented in it. This represents a total reverse engineering
effort of around 42 million files. Nevertheless, it is impor-
tant to note that this time consuming processing is executed
just once in the whole project lifecycle. From that moment
on, we only need to add the diff information to retrieve the
next versions of the model.

On scalability, in the first round of execution, when it
was necessary to analyze different versions of each project
as a whole, EvolTrack displayed some memory limitations.
Thus, we needed to choose some specific modules to eval-
uate. The analysis of this shortcoming brought the need
to configure environment variables, such as memory allo-
cation. After the environment preparation, in the second

Table 1 Project general

information Adempiere Atunes Floggy Freecol Jedit JFree chart ~ PDF split
and merge
Created in 2006 2006 2006 2002 1999 2000 2006
Developers 79 3 3 57 157 9 2
% Activity 100 99.99 99.91 100 99.96 99.94 99.97
Files 1435 2373 83 1744 2715 2769 156
Versions 9377 3229 492 5431 15338 2086 905
Repository size 13 MB 96 MB 712 KB 25 MB 21 MB 38 MB 3.8 MB
Table 2 Results of evaluation
execution Adempiere Atunes Floggy Freecol Jedit JFree PDF
Feasibility YES YES YES YES YES YES YES
Performance +/- +/= YES +/= +/—= +/— +/=
Scalability +/— +/— +/— +/- +/—= +/= +/=
Usability YES YES YES NO NO NO YES

@ Springer

J Braz Comput Soc (2010) 16: 117-131

File Edit Diagram MNavigate Search Project Run Window Help
] = Q-G+ =%~ % &~ 5 - | Tahoma ¢ -

|4 evoltrackumiclass_diagram &2

«

& Control Panel = ~_gll] Metric Control| gl Metric View

Fig. 10 Project JEdit

round of execution, EvolTrack worked properly for all seven
projects used.

Finally, on the subject of usability, the results of our sam-
ple projects vary according to their size. The graph in Fig. 11
demonstrates the variance in the number of classes ana-
lyzed for each project. Considering the number of classes
included in each model, the usability was satisfied in most
of the projects. It was possible to visualize and understand
the whole UML class model in these projects. However, in
the biggest models (e.g., Fig. 10), it is possible to notice the
need of new features in EvolTrack to deal with this visu-
alization complexity. In fact, these observations motivated
the creation of the feature that uses red and yellow colours
to highlight changes over time, as previously presented in
Sect. 3.3.

4.3 Result analysis

The goal of this section is to discuss the results achieved
in the evaluation study, in contrast with study objectives.
These results are analyzed according to two perspectives:
the strengths and weaknesses identified in the EvolTrack ap-
proach.

Considering the strength perspective, the results support
the fact that the EvolTrack approach operated correctly, even
with large amounts of data. It means that it appears to be

@ Springer

& EvolTrack - EvolTrack-Stage/diagrams/evoltrack.umiclass_diagram - Ediipse SDK

=)
B8,=

@&

=]

1|

l

%1

1

Z

Ay

Al

1

anl

1

(&l

I
=0

Classes
610
385 466
J.D_' 9 62 20
/ A_— A— 4 /
& & o\ > & & <
I A
bz& & >
¥ « &
&
&
L

Fig. 11 Graph for number of classes

feasible to use in real projects, despite project size or com-
plexity. However, as a future evaluation, it is still necessary
to verify the confidence of the recovered design model from
source code. We also argue that, after some initial time in-
vestment, the performance of upcoming activities is not a
risk for the project normal progress.

On the other hand, from a weakness perspective, we can
highlight the limitation of usability regarding big models.
A possible solution to address the usability issue in the vi-
sualization of UML models is the construction of two new
features: clustering and drill-down. As the clustering feature
would offer the possibility of grouping model elements to-
gether, such as in packages, the drill-down feature would

J Braz Comput Soc (2010) 16: 117-131

129

add navigation possibilities to the grouped elements. When
combined, these features help improve the awareness of de-
velopers and managers, thus being planned for the next ver-
sion of EvolTrack.

Besides these obvious difficulties with large models, the
usability also needs an evaluation that considers the point-
of-view of several people to gather other potential limi-
tations. In this sense, heuristic evaluation is an informal
method for usability analysis where a number of evaluators
are presented with an interface and asked to comment on
it [14]. People can conduct this evaluation relying on a small
set of heuristics such as the nine basic usability principles
from [11]. The usability evaluation with Nielsen heuristics
is planned as part of future work.

As a limitation, this evaluation study followed a qualita-
tive observational approach and cannot be considered as a
case study as defined by Yin [25]. Furthermore, the small
amount of samples, consisting of only seven projects, pre-
vents the generalization of the results. Although these initial
findings cannot be considered as strong evidence, they help
identify some adjustment opportunities in the EvolTrack ap-
proach and to plan its future use.

In anticipating some perspectives for future research, it
is possible to envision the development of a new datasource
connector for Git that is a version control system with in-
creasing use in FOSS development projects. Besides, we can
also consider the idea of creating a generic datasource con-
nector that could integrate with any version control system.
This could be achieved using mechanisms such as Maven
SCM API [1].

5 Related work

One of the first works made on the use of visualization tech-
niques in order to explore software structure was that con-
ducted by Ball and Eick in the mid-90s [2]. They showed
that there are three basic software properties that can be
visualized: software structure, runtime behaviour, and the
code itself. Along with that, they demonstrated how to vi-
sualize code version histories, difference between releases,
static properties of code, code profiling and execution hot
spots, and dynamic program slices. Virtually all views were
based on what they called pixel representation, where each
line of code is presented using a small number of colour-
coded pixels, therefore, achieving a higher information den-
sity.

Aiming at uncovering project structure and understand-
ing how it changes over time, Froehlich and Dourish [6] de-
veloped the Augur tool that helps exploring lines of code
to create a visualization approach of the software structure.
Therefore, the tool associates each line of code with a set
of information of interest, such as what activity it relates to,

which method or class it belongs to, who was responsible
for its creation, amongst other types of information.

Wettel and Lanza [22] use a 3D city metaphor to explore
and visualize the evolution of object-oriented software sys-
tems. They represent classes as buildings located in districts
representing the packages where classes are defined. Metrics
are used to define the visual properties of the artefacts dis-
played, such as, for example, the number of methods of one
class defining its height. Regarding the evolutionary aspect,
they provide three visualization techniques: an Age Map to
depict the age distribution, a Time Travel to step through sys-
tem history, and a Timeline to capture the entire evolution of
a software artefact in a single view.

German et al. [8] define as software traces the informa-
tion left by software contributors of a project throughout the
development process, such as email lists, Web sites, records
in the version control system, releases of the software, doc-
umentation, and source code, amongst others. Then the
softChange [8] tool was designed to transform these soft-
ware traces, using CVS repositories and certain heuristics,
into high level information that is presented to the end
user.

EvoLens [16] enables a user to view the evolution of the
software from multiple dimensions. This approach was de-
veloped to work in object-oriented systems. The tool was
designed to use versioning systems as the source of infor-
mation used to collect data from the software. Specifically
speaking, the tool supports data from software developed in
Java and kept in a CVS repository. The time is discretized
using the dates generated by the versioning system. That is,
evolution happens when the check-in of the code happens
in CVS whilst the hierarchy of the software is represented
by its own structure. In this context, the mechanism used
to visualize the structure of the software is based on graphs
as a representation and colours, which are used to represent
changes in parts of the software. Additionally, a visualiza-
tion model characterized by lens [19] (lens-view) is used to
reduce the amount of information presented to the user of
the tool. Moreover, the EvoLens provides some diagram in-
teraction and manipulation features, such as zooming and
the filtering of items to display.

These related works can be seen as supplementary to
EvolTrack as they are focused on software representations
other than UML such as: source-code, graphs, and other
high-level metaphors (i.e., buildings in a city). Additionally,
they do not have the high flexibility provided by EvolTrack
(as enabled by the transformers mechanism) on using met-
rics to define arbitrary visual properties. Moreover, the pos-
sibility of convergence or divergence identification regard-
ing an initial conceptual solution is extremely hampered
by the use of a visual representation based on lines of
source code, for instance. Another distinguished feature of
EvolTrack is the ability for real-time monitoring of project

@ Springer

130

J Braz Comput Soc (2010) 16: 117-131

development with the appropriate data source connector
(Eclipse workspace connector), allowing the playback of
any period in the development of the software.

Another related work is the Fraunhofer SAVE tool [4]. It
was developed as an Eclipse plug-in for static evaluations of
software architectures. It uses software visualization tech-
niques to first present the architecture, using visual elements
such as UML components and packages, and secondly, to
check the compliance of the architecture with some archi-
tectural reference provided by the users. In order to do that,
it offers three approaches: using reflection models, relation
conformance rules, and component access rules. Moreover,
for each component relation found in the architecture, the
tool assigns one of the three types: convergence, divergence,
and absence. The first is a relation between two components
that is allowed, or was implemented as intended. The sec-
ond means a relation that is not compliant with the planned
architecture. The third is a relation that was intended but not
implemented.

Carneiro et al. [3] created a tool called SourceMiner,
also implemented as an Eclipse plug-in to support the study
of how helpful visual interfaces are in supporting mainte-
nance tasks. It integrates different visualization paradigms
into the so-called views. Thus, the tool provides four kinds
of view: a treemap view for showing packages, classes, and
methods as nested rectangles; a polymetric view which en-
ables the user to analyze and understand complex systems in
terms of methods, lines of code, and inheritance hierarchies,
without the need for reading source code; and a class and
package dependency view, able to arrange classes and pack-
ages in a radial graph, linking them as per their dependency
links.

Similarly to the EvolTrack tool, the last two approaches
were both implemented as Eclipse plug-ins, enforcing this
feature (IDE integration) as an important requirement for
any approach aimed at supporting software development ac-
tivities. Each one has different purposes, although they are
all based on software visualization. Nevertheless, it is worth
to compare how these three tools (SAVE, SourceMiner, and
EvolTrack) produce in the end an architectural snapshot of
the system. Both SAVE and SourceMiner only work with
data presented on each Eclipse workspace, therefore, pro-
ducing local and individual results, whereas EvolTrack is
able to produce global and unified results as it always uses
one centralized data source (even if the data is retrieved
from many individual workspaces). For instance, if a team
chooses to use each workspace as a data source, EvolTrack
will create a single and unified view representing the union
of all this information and present the same result to all par-
ties involved. Another interesting point is that those tools do
not present a time-based perspective, that is, the evolution is
not considered in both cases.

@ Springer

6 Conclusions and future work

This paper presented an approach based on software visu-
alization to increase the awareness of design evolution in
software projects. As explained, despite the amount of work
made so far in the software evolution area, few works were
really concerned with providing support to the understand-
ing of this important and intrinsic part of the software, as
seen from an evolutionary standpoint. Therefore, it is im-
portant to state that the main contribution of this work is
not to extract UML diagrams from software development
projects but to gather scattered information on the project,
from individual development workspaces (or from a central
repository), into a concise and unified retrospective view of
its evolving structure, represented via a uniform and well-
known notation.

As a powerful abstraction mechanism, the emerging soft-
ware design can be used to better comprehend the current
state of software and how it evolves over time. It can dras-
tically cut down the amount of information to be analyzed
and can provide a less intrusive method to understand the
work being done by the other parties. It can also enhance
the ability to monitor the project progress, reducing the need
to schedule frequent status meetings. Moreover, this kind of
approach provides a constant formal communication chan-
nel where everybody related to the project can have a single
and uniform view of the whole software being developed.

In order to materialize all these ideas, a tool called
EvolTrack was built and presented in this paper. It provides
a time based approach to observe the emerging design at
different points during the development lifecycle. Its exten-
sible architecture enables to plug-in connectors to extract
data (data source connector) and also to visualize data (view
connector). Therefore, the tool is potentially able to interact
with any kind of data source, ranging from version control
systems to programming environments. In addition, model
transformer connectors can be created to enhance the model
generated by the data source connector with metrics or some
other types of information. This feature enables the tool to
be used with other approaches that aim at visualizing data re-
lated to the project under a specific perspective. This kind of
mechanism can represent a powerful environment to present
more relevant information such as refactoring timing. For
example, if the trigger to execute a refactoring in a class is
a coupling threshold, a transformer can be built to compute
this metric and show it via coloured diagrams. If one asso-
ciates some specific colour to that threshold, the change in
colours can easily point the correct moment to perform the
refactoring procedure.

The tool also provides a dual colour schema, which can
be disabled or enabled, to improve the comprehensibility of
the presented diagram. In this case, a red colour is used for
the elements that have been created since the last evolution

J Braz Comput Soc (2010) 16: 117-131

131

detected by EvolTrack, and a yellow colour is used to mark
those elements that have just been modified from the previ-
ous evolution. The need for these features was discovered
during the qualitative study, as shown in Sect. 4. The study
shows that, although every single evolution has been suc-
cessfully detected and visualized, an awareness loss was de-
tected when dealing with medium to large diagrams. This
occurred because it became very difficult to identify what
changed from one evolution to another.

As it can be seen, there is a wide range of possibili-
ties to enhance the proposed approach. Starting with the
source of information, other types of data source might be
implemented to retrieve data from other places than Sub-
version, Odyssey-VCS, or Eclipse, connectors that already
exist. The implementation of additional visualization tech-
niques will probably enable the handling of larger data sets
and increase the usability of the approach. Another very in-
teresting point which is currently under development is the
use of EvolTrack to create an automatic mechanism to com-
pare the conceptual design, represented via watermark, with
the emerging design. This activity was mentioned early in
this paper but using a manual approach. By automating this,
it will certainly save time and significantly increase one’s
ability to be aware of the course the software project is tak-
ing.

Acknowledgements
and CNPq.

This work was financially supported by CAPES

References

—

Apache Maven. http://maven.apache.org/

2. Ball T, Eick SG (1996) Software visualization in the large. Com-
puter 29(4):33-43

3. Carneiro GDF, Magnavita R et al (2008) Combining soft-
ware visualization paradigms to support software comprehen-
sion activities. In: Proceedings of the 4th ACM symposium
on software visualization. ACM, New York, pp 201-202.
doi:10.1145/1409720.1409755

4. Duszynski S, Knodel J et al (2009) SAVE: software architecture
visualization and evaluation. In: European conference on soft-
ware maintenance and reengineering. IEEE Computer Society,
Los Alamitos, pp 323-324. http://doi.ieeecomputersociety.org/
10.1109/CSMR.2009.52

5. Feller J, Fitzgerald B (2000) A framework analysis of the open

source software development paradigm. In: Proceedings of the

21th international conference on information systems. Association

for Information Systems, pp 58—69

10.

11.

12.

13.

14.

15.

17.
18.

20.

21.

22.

23.
24.

25.

Froehlich J, Dourish P (2004) Unifying artifacts and activities in
a visual tool for distributed software development teams. In: Pro-
ceedings of the 26th international conference on software engi-
neering. IEEE Computer Society, Los Alamitos, pp 387-396
Gamma E, Helm R et al (1994) Design patterns: elements of
reusable object-oriented software. Addison—Wesley, Reading
German DM, Hindle A (2006) Visualizing the evolution of soft-
ware using softchange. Int J Softw Eng Knowl Eng 16(1):5-22
Lehman M (1981) Correction to programs, life cycles, and laws of
software evolution. Proc IEEE 69(4):485

Levkowitz H, Herman GT (1992) Color scales for image data.
IEEE Comput Graph Appl 12(1):72-80

Molich R, Nielsen J (1990) Improving a human-computer dia-
logue. Commun ACM 33(3):338-348. doi:10.1145/77481.77486
Murta L, Corréa C et al (2008) Towards odyssey-VCS 2: improve-
ments over a UML-based version control system. ACM, New
York, pp 25-30. doi:10.1145/1370152.1370159

Nakakoji K, Yamamoto Y et al (2002) Evolution patterns of open-
source software systems and communities. In: Proceedings of the
international workshop on principles of software evolution. ACM,
New York, pp 76-85. doi:10.1145/512035.512055

Nielsen J, Molich R (1990) Heuristic evaluation of user inter-
faces. In: Proceedings of the SIGCHI conference on human fac-
tors in computing systems: empowering people. ACM, New York,
pp 249-256. doi:10.1145/97243.97281

Prudencio J, Murta L et al (2009) On the selection of concurrency
control policies for configuration management. In: Brazilian sym-
posium on software engineering (SBES), pp 155-164

Ratzinger J, Fischer M et al (2005) EvoLens: lens-view visu-
alizations of evolution data. In: Eighth international workshop
on principles of software evolution, pp 103-112. doi:10.1109/
IWPSE.2005.16

Raymond ES (2001) The cathedral & the bazaar. O’Reilly Media
Rheingans P (1999) Task-based color scale design. In: Proceed-
ings applied image and pattern recognition, pp 35-43

Sarkar M, Brown MH (1992) Graphical fisheye views of
graphs. In: Proceedings of the SIGCHI conference on human
factors in computing systems. ACM, New York, pp 83-91.
doi:10.1145/142750.142763

SilvaIAD, Chen PH et al (2006) Lighthouse: coordination through
emerging design. In: Proceedings of the 2006 OOPSLA work-
shop on eclipse technology eXchange. ACM, New York, pp 11—
15. doi:10.1145/1188835.1188838

Westhuizen CVD, Chen PH et al (2006) Emerging design: new
roles and uses for abstraction. In: Proceedings of the 2006 inter-
national workshop on role of abstraction in software engineering.
ACM, New York, pp 23-28. doi:10.1145/1137620.1137626
Wettel R, Lanza M (2008) Visual exploration of large-scale system
evolution. In: Proceedings of the 2008 15th working conference
on reverse engineering. IEEE Computer Society, Los Alamitos,
pp 219-228

Winograd T (1996) Bringing design to software. ACM, New York
Wohlin C, Runeson P et al (1999) Experimentation in software
engineering: an introduction. Springer, Berlin

Yin RK (2002) Applications of case study research, 2nd edn. Sage,
Thousand Oaks

@ Springer

http://maven.apache.org/
http://dx.doi.org/10.1145/1409720.1409755
http://doi.ieeecomputersociety.org/10.1109/CSMR.2009.52
http://doi.ieeecomputersociety.org/10.1109/CSMR.2009.52
http://dx.doi.org/10.1145/77481.77486
http://dx.doi.org/10.1145/1370152.1370159
http://dx.doi.org/10.1145/512035.512055
http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1109/IWPSE.2005.16
http://dx.doi.org/10.1109/IWPSE.2005.16
http://dx.doi.org/10.1145/142750.142763
http://dx.doi.org/10.1145/1188835.1188838
http://dx.doi.org/10.1145/1137620.1137626

	EvolTrack: improving design evolution awareness in software development
	Abstract
	Introduction
	Motivation
	EvolTrack overview
	EvolTrack architecture
	Visualizing metric evolution
	Perceiving design evolution

	Feasibility evaluation
	Study definition and planning
	Study execution
	Result analysis

	Related work
	Conclusions and future work
	Acknowledgements
	References

