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Abstract Schema matching is a fundamental issue to many
database applications, such as query mediation and data
warehousing. It becomes a challenge when different vocab-
ularies are used to refer to the same real-world concepts. In
this context, a convenient approach, sometimes called ex-
tensional, instance-based, or semantic, is to detect how the
same real world objects are represented in different data-
bases and to use the information thus obtained to match the
schemas. Additionally, we argue that automatic approaches
of schema matching should store provenance data about
matchings. This paper describes an instance-based schema
matching technique for an OWL dialect and proposes a data
model for storing provenance data. The matching technique
is based on similarity functions and is backed up by experi-
mental results with real data downloaded from data sources
found on the Web.

Keywords Schema matching - OWL - Similarity -
Provenance

L.A.PP. Leme (X)) - M.A. Casanova - K.K. Breitman -

A.L. Furtado

Department of Informatics, Pontifical Catholic University of Rio
de Janeiro, Rua Marqués de S. Vicente, 225, Rio de Janeiro, RJ,
CEP 22451-900, Brazil

e-mail: lleme @inf.puc-rio.br

M.A. Casanova

e-mail: casanova@inf.puc-rio.br

K.K. Breitman
e-mail: karin@inf.puc-rio.br

A.L. Furtado
e-mail: furtado @inf.puc-rio.br

1 Introduction

A database conceptual schema, or simply a schema, is a
high level description of how database concepts are orga-
nized. A schema matching from a source schema S into a
target schema T defines concepts in 7 in terms of the con-
cepts in S.

The problem of finding schema matchings becomes a
challenge when different vocabularies are used to refer to
the same real-world concepts [7]. In this case, a convenient
approach, sometimes called extensional, instance-based or
semantic, is to detect how the same real-world objects are
represented in different databases and to use the informa-
tion thus obtained to match the schemas. This approach is
grounded on the interpretation, traditionally accepted, that
“terms have the same extension when true of the same
things” [24].

Moreover, in many applications, the schema matchings
alone are not sufficient; it is also required to unveil the ev-
idences, and to reveal the methods used to get to the final
alignments. We refer to such data as the provenance data
about matchings.

In this paper, we address the problem of matching two
schemas that belong to an expressive OWL dialect. We adopt
an instance-based approach, assuming that a set of instances
from each schema is available.

The major contributions of this paper are four-fold. First,
we decompose the problem of OWL schema matching into
the problem of vocabulary matching and the problem of con-
cept mapping. We also introduce sufficient conditions guar-
anteeing that a vocabulary matching induces correct concept
mappings. Second, we describe an OWL schema matching
technique based on the notion of similarity. Third, we evalu-
ate the precision of the proposed technique using data avail-
able on the Web. Finally, we propose a data model to store
provenance data.
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Several papers address schema matching. Rahm and
Bernstein [25] is an early survey of schema matching tech-
niques. Euzenat and Shvaiko [13] survey ontology matching
techniques. Castano et al. [8] describe the H-Match algo-
rithm to dynamically match ontologies.

Bilke and Naumann [2] describe an instance-based tech-
nique that explores similarity algorithms. Brauner et al. [4]
adopt the same idea to match two thesauri. Wang et al. [27]
describe a technique to match Web databases, which uses a
set of typical instances. Brauner et al. [6] apply this idea to
match geographical database. Brauner et al. [5] describe a
matching algorithm based on measuring the similarity be-
tween attribute domains.

Unlike any of the above techniques, the schema matching
process we propose uses similarity functions to induce vo-
cabulary matchings in a non-trivial way, using an expressive
OWL dialect. Through a set of examples, we also illustrate
that the structure of OWL schemas may lead to incorrect
concept mappings, and indicate how to avoid such pitfalls.

This paper is organized as follows. Section 2 introduces
the OWL dialect adopted and the notions of vocabulary
matching and concept mapping. Section 3 describes our
technique to obtain OWL vocabulary matchings and con-
tains experimental results. Section 4 describes how to in-
duce concept mappings from vocabulary matchings. Sec-
tion 5 presents a provenance data model for schema match-
ings. Finally, Sect. 6 lists the conclusions and directions for
future work.

2 OWL schema matching
2.1 OWL extralite

We assume that the reader is familiar with basic XML con-
cepts. In particular, recall that a resource is anything iden-
tified by an URIref and that an XML namespace or a vo-
cabulary is a set of URIrefs. A literal is a character string
that represents an XML Schema datatype value. We refer
the reader to [1] for more details.

An RDF statement (or simply a statement) is a triple
(s,p,0), where s is a URIref, called the subject of the
statement, p is a URIref, called the property of the state-
ment, and o is either a URIref or a literal, called the object
of the statement; if o is a literal, then o is also called the
value of property the p.

The Web Ontology Language (OWL) describes classes
and properties in a way that facilitates machine interpreta-
tion of Web content. The description of OWL is organized
as three dialects: OWL Lite, OWL DL, and OWL Full.

We will define and work an OWL dialect, that we call
OWL Extralite. It supports:

e named classes
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datatype and object properties

subclasses

individuals

domain and range of datatype and object properties

e the domain is always a class

e the range of a datatype property is an XML schema
type, whereas the range of an object property is a class

e minCardinality and maxCardinality, with the usual mean-
ing

e inverseFunctionalProperty, which captures simple keys

(we note that only OWL Full supports the inverseFunc-

tionalProperty for datatype properties)

Note that, OWL Extralite thus defined has the same ex-
pressiveness as UML [22]. In the context of this paper, we
use OWL Extralite to express database schemas since it is a
convenient technology to exchange data in the web, as well
as to manipulate database schemas.

An OWL schema (more often called an OWL ontology)
is a collection of RDF triples that uses the OWL vocabulary.
A concept in an OWL schema is a class, datatype property
or object property defined in the schema. The vocabulary
of the schema is the set of concepts defined in the schema
(a set of URIrefs). It is important to note that, unlike UML,
the scope of a property name is global to the OWL Extralite
schema.

A triple of the form (s, rdf:type, c) indicates that
s is an instance of a class c; a triple of the form (s, p, V)
indicates that s has a datatype property p with value v; and
a triple of the form (s, p, o) indicates that s and o are
related by an object property p.

In the rest of the paper, we refer to OWL Extralite
schemas simply as schema. Figures 1 and 2 show schemas
for fragments of the Amazon and the eBay databases, using
a shorthand notation to save space and improve readabil-
ity. Consistently with XML usage, from this point on, we
will use the namespace prefixes am: and eb: to refer to the
vocabularies of the Amazon and the eBay schemas respec-
tively, and qualified names of the form V: T to indicate that
T is a term of the vocabulary V.

In Fig. 1, for example, am:title is defined as a
datatype property with domain am:Product and range
string (an XML Schema data type), am: Book is declar-
ed as a subclass of am: Product, and am: publisher is
defined as an object property with domain am:Book and
range am:Publ. Note that the scope of am:title and
am:publisher is the schema, and not the classes defined
as their domains.

Furthermore, although not indicated in Fig. 1, we assume
that all properties, except am:author, have maxCardi-
nality equal to 1, and that am: isbn is inverse functional.
This means that all properties are single-valued, except
am:author, which is multi-valued, and that am: isbn is
a key of am: Book. Likewise, although not shown in Fig. 2,
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Product
title range string
listPrice range decimal
currency range string
Book is-a Product
author range string
edition range integer
isbn range string

ean range string
detailPageURL range anyURI

publisher range Publ
Publ

name range string

address range string

Music is-a Product
Video is-a Product
PCHardware is-a Product

Fig. 1 An OWL schema for a fragment of the Amazon Database

Seller
name range string
redistrationDate range dateTime
offers range Offer
Offer
quantity range integer
startPrice range double
currency range string
seller range Seller
product range Product
Product
title range string
condition range string

returnPolicyDetails range string

offers range Offer
Book is-a Product

author range string
edition range integer
publicationYear range integer
isbn-10 range integer
isbn-13 range integer
publisher range string
binding range string
condition range string

Music is-a Product
DVDMovies is=-a Product
ComputerNetworking is-a Product

Fig. 2 An OWL schema for a fragment of the eBay Database

all properties, except eb:author, have maxCardinality
equal to 1, and eb:isbn-10 and eb:isbn-13 are in-
verse functional.

2.2 Vocabulary matching and concept mapping

We decompose the problem of schema matching into the
problem of vocabulary matching and the problem of concept
mapping. In this section, we introduce both notions with the
help of examples.

In what follows, let S and T be two schemas, and Vg
and V7 be their vocabularies, respectively. Let Cs and Cr
be the sets of classes and P g and P 7 be the sets of datatype
or object properties in Vg and V r, respectively.

A contextualized vocabulary matching between S and T
is a finite set u of quadruples (v1, e1, v2, €2) such that

e if (v, v2) € Cs x Cr, then e] and e; are the top class T
o if (v, 1) € Pg x P, then e¢; and e, are classes in Cg
and C7 that must be subclasses of the domains, or the
domains themselves, of properties v; and vy, respectively

If (v1, e1, v2, e2) € u, we say that u matches vy with v in
the context of ey and e>, that e; is the context of v; and that
(ei, v;) is a contextualized concept, for i = 1,2. A contex-
tualized property (or class) matching is a matching defined
only for properties (or classes).

Intuitively, a vocabulary matching expresses equiva-
lences between properties and classes in a given context.
The context of a property P in a vocabulary matching is an
RDF class that specifies the rdf : type of subjects of ex-
isting triples of the form (?subject P ?object) for
which the matchings holds. The context of a class is always
the top class T (i.e., this notion is not used for class match-
ings). Note that, if the database instances follows the schema
the class of the ? subject must be either the domain of the
property p or a subclass of its domain, because the property
p can only be applied to database instances of that classes.

For example, Table 1 shows a fragment of the vocabu-
lary matching between the schemas in Figs. 1 and 2. The
first row indicates that the classes am: Book and eb: Book
are equivalent. The last row indicates that the property
am:Publ applied to instances of type am: Publ is equiv-
alent to the property eb:publisher applied to instances
of type eb: Book.

A concept mapping from a source schema S to a target
schema T is a set of transformation rules that express con-
cepts of the target schema 7 in terms of concepts of the
source S such that it is possible to translate queries over T
into queries over S.

In this paper, we consider queries defined in the SPARQL
Query Language for RDF [23]. The query of Fig. 3a re-
turns titles, authors and publishers of book instances from
the Amazon database. The variable ?b in lines 4—6 means
that only instances which have the properties author, title,
and publisher attached to them match the WHERE criteria.
The variable ?p in lines 6 and 7 means that, in addition to
the previous criteria, only instances which are related to an-
other instance through the property am: publisher match
the WHERE criteria. This is the JOIN relational operator for
RDF graphs. Figure 3b shows an equivalent query over the
eBay database.

Let A and E be the schemas of Amazon and eBay data-
bases, respectively, and Ag and Eg be states of these two
databases, i.e. Ag and Eg contain individuals and their prop-
erty values of the two databases. The query depicted in
Fig. 3a is valid over the RDF graph A U Ag.

Now consider the graph G = EUAU Ag, i.e. the Amazon
data with the vocabularies of Amazon and eBay. Let us see

@ Springer
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Table 1 Example of a

vocabulary matching between Amazon eBay
Amazon and eBay schemas V1 el vy e
am:Book T eb:Book T
am:title am:Book eb:title eb:Book
am:author am:Book eb:author eb:Book
am:1listPrice am: Product eb:startPrice eb:0ffer
am:name am: Publ eb:publisher eb:Book
Fig. 3 Simple SPARQL queries 1. PREFIX am:<...> 1. PREFIX eb:<...>
over the Amazon and eBay 2. SELECT ?title 2author ?pub 2. SELECT ?title 2author ?pub
databases 3. WHERE 3. WHERE
4. {?b am:author ?author. 4. {?b eb:author ?author.
5. ?b am:title ?title. 5. ?b eb:title ?title.
6. ?b am:publisher ?p. 6. ?b eb:publisher ?pub}
7. ?p am:name ?pub}

a) SPARQL query over the Amazon database

how to add triples to G in order to get the same answer while
submitting the previous two queries to G. To do that, we
adopt the Semantic Web Rule Language (SWRL) [16], in a
simpler syntax, to infer additional triples. An example of the
rules in our simplified syntax would be:

1. eb:title(b,t) <« am:title(b,t),
am:Book (b)

2. eb:Book(b) <~ am:title(b, t),
am:Book (b)

The first rule says that, if b is an individual attached to
the property am: title and it is of class am:Book then
b is attached to the property eb:title. The second rule
means that if the same conditions hold then b is of class
eb:Book. Note that these two rules can be derived from
the second matching depicted on Table 1 because the match-
ing says that the property am:title while attached to
instances of class am:Book is equivalent to eb:title
when subjects are of class eb:Book. For example, imag-
ine the triples of the form (b, am:title, t)
(b, rdf:type, am:Book). We can directly infer the
triples (b, eb:title, t) and (b, rdf:type,
eb:Book).

We can extend the previous set of rules using other rows
of Table 1 as follows.

and

3. eb:author (b,a) < am:author (b, a),
am:Book (b)

4. eb:Book (b) <« am:author (b, a),
am:Book (b)

5. eb:startPrice (b, pr)
< am:1listPrice(b,pr), am:Book(b)

6. eb:Book(b) «~am:1listPrice(b,pr),

am: Book (b)

@ Springer

b) SPARQL query over the eBay database

PREFIX am:<...>

SELECT ?title ?author ?pub

WHERE
{?b
?b
?b
b
?p
?p

am:author ?author.
rdf:type am:Book.
am:title ?title.
am:publisher ?p.
am:name ?pub.
rdf:type am:Publ}

Fig. 4 Translate SPARQL query from Fig. 2

7. eb:publisher (b,n)
<« am:publisher (b,p), am:name(p,n),
am:Book (b)

8. eb:Book(b,n) <« am:publisher (b, p),
am:name (p,n), am:Publ (p)

9. eb:Book(b) <« am:Book (b)

Note that rule 8 is not directly derived from Table 1. We
will later specify, how to derive such a rule.

Now let R be the set of 9 rules derived from vocabulary
matching of Table 1 and R(G) be the set of inferred triples
from G by R. Then the queries of Fig. 3 over G U R(G)
return the same set of answers.

The rules can be used to do query translation. Con-
sider that a query over eBay should be translated into a
query over Amazon. According to rule 3, triples of the form
(b, eb:author, a) can be derived from triples (b,
am:author, a), (b, rdf:type, am:Book). By
the same rule, the triple pattern {?b eb:author ?au-
thor} canbereplacedby {?b am:author ?author.
?b am:author ?2author.}. Using rules 1, 3, and 7,
the query over eBay can be translated into a query over
Amazon as in Fig. 4. The translated query can be simpli-
fied if we consider that the domain of am:publisher is
am:Book and the domain of am:name is am:Publ. In
this case, lines 5 and 9 can be omitted.
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3 Instance-based vocabulary matching
3.1 Instance-based technique

In this section, we describe an instance-based process to
create contextualized vocabulary matchings that are struc-
turally consistent.

Let S and T be two (OWL Extralite) schemas, and Vg
and Vr be their vocabularies, respectively. Let Cg and Cr
be the sets of classes, and Pg and Pr be the sets of datatype
or object properties in Vg and V7, respectively.

A contextualized vocabulary matching between S and T
is a finite set wy of quadruples (vy, e1, v2, e2) such that

(i) if (v1,v2) € Cs x Cr, then e and e, are the top class T
>i1) if (v, vp) € Ps x Pr, then e and e; are classes in Cg
and Cr that must be subclasses of the domains of vy
and vy, respectively
(iii) and these are the only possible quadruples in @y

If (v1,e1,v2,e2) € uy, we say that wy matches vy with
vy in the context of e1 and e, that e; is the context of v; and
that (v;, e;) is a contextualized concept, for i =1, 2. A con-
textualized property (or class) matching is a matching de-
fined only for properties (or classes).

We first recall the matching technique for catalogue
schemas based on similarity heuristics introduced in [17].
Briefly, a catalogue is a relational database whose schema S
has a single table. Given a catalogue state Ug, an attribute
A of S is represented by the set of values of A that occur in
Ug, or by the set of pairs (i, v) such that v is the value of
A for the object with id i that occurs in Ug. If the domain
of A is a set of strings, the set of values is replaced by a set
of tokens, and the attribute representations are reinterpreted
accordingly. Similarity, models were then applied to such

attribute representations to generate attribute matchings be-
tween two catalogue schemas.

Bilke and Naumann [2] propose an instance matching
technique where each database tuple is represented by a
character string, created by concatenating all attribute val-
ues of each tuple. The technique uses k-mean clustering al-
gorithms to find duplicate tuples. The identification of du-
plicates is necessary for creating (i, v) representations of at-
tributes. However, we note that the representations of the
same object in distinct databases may differ in the list of at-
tributes and/or in the attribute values. As a consequence, we
may end up with dissimilar tuples that are used to represent
the same object.

For example, suppose that we apply the Bilke and Nau-
mann technique to match the two instances that represent the
book “The Tragedy of Romeo and Juliet”, whose property-
value pairs are shown in Table 2. If we measure the similar-
ity between the sets of tokens by the percentage of common
tokens extracted from all property values of each instance,
we obtain a score of 43% of common tokens. By contrast,
if we consider only the values of properties that match, the
similarity increases to 70%. Please note that, to improve the
instance matching strategy, we used the fact that am: Book
matches eb : Book, and the fact that several other properties
match.

Combining these observations, we propose the four-step
vocabulary matching process outlined as follows:

(1) Generate a preliminary property matching using simi-
larity functions.

(2) Use the property matching obtained in Step (1) to gen-
erate a class matching.

(3) Use the property matching obtained in Step (1) to gen-
erate an instance matching.

Table 2 Example the same

book instance representation in cBay Amazon
eBay and Amazon
isbn-10 = “039577537X" isbn = “039577537X"
isbn-13 = 9780395775370 ean = 9780395775370
title = “The Tragedy of Romeo title = “Tragedy of Romeo and

and Juliet”

Juliet: And Related Readings
(Literature Connections)”

author = “William Shakespeare” author = “William
Shakespeare”

publisher = “Houghton Mifflin” name = “Houghton Mifflin
Company”

returnPolicyDetails = “NO -

RETURNS ARE ACCEPTED”

condition = “Like New” -

binding = “Hardcover” -

listPrice = 18.92

currency = “USD”
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(4) Use the class matching and the instance matching ob-
tained in Step (2) to generate a refined contextualized
property matching.

The final vocabulary matching is the result of the union
of the class matching obtained in Step (2) and the refined
property matching obtained in Step (4). Step (1) generates a
preliminary property matching based on the intuition that
“two properties match iff they have many values in com-
mon and few values not in common”. Step (2) creates class
matchings that reflect the intuition that “two classes match
iff they have many matching properties”. To work correctly,
Steps (2) and (3) require that Step (1) generates preliminary
property matchings that do not use (7, v) pairs to represent
properties.

In what follows, let S and T be two schemas, Vg and V7
be their vocabularies, Ps and Pr be their sets of properties,
and Cs and C7 be their sets of classes, respectively. Let Ug
and Ur be fixed sets of triples of S and T, respectively, to
be used to compute the vocabulary matchings.

Step (1): Preliminary property matching

Let U be the universe of all tokens extracted from literals
and all URIrefs. Consider a similarity functiono : U xU —
[0, 1], a similarity threshold T € [0, 1] and a related similar-
ity threshold ©" € [0, 1] such that 7" < 7.

For each property P € Pg, for each class C € Cg such
that C is the domain of P or a subclass of the domain of
P, consider the contextualized property P¢ = (P, C) and
construct the set o[Ug, PC] of all v such that either there
are triples of the form (I, P,v) and (I, rdf:type,C")
in Us or there are triples of the form (I,P,s) and
(I,rdf:type,C’) in Ug where v is a token in the literal
string s, where C' = C or C’ is a subclass of C, and likewise
for a property in Pr. We call o[U s, P€] the observed-value
representation of PC in Us. This construction explores the
fact that P is inherited by all subclasses of its domain.

The contextualized property matching j p between S and
T induced by o and t, and based on the observed-value rep-
resentation of properties, is the relation wp such that

(P.C,0,D)epp iffo(o[Us, P€),0[Ur, QP]) > 1.
(D

Step (2): Class matching

For each class C in Cyg, let props[S, C] be the set of prop-
erties in Py whose domain is C or that C inherits from
its superclasses, and likewise for classes in Cr. We call
props[S, C] the property representation of C in Usg.

The contextualized class matching po between S and T
induced by o, T and pup is the relation uc € Cs x Cr such

@ Springer

that (recall that T is the top class)

(C,T,D,T) € uc iffo(props[S, Cl, props[S, T, D]) >T
2

where  props[S,C,T,D] = relprops[S,C,T,D] U
not_relprops[S, C, T, D], relprops[S, C, T, D] denotes the
set of properties P of class C of S such that there is a prop-
erty Q of the class D of T such that (P, C, Q, D) € up and
where not_relprops[S, C, T, D] denotes the set of properties
P of the class D of T such that there are not related proper-
ties in S by u p. Note that it does not make sense to directly
compute o (props[S, C], props[T, D)), since props[S, C]
and props[T, D] are sets of URIrefs from different vocab-
ularies. To avoid this problem, we replaced props[T, D] by
props[S,C, T, D].

Step (3): Instance matching

From the matchings directly induced by ¢ and t, computed
in the previous step, the process then derives an instance
matching and a refined contextualized property matching,
as follows.

Figure 5 shows the algorithm that computes the instance
matching. Its inputs are S, T, class matching pc and prop-
erty matching w p. It also implicitly receives Ug and Ut as
input. It outputs the instance matching u; that relates match-
ing class instances in Ug and Ur.

InFig. 5,if C isaclassin Cg, and / is an instance of C in
Usg,thent/[S, C, I, T, D] denotes the set of tokens extracted
from all values v such that, for some property P € Ps, for
some property Q in Pr, for some class D € Cr, there is a
triple (I, P, v) in Ug and there is a quadruple (P, C, Q, D)
in up. In addition, if C is aclass in Cg, and J is an instance
of D in Uy, then t;[S,C, T, D, J] denotes the set of to-
kens extracted from all values v such that, for some property
P € Pg, for some property Q in Pr, for some class D € Cr,
there is a triple (I, Q,v) in Ur and there is a quadruple
(P,C,Q,D)in up.

Step (4): Refined property matching

Figure 6 shows the algorithm that computes the refined
contextualized property matching. It depends on the fol-
lowing additional definitions. For each (P,C, Q, D) €
wp such that (C,T,D,T) € uc, construct the set g of
triples (I,u,v) such that there are triples of the form
(I, P,u) and (I,rdf:type,C) in Ug, there are triples
of the form (J, Q,v) and (J,rdf:type,D) in Ur,
and (I,C, J, D) € u; (where u; is the instance matching
of Fig. 3). Define iv[P, C, Q, D] = (s,t) such that s =
{(I,uw)/(Fv)(,u,v) € g} and t = {({,v)/Fu)(I,u,v) €
q}. We call s the instance-value representation of PC in
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Fig. 5 The class instance
matching algorithm

INSTANCE-MATCHING (S, T, He, Hp)
for each pair of classes

(C,D) in S and T

such that pe matches C with D

for each pair of instances
if o(t([s,C,I,T,D],ts(C,C,T,D,J])
Mmo= Y

CONTEXTUALIZED-PROPERTY-MATCHING (S, T, l¢c, Ur)
for each pair of classes (C,D) in S and T
such that pe matches C with D
or C’ dominates C and pc matches C’ with D
or Me matches C with D’ and D’ dominates D
for each pair (P,Q) of properties of C and D
X=6(o[U, P°1,0[U,, Q")
if (C matches D) then
(s,t)=iv[P,C,Q,D]

Y=o0(s,t)

else
Y=0

if max(X,Y) > 1t/ then
Ma = Ha U (P,C,Q,D)

Fig. 6 The contextualized property matching algorithm

Us (and likewise for 7). This second representation is use-
ful since it helps distinguish between properties with similar
sets of values that refer to distinct instances, matched by u;.

Returning to the algorithm in Fig. 6, it has similar in-
puts to the algorithm depicted in Fig. 5. Its output, how-
ever, is the contextualized property matching 4 between
properties whose domains are classes directly or indirectly
matched by uc. The algorithm uses the maximum similarity
values computed using the observed-value and the instance-
value representations for a pair of properties P and Q, and
the more relaxed similarity threshold. Although not shown
in Fig. 6, object properties receive a special treatment, since
their representations are sets of URIrefs that are compared
with help of the instance matching p; (computed by the al-
gorithm in Fig. 5).

The final vocabulary matching w is the union of the class
matching p¢ induced by o, 7 and u p and the contextualized
property matching w4 computed by the algorithm in Fig. 6.

3.2 Experimental vocabulary matching results

We conducted an experiment to assess the performance of
the vocabulary matching process described in Sect. 3.1, us-
ing product data obtained from Amazon and eBay websites.

We preferred to use data directly downloaded from the
web, rather than using the benchmark proposed in [12], be-
cause the last does not include instances and, therefore, is
unsuitable to test the proposed process.

We first defined a set of terms, which was used to query
both databases. From the query results, we extracted the less
frequent terms common in both databases. We then used this

(I,J) of C and D in UgandU,
> 1 then
(I,¢,J,Db)

Table 3 Automatically obtained vocabulary matching from eBay into
Amazon

# eBay Amazon Match
VU1 el V2 e type
1 Books T Books T tp
2 author B author B tp
3 edition B edition B tp
4 format B biding B tp
5 isbn-10 B isbn B tp
6 isbn-13 B ean B tp
7 editionDesc B format B fp
8 Offer T Books fp

set of terms to query the databases once more. This pre-
processing step enhanced the probability of retrieving dupli-
cate objects from the databases, which is essential to evalu-
ate any instance-based schema matching technique. We ex-
tracted a total of 116,201 records: 16,410 from Amazon and
99,791 from eBay.

As similarity functions, we adopted the contrast model
[20] for property matchings, and the cosine distance with
TF/IDF for instance matchings. The experiments provided
us with enough empirical data to conclude that the contrast
model performs better in situations where the goal is to em-
phasize the differences between two sets of values. This fol-
lows because the contrast model allows for parameter cali-
bration.

Table 3 shows sample entries of the vocabulary matching
obtained. The headings indicate that e; is the context of vy,
and e, that of vy. Also, “B” abbreviates classes eb: Book
and am: Book.

The rightmost column of Table 3 classifies the match-
ings in types: fp for true positive, fp for false positive and
fn for false negative. Since the total number (not all shown
in Table 3) of true positives is 25, that of false positives is 4
and that of false negatives is 10, the performance measures
therefore are:

1 1,
d =86%, recall = P
p+fp p+fn

precision - recall

precision = =71%,

F=2 =T78%.

precision + recall

Lines 3, 5, and 6 of Table 3 refer to matchings that would
have been considered false negatives, if the algorithm in
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Fig. 4 ignored the instance-value representation of proper-
ties. In this case, the performance measures would drop to:

precision = 82%, recall =51%,

fMeasure = 63%.

4 Concept mapping induced by vocabulary matching
4.1 Definition

Let S be an OWL Extralite schema in what follows.
We say that S is well-formed iff

e for any property p of S, the domain of p is a class of S

e for any object property p of S, the range of p is a class of
S

e for any class c of S, if s is defined as a superclass of ¢ in
S, then s is also a class of S

We understand S as a theory T[S] = (A[S], C[S]) in
ALCQOT [9], a dialect of Description Logics, such that

o the concepts and roles of the alphabet A[S] are the classes
and properties of S
e the axioms of C[S] are the constraints of S, denoted in
ALCQT as follows:
— a property p has domain d and range r: TE Vp.r N
Vp~.d
— a property p, with range r, is inverse functional: r T
(=1p7)
— aproperty p, with domain d, has minCardinality k: d C
(= kp)
— a property p, with domain d, has maxCardinality k:
dE (<kp)
— aclass s is defined as a superclass of ¢c: cC s

In what follows, we will also use from ALC Q7 the inter-
section of two concepts, denoted ¢ Md, and the subsumption
of two concepts, denoted ¢ = d.

Let V be the set of variables, which is assumed to be dis-
joint from the set of concepts of S. A class literal is an ex-
pression of the form c¢(x), where c is a class and x is a vari-
able; a property literal is an expression of the form p(x, y),
where p is a property and x and y are variables; a literal is
a class literal or a property literal. A conjunction is a list of
literals separated by commas. A disjunction is a list of con-
junctions separated by semi-colons. (This notation should be
familiar to Prolog programmers).

A rule is an expression of one of the forms:

e c(x) < B[x], where c(x) is a class literal and B[x] is a
disjunction where the variable x occurs in each conjunc-
tion

e p(x,y) < Blx, y], where p(x, y) is a property literal and
B[x, y] is a disjunction where the variables x and y occur
in each conjunction
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The literal is the head and the disjunction is the body
of the rule. We use the notation B[x] and B[x, y] to stress
which variables must occur in the body.

Let I be a set of triples of S. The universe of I is the set
U[I] of all URIrefs and literals that occur in triples of /.

Consistently with the notion of interpretation of Descrip-
tion Logics, given a class ¢ of S, the interpretation of ¢ in 1
is the set

clz{ieU[I]|(i,:type,c)el}

and, given a property p of S, the interpretation of p in I is
the binary relation

p'={Gi,0) e U x UlI1| (i, p,o) el}.

The interpretation of the intersection of two concepts ¢ Nd
is the set

(cnd) =c'ndl.

We say that the subsumption of two concepts ¢ C d is
truein I,denoted I =cCd, iff ! cdl.

Rather than resorting to the formalization in ALC OT, we
directly define when a constraint o of S is true in I, denoted

I E=o:

e if o declares that a property p has domain d and range r,
then I =0 iff p! Cd! x r!

e if o declares that a property p, with range r, is inverse
functional, then [ = o iff, for any b C r, card({la €
Ullll(a.b)ep™h =1

e if o declares that a property p, with domain d, has min-
Cardinality k, then I = o iff, for any a € d r card({b €
Ul (a,b)ep'h) =k

e if o declares that a property p, with domain d, has max-
Cardinality k, then I = o iff, for any a C d’, card({b €
Ulll|(a.b)ep'}) <k

e if o declares that a class s is a superclass of ¢, then [ = o
iff ¢! Csf

‘We now turn to the semantics of rules. A valuation for the
set of variables V in [ is a function v that maps the variables
in V into elements of U[I].

We extend the notion of interpretation of the right-hand
side of the rule as follows. We first define when the right-
hand side of rule B is true in I for v, denoted I,v = B,
inductively as follows:

e if B is of the form ¢(x) then I, v = B iff v(x) € ¢!
e if Bisofthe form p(x, y) then I, v = B iff (v(x), v(y)) €

pl

e if B is of the form C, D then I,v = B iff I, v = C and
IL,veD

e if B is of the form C; D then I,v = B iff I,v = C or
IL,v=D
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The interpretation of the right-hand side of a rule of the
form B[x]in I is the set

B[x]l = {a € U[I] | there is a valuation v for V in [/

such that 7, v = B[x] and v(x) = a}

and the interpretation of the right-hand side of a rule of the
form B[x, y] in [ is the binary relation

Blx,yl! ={(a,b) € U[I] x U[I] | there is a valuation v
for V in I such that I, v = Blx, y]
and v(x) =a and v(y) = b}.

Finally, we say that a set / of triples of § is consistent iff
I satisfies all constraints of S.

4.2 Derivation from vocabulary matching

Given an OWL schema, we say that a class f dominates a
class ¢ or the intersection ¢ = d M e of two classes d and ¢
iff there is a sequence (cy, ¢2, ..., ¢;) such that

e f=crandc=g¢,
e C,_1 subsumes ¢,
e foreachi €[1,n — 2), either
— ci4+1 and ¢; are classes and c;1 is declared as a sub-
class of ¢;, or
— cj41 1s a class, ¢; is an object property and c;4 is de-
clared as the range of c¢;, or
— ci4+1 1s an object property, ¢; is a class and ¢; is declared
as the domain of ¢; 1

We also say that 7 = (cy, ¢3, - - ., ¢y) 18 a dominance path
from c tod and 0 = (py,, pk,, - ., Pk, ), the subsequence of
7 consisting of the object properties that occur in 7, is the
property path corresponding to m (note that 6 may be the
empty sequence).

Let S and T be two (OWL Extralite) schemas in what
follows. Recall that a contextualized vocabulary match-
ing between S and T is a finite set uy of quadruples
(v1, €1, v2, €2).

A contextualized vocabulary matching wy from S into T
is structurally correct iff, for all (vy, e1, v2, €2) € wy such
that v; and v, are properties:

(1) thereis aclass f of S such that wy matches f with the
domain of v, and f dominates dj Me;, where d; is the
domain of v

(i) if vp is a datatype property, then the range of v; is a
subtype of the range of v;

(iii) if vy is an object property, then wy matches the range
of vy with the range of v,

Let wy be a structurally correct contextualized vocabu-
lary matching. A concept mapping M from S into T induced

by py is a set of rules derived from the quadruples of py as
follows.

For each quadruple (v, eq, v2,e2) € wy, the concept
mapping M contains the following rules:

Case 1: v| and v; be classes. Then M contains rules of the
form

v2(x) < v1(x),

s(x) < v1(x) for each superclass s of v2.

Case 2: v and vy are properties. Let d; and dp be the do-
mains, and r| and r; be the ranges of v; and v; (recall that r|
and rp are XML Schema data types, if v; and v, are datatype
properties, and that py matches the range of vy with the
range of v, if v; and v, are object properties).

Case 2.1: py matches d; with d>. Then, M contains a rule
of the form

v2(x,y) < vi(x,y), e (x).

Case 2.2: vy does not match d; with d,. Let f be a class of
S such that y matches f with d and f dominates dj Mej.
Let px,, pky» - - - » Pk, be the property path corresponding to
a dominance path from f to dj Me;. Then, M contains a rule
of the form

v2(x, y) < pr; (X, X1), Pk, (X1, X2), -+ -, Py Xm—1,2),

v1(z, ), e1(2)

if the property path is non-empty; otherwise the rule reduces
to that of case 2.1. (Note that, since py is structurally cor-
rect, a dominance path from f to d; indeed exists. Also note
that, since the dominance path may not be unique, the con-
cept mapping induced by wy is not unique).

Note that the contextualized vocabulary matching uy
may have more than one quadruple for the same concept vy
of the target schema, which implies that the above process
may generate more than one rule for v;. In addition, v, may
be a superclass of more than one class which, again, implies
that the process described in Case 1, may generate more than
one rule for vy. Therefore, as a last step in the construction
of the concept mapping M, we collect all rules for v in a
single rule with a disjunctive body. More precisely, if vy is a
class, and the above process generates rules of the following
form:

va(x) < B;[x], forie[l,n]
then we replace all such rules by a single rule p of the form

v2(x) < Bi[x];...; Bylx]

and likewise, if v; is a property.
We say that a rule p in M defines a concept vy of T iff the
head of p is of the form v, (x), if v, is a class, or of the form
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va(x,y), if vy is a property (by the transformation described
above, M has at most one rule for each concept of T').
However, there might be a concept v, of T such that M
has no rule that defines v,. We therefore define T/M as
the subset of T restricted to the concepts that M defines.
Then the constraints of 7/ M are the constraints of 7' defined
over such vocabulary. In particular, we can prove that super-
classes, domains, and ranges are properly defined in 7/ M.

Proposition 1 Let wy be a structurally correct contextu-
alized vocabulary matching and M be a concept mapping
from S into T induced by jwy . Then:

(i) for any class ¢ of T/M, if s is a superclass of c in T,
then s is also a class of T/M.
(ii) for any property p of T/M, the domain of p is also a
concept of T/M.
(iii) for any object property p of T/M, the range of p is
also a concept of T/ M.

Proof

(i) Letcbeaclassof T/M and s be a superclass of cin T'.
Since c is aclass of T /M, by Case 1 of the construction
of M, there is a rule in M of the form c(x) < p1(x).
Since s is a superclass of ¢, again by Case 1, there is
arule in M of the form s(x) < p;(x). Hence, s is de-
fined in M, that is, s is a class of T/M.

(i) Let p be a property of T/M. Let d be domain of p.
Since p is a property of T /M, by Case 2, there is a
rule in M of the form p(x,y) < B[x, y] and a class
f of S such that uy matches f with the domain d of
p. Then by Case 1, there is a rule in M of the form
d(x) < f(x). Hence, d is defined in M, that is, d is a
classof T/M.

(iii) Let p be an object property of T /M. Let r be the range
of p. Since p is an object property of 7 /M, by Case 2,
there is a rule in M of the form p(x, y) < B[x, y] and
aclass g of S such that uy matches g with the range r
of p. Then by Case 1, there is a rule in M of the form
r(x) < g(x). Hence, r is defined in M, that is, r is a
classof T/M. =

Corollary 1 T/M is a well-defined OWL Extralite schema.

Finally, we define the function M induced by M as the
mapping from sets of triples of S into sets of triples of 7 /M
such that, for each set of triples I of S, J = M (I) iff, for
each rule p in M

e if p is of the form c(x) < B[x], then J contains a triple
(i,: type,c) iffi € B[x]

e if p is of the form p(x, y) < B[x, y], then J contains a
triple (i, p, j) iff (i, j) € B[x, y]!
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We stress that M is used to map queries submitted to
the target schema 7 into queries of the source schema S,
whereas M is a theoretical device to prove the consistency
of the concept mapping, as discussed in the next section.

4.3 Consistency

In this section, we briefly discuss the consistency of OWL
Extralite vocabulary matchings, referring the reader to [18]
for the detailed definitions and proofs.

In what follows, we use the notion of subsumption as in
Description Logic. We say that a class ¢ dominates a class
d iff there is a sequence (c1, ¢, ..., ¢;) of classes such that
c=c1,d =c, and, for each i € [1,n — 2), either c;41 is
declared as a subclass of ¢; or there is an object property
whose domain is ¢; and whose range is c;+1, and ¢,—1 sub-
sumes ¢, . We consider that a class dominates itself.

A contextualized vocabulary matching p from S into 7 is
structurally correct iff, for all (vy, e1, v2, e2) € u such that
v1 and v, are properties:

(i) there is a class f of S such that u matches f with the
domain of v; and f dominates e (recall from the def-
inition of vocabulary matching that e; is a subclass of
the domain of v;)

(ii) if vy is a datatype property, then the range of vy is a
subtype of the range of v;

(iii) if vy is an object property, then o matches the range of
vy with the range of vy

A concept mapping y from S into T induced by a struc-
turally correct contextualized vocabulary matching w is a
set of rules derived from p as suggested by the examples
in Sect. 2.2. The rules in y in turn induce a function y that
maps sets of triples of S into sets of triples of T'.

We say that the declarations of the domain and range of
properties, property characteristics, cardinality restrictions,
and subclass declarations are the constraints of a schema.

We denote the minCardinality and the maxCardinality of
a property p by mC[p] and M C[p], respectively. By con-
vention, we take mC[p] =0 (and M C[p] = 00), if minCar-
dinality (or maxCardinality) is not declared for p.

A property g is no less constrained than a property p iff
mC[p]l <mClg]and MC[p] > MC[q] and, if p is declared
as inverse functional, then so is g. Note that this definition
applies even if p and ¢ are from different schemas.

Let S and T be two schemas, i be a structurally correct
contextualized vocabulary matching from § into 7', and y
be a concept mapping from S into 7 induced by p.

Let p be a rule in y of the form p(x, y) < B[x, y]. By
construction, p is a property of T and all classes and proper-
ties that occur in B[x, y] belong to S. We introduce a prop-
erty of S, denoted prop[B], defined by B[x, y]. We say that
p is correct iff prop[B] is no less constrained than p. We
then say that y is correct iff all rules in y are correct.



J Braz Comput Soc (2010) 16: 21-34

31

Finally, we say that a constraint « of T is relevant for y
iff & uses only concepts that occur in the heads of the rules
in y. We then say that y is consistent iff, if I is a consistent
set of triples of S, then the set of triples of T defined by
J = y(I) satisfies all constraints of T that are relevant for

Y.

Lemma 1 Let u be a structurally correct contextualized vo-
cabulary matching and y be a concept mapping from S into
T induced by ju. Assume that y is correct. Then y is consis-
tent.

(The proof generalizes Examples 2, 3, and 4. See [18] for
the details).

5 Storing provenance data for matchings

In this section, we discuss the problem of storing provenance
data for schema matchings and propose a data model for
provenance applied to the algorithm presented in Sect. 2.

Clearly, schema matching process is a laborious task. Au-
tomatic or semi-automatic tools that are able to identify such
correspondences definitely boost up the process. Neverthe-
less, schema matching algorithms, in general, must be cali-
brated so as to achieve better performance in relation to false
positives and negatives. Leme et al. [17] propose a cross val-
idation process which aims at choosing the best similarity
model and calibrations for a given set of test data. In this
context, provenance data could be used to store parameters
and calibrations for each matching result in order to allow
for the identification of the best models.

Benchmarks are also very important to refine matching
algorithms and to identify best suited scenarios for each al-
gorithm. Of course, the algorithms must be compared over
the same dataset, otherwise it does not make sense to com-
pare performance measures. A classification of the scenar-
ios might also be useful. If schemas are classified according
their application domains, we could identify the ones that
work better in the geographic domain, for instance.

Finally, matching entries can be validated by using a
semi-automated matching process. In this case, we would
make the internal representation of schema elements, the
intermediate matching calculations and the final similarity
degree between elements available. This information would
help users to decide and/or validate the matchings.

Our provenance model consists of an OWL schema (top
left of Fig. 7), modeled as an aggregation of elements, spe-
cialized into classes, properties, and instances. A matchable
is any object that can be matched to another object (classes
or properties).

Each schema is associated with one of more datasets
(bottom left of Fig. 7). Each dataset contains a set of triples,
which describes the elements of the schema, including in-
stances of classes and properties. A schema also has a set
of features that can be used to identify the best model for a
given scenario. For example, if feature[0] contains the clas-
sification categories of the schemas, it would be possible to
select the best algorithms for the particular domain of fea-
ture [0].

From a dataset, representations (Set in Fig. 7) for each
matchable of the schema are extracted [20]. Each represen-
tation is a set of values, and has a type. For example, a prop-

Schema
— Hement
+ feature : String(0..%)] T Similarity Aplies SimExecution
I I
nstance o Class : Property
1
(>/ ,
1
) Matcher
Matchable CProperty + parameterList["]
2 T
Entry Execution
+ similarity : double ————® 4 parametervalues[
+1type : String
Dataset Set
. ?
SetType
Value

Fig. 7 Diagram of the internal database
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erty can be represented by a set of tokens extracted from
its observed values, in this case the set is of type Token and
values are the extracted tokens of the property values. Our
matching technique proposes the following representation
sets for each type schema elements:

(i) Classes:
a. Set of properties (denoted by props)
(i) Properties (datatype and object properties)
a. Set of tokens (denoted by 0)
b. Set of instance value (i, v) pairs (denoted by iv)
(iii) Instances
a. Set of tokens (denoted by )

The Matcher (top right of Fig. 7), stores descriptions of
matching algorithms, or matchers, and of similarity func-
tions (Similarity in Fig. 7). To model the fact that a match-
ing algorithm has a series of matching steps, as in Sect. 3.1,
a matcher is modeled as an aggregation of matchers. Each
matcher applies one or more similarity functions, using a
parameter list, if available. The matching algorithm de-
scribed at the end of Sect. 3.1 provides the archetypal ex-
ample of the family of instance-based matching algorithms
that the tool supports. In this example we used the simi-
larity functions cosine distance and contrast model which
are stored in Similarity. In step 1, we used the contrast
model function applied to the token representation of prop-
erties (0). In step 2, we applied the contrast model function
to the property representation of classes (props). In step 3,
we used cosine distance function applied to token represen-
tation of instances (¢). In step 4, we used contrast model
function applied to token (o) and instance value (iv) repre-
sentations of properties. The configuration of the similarity
functions is stored by the Aplies class (top right of Fig. 7).

Each execution of a matcher (bottom right of Fig. 7)
stores the parameter values that were used, and the sim-
ilarity functions were applied (SimExecution in Fig. 7).
It also stores the order in which the similarity functions
were applied, as well as values used in the computations.
Each execution results in an aggregation of matching en-
tries (Entry), which, in turn, model a vocabulary matching.
Instep 1, weused o = 1.0, B = y = 3.5 and threshold (t) =
max similarity — 31% as the parameters values. In step 2,
we used threshold () = 0.8 as the parameter values. In this
step, because we used the cosine distance, there were no
configuration parameters required to run the similarity func-
tion. In step 3, we used @ = 1.0, 8 = y = 3.5 and threshold
(t) = max similarity — 26%. In step 4, we used o = 1.0,
B =y = 3.5 and threshold (t) = max similarity — 12% for
the similarities between token and instance representations
of properties. All parameters were stored in the parameter-
Values of Execution. The type of an Entry tells us if it is
false positive, false negative and so on. It is only used in
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cross validation matchings, as inputs for performance mea-
suring. The similarity is the final similarity measure for each
particular entry.

6 Conclusions

In this paper, we proposed hybrid matching techniques
based on instance values and on schema information, such as
datatypes, cardinality, and relationships. The techniques uni-
formly apply similarity functions to generate matchings and
are grounded on the interpretation, traditionally accepted
that “terms have the same extension when true of the same
things” [24]. In our context, two concepts match if they de-
note similar sets of objects. The techniques essentially differ
on the nature of the sets to be compared and on the similar-
ity functions adopted. For example and in a very intuitive
way, two classes match if their sets of observed instances
are similar, two terms from different thesauri match if the
sets of instances they classify are similar; properties match
if their sets of observed values are similar.

The assumptions that the database schemas we want to
match are described in OWL notation, and that data from
the databases can be obtained as sets of RDF triples facili-
tated the construction of matching techniques. However, the
techniques introduced in the paper can be directly applied to
conceptual schemas described in other conceptual modeling
representation languages, such as the relational model [10].
In conjunction, these assumptions permitted us to concen-
trate on a strategy to unveil the semantics of the database
schemas to be matched, without being distracted by syn-
tactical peculiarities. In fact, we consider good practice to
provide OWL descriptions of the export schemas of data
source providers. In conjunction with WSDL descriptions of
the web services encapsulating the backend databases, this
measure facilitates the interoperability of databases.

We focused on the more complex problem of matching
two schemas that belong to an expressive OWL dialect. We
decomposed the problem of OWL schema matching into the
problems of vocabulary matching, and the problem of con-
cept mapping. We also introduced sufficient conditions to
guarantee that a vocabulary matching induces correct con-
cept mappings. We adopted the contrast model [26] as the
preferred similarity function, which proved to efficiently
capture the notion of similarity in this context, and described
heuristics that led to practical OWL matchings.

Differently from the work of [11, 21], we did not use
machine learning techniques to acquire knowledge about
matchings. Instead, we captured semantic similarity by
adopting similarity functions and heuristics that depended
on schema concepts. We consider this strategy to be more
general because it identifies matching candidates that do not
belong to the training corpus.
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Unlike any of the instance-based techniques previously
defined, see Sect. 1, the OWL schema matching process
we described uses similarity functions to induce vocabulary
matchings in a non-trivial way. The results demonstrated
that the proposed technique performs well, with precision
and recall rates around 80%.

Contrasting to the work of [6, 27], which measure sim-
ilarity between concepts based on the commonalities be-
tween sets of values alone, we made use of similarity func-
tions that took into account not only the commonalities, but
also the differences between concepts.

Differently from the work of [2], we overcame the limi-
tations of representing instances using strings that concate-
nated all of its property values, by representing instances us-
ing strings that were constructed using only matching prop-
erties, as the first approximation.

As future work, we are considering three broad areas.
First, further work is required on techniques to gradually
construct the matchings as new data becomes available,
which is typical of a query mediation environment. We refer
the reader to [3, 5] for discussions about this issue. Second,
belief revision techniques should be investigated to help ad-
just the mediated schemas in time, as new data sources are
integrated into the mediated environment. Third, implemen-
tation issues are pending, although [14, 15] is a step in this
direction.

In summary, unlike previous approaches, we proposed
hybrid matching techniques that are uniformly grounded on
similarity functions to generate matchings between simple
catalogue schemas, as well as between more complex OWL
schemas. We introduced the idea of decomposing the prob-
lem of schema matching into the problems of vocabulary
matching and concept mapping, which are often confused
in the literature. We also showed when a vocabulary match-
ing induces correct concept mappings, with respect to the
integrity constraints of the schema, an issue also frequently
overlooked in the literature.
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