
J Braz Comput Soc (2010) 16: 49–68
DOI 10.1007/s13173-010-0001-7

O R I G I NA L PA P E R

Multicoordinated agreement for groups of agents

Lasaro Camargos · Rodrigo Schmidt ·
Edmundo Madeira · Fernando Pedone

Received: 30 July 2009 / Accepted: 1 March 2010 / Published online: 23 April 2010
© The Brazilian Computer Society 2010

Abstract Agents in agreement protocols play well-distinct
roles. Proposers propose values to the acceptors, which will
accept proposals and inform the learners so they detect that
an agreement has been reached. A fourth role is that of
the coordinator, who filters the proposals from proposers to
acceptors. While proposers, learners, and coordinators are
easily replaced, substituting an acceptor is prohibitive. Pro-
tocols that do not employ a coordinator are less resilient
to acceptor failures. Protocols that use one coordinator are
more resilient to acceptor failures, at the expense of one
extra communication step even in the absence of failures.
Moreover, they require replacing the coordinator as soon as
it fails, a reconfiguration that, although relatively inexpen-
sive, diminishes the protocol availability. Hence, either op-
tion, i.e., one or zero coordinator, has its drawbacks. In pre-
vious works, we have presented an alternative: multicoordi-
nated agreement protocols. Such protocols are as resilient as
single-coordinated protocols but require less reconfiguration
to cope with coordinator failures. In fact, most reconfigura-
tion can be done in parallel to the execution of the proto-
col’s normal steps. Multicoordination can be applied to sev-

L. Camargos (�) · E. Madeira
IC, Institute of Computing UNICAMP, University of Campinas,
PO Box 6176, 13083-970 Campinas, SP, Brazil
e-mail: lasaro@ic.unicamp.br

E. Madeira
e-mail: edmundo@ic.unicamp.br

R. Schmidt
Facebook, 1601 S California Avenue, Palo Alto, CA 94304, USA
e-mail: rschmidt@facebook.com

F. Pedone
Faculty of Informatics, University of Lugano (USI), Via Giuseppe
Buffi 6, 6904 Lugano, Switzerland
e-mail: fernando.pedone@unisi.ch

eral problems. In this paper we exemplify its use in solving
consensus and then introduce a fast multicoordinated agree-
ment protocol for agents organized in groups, an abstraction
for fast local area networks interconnected by slower links.

Keywords Multicoordinated · Agreement · Consensus ·
Broadcast · Groups

1 Introduction

A distributed application is a composite of agents that per-
form local actions and exchange information to coopera-
tively perform some task. These agents—machines, proces-
sors, or processes—are often required to synchronize their
actions to meet some consistency criteria: only one agent
may access a given resource at any point in time; all must
commit the effects of their actions or rollback to a previ-
ous state; a certain agent must be excluded from any future
interactions. Synchronizing actions, here, means solving an
agreement problem.

Many agreement problems can be subsumed by the con-
sensus problem, in which agents must agree on one out
of a set of proposed values. Consensus algorithms perform
in stages that reflect the very nature of the problem: pro-
posals precede a deliberation phase that, in turn, precedes
the learning of the decision. Fault-tolerant algorithms may
retry this cycle over and over to circumvent failures and, in
each of these rounds, it must be ensured that any previously
achieved decision is honored in the next ones.

There are three types of rounds. In fast rounds, propos-
als are sent from proposer agents to the acceptor agents.
Acceptors store and forward the proposals to the learners,
the agents that take an action based on agreement reached
through the protocol. Roughly speaking, fast rounds require

mailto:lasaro@ic.unicamp.br
mailto:edmundo@ic.unicamp.br
mailto:rschmidt@facebook.com
mailto:fernando.pedone@unisi.ch


50 J Braz Comput Soc (2010) 16: 49–68

that more than two thirds of the acceptors be available to
allow progress under the possibility of failures. In classic
rounds, proposals go first through a leader (or coordinator)
that filters all but one of them before forwarding to the ac-
ceptors. This extra step allows reducing acceptor quorums
to a majority of processes.

In a previous work we have introduced multicoordinated
rounds, which replace the leader of classic rounds for multi-
ple coordinators [7]. This approach drives the availability of
individual rounds up by not centralizing their processing on
a single coordinator and without requiring larger acceptor
quorums. With improved availability, the protocol does not
have to start a new round at the first sign of failures and can
choose the next set of coordinators while the current round
is still executing.

While such gains are minimal in the execution of a sin-
gle instance of consensus, they are considerable when long
sequences of rounds are necessary. This is the case, for ex-
ample, when implementing a replicated state machine [22,
28]. This well-known technique consists of implementing
reliable services by replicating simpler instances of the ser-
vices on failure-independent processors. Replicas consis-
tently change their states by applying deterministic com-
mands from an agreed sequence. A consensus instance is
used to decide on each command of the sequence. To make
the implementation efficient, all instances run in parallel,
share the same elected coordinator, and overlap parts of their
rounds. Hence, availability gains reflect not only on one but
on all ongoing decisions.

A better way of implementing a replicated state machine
is to use protocols that let the application specify which
commands must be ordered and which ones need not be [25,
32]. By not ordering commands that do not have to be, pro-
tocols can be more efficient. Although this kind of protocols
is out of the scope of this paper, it is important to know that
the techniques presented here also apply to such protocols.
In fact, we have presented one such protocol elsewhere [7].

The contribution of this paper is twofold. First, this paper
presents multicoordination in much more detail than pre-
sented in [8], a brief announcement, and without the com-
plexity of Generalized Consensus as in [9]. Multicoordina-
tion can and should be incorporated in the design of agree-
ment protocols and, by detailing the approach, we take an-
other step in such a direction. Second, we present novel al-
gorithms for reaching agreement in hierarchically organized
distributed systems. More specifically, we consider a topol-
ogy that is commonplace in the data centers of large corpo-
rations: groups of nodes, with large-bandwidth low-latency
links connecting the nodes within the same group, and slow
and limited links connecting nodes across groups. In such
environments, latency is clearly a major concern and re-
configuration procedures that render the agreement protocol
temporarily unavailable must be avoided as much as pos-
sible. Our contribution here is in avoiding reconfigurations

and improving the availability of a collision-fast agreement
protocol. That is, a protocol that can reach agreement in two
intergroup communication steps, irrespectively of concur-
rent proposals. Besides the use of a multicoordinated ap-
proach, we employed multicast primitives and consensus to
restrict some reconfigurations within groups, where they are
less expensive. As a side effect contribution we also describe
CFPaxos, a collision-fast protocol previously published only
as a technical report [37].

We start our presentation by defining the system model
we consider (Sect. 2.1). Next, we review the consensus prob-
lem and approaches to solve it (Sects. 2.2–2.5), including
multicoordination. After we further detail the use of mul-
ticoordination to solve consensus (Sect. 3), we formalize
agreement in networks of groups and the use of standard
approaches to solve it (Sect. 4), followed by our multicoor-
dinated protocols (Sect. 5), its correctness proofs and related
work. Last, we summarize the contributions in this paper and
our further steps (Sect. 6).

2 Distributed agreement problems

2.1 System model

A distributed system is composed of a set of agents with
well-defined roles, that cooperate to achieve a common goal.
In practice, an agent can be implemented by a process or
collection of them, by a processor, or any computation en-
abled entity. Moreover, any single entity that implements
one agent could also implement a multiple of them. Rea-
soning in terms of agents allows us to specify problems and
algorithms more concisely and in terms of heterogeneous
agents. For example, a client/server application may be de-
scribed in terms of two kinds of agents, client and server
agents, while an e-mailing system may be described in terms
of senders and receivers.

Distributed systems can be classified in different axes ac-
cording to the way agents exchange information, the way
they fail and recover, and the relative speeds at which they
perform the computation. In this paper we address asyn-
chronous distributed systems in which agents can crash and
recover, and use unreliable communication channels to ex-
change messages.

In asynchronous distributed systems there are no bounds
on the time it takes for an agent to execute any action or for
a message to be transmitted. If such bounds exist and the
number of failures can be limited in time, however, then the
protocols that we present in this paper ensure some liveness
properties.

Even though we assume that agents may recover, they are
not obliged to do so once they have failed. For simplicity, an
agent is considered to be nonfaulty iff it never fails. Agents



J Braz Comput Soc (2010) 16: 49–68 51

are assumed to have access to local stable storage which they
can use to keep their state in-between failures. State not kept
in stable storage is reset after a crash. Lastly, we assume that
agents do not execute any arbitrary step, that is, we do not
consider Byzantine failures.

Although channels are unreliable, we assume that if
agents keep retransmitting their messages, then they even-
tually succeed in communicating with each other. We also
assume that messages are not duplicated and cannot be un-
detectably corrupted.

2.2 The consensus problem

The consensus problem is an invaluable tool in the study of
agreement problems because many of them can actually be
reduced to this problem. Consensus is specified in terms of
three kinds of agents: proposer, learner, and acceptor. To
the best of our knowledge, the specification based on roles
was introduced by Lamport [23].

In the consensus problem, agents must agree on a single
value out of a given set of proposals. Proposers issue pro-
posals, one out of which will become the decision. Once a
decision is reached, learners must become aware of it. In
the context of a common distributed application, state ma-
chine replication, proposers can be thought of as clients is-
suing commands and learners as the application servers that
execute the decided commands. For this reason, we inter-
changeably refer to proposals also as commands. Clients
might also be learners to know whether their issued com-
mands were accepted by the system to be executed.

Formally, there are three safety requirements of consen-
sus [27]:

Nontriviality: Any value learned must have been proposed;
Stability: A learner can learn at most one value;
Consistency: Two different learners cannot learn different
values.

In many distributed systems, clients experience a high
churn and cannot be expected to stay up or connected for
long periods. While it is OK to state the safety requirements
in terms of proposers and learners, the clients of a consen-
sus service, the same does not apply for the liveness require-
ments. Hence, we state the liveness in terms of the acceptors,
which are part of the application infrastructure and, there-
fore, more reliable. We call a quorum any finite set of ac-
ceptors that is large enough not to forbid liveness and define
the liveness requirement of consensus as follows:

Liveness: For any proposer p and learner l, if p, l, and a
quorum Q of acceptors are nonfaulty and p proposes a
value, then l eventually learns some value.

The well-known FLP result states that no fault-tolerant
consensus algorithm can ensure termination in the presence

of failures [17] under the assumed asynchronous crash–
recovery model. Phrased in terms of acceptors, this result
implies that quorums must equal the set of all acceptors.
Hence, in order to be fault-tolerant, algorithms must make
extra assumptions about the system to ensure liveness.

2.3 Circumventing FLP

One way of circumventing the FLP result is through ran-
domization. Bracha and Toueg’s algorithm, for example, re-
lies on the assumption that if agents keep exchanging mes-
sages in rounds, then there is a non-zero probability that they
will all eventually receive the same set of messages in some
round, a property they labeled fair scheduling [4]. Some-
what the same principle lies in Rabin’s [35] and Ben-Or’s [3]
protocols, in which agents rely on a random bit generator
to eventually choose the same bit as proposal. If queried in
rounds by the agents, then for every round there is a non-
zero probability that all agents chose the same random bit
and agreement is reached with probability 1.

Pedone et al.’s protocol replaces the random bit generator
by the assumption that, for every round, there is a non-zero
probability that messages will be received in the same order
by all agents [33]. This property is abstracted by weak or-
dering oracles [34]. Pedone et al.’s protocols [33], however,
were devised for the crash–stop model and do not tolerate
lossy communication channels. These shortcomings were
addressed in enhanced versions of the protocols [5], namely
R*-Consensus and B*-Consensus. B*-Consensus was actu-
ally the basis for the multicoordinated rounds that we de-
scribe later in this paper.

Several other works have circumvented the FLP result by
assuming a partially synchronous model [12–14, 16]. The
concept of unreliable failure detectors (UFD) [12] is proba-
bly the most notorious result in this model. The UFD en-
capsulate the minimal synchrony assumptions required to
solve consensus as abstract properties ensuring that, even-
tually, some state will be reached in which progress can be
made. The weakest UFD that can be used to solve consen-
sus, ♦W [11], ensures two properties:

Eventual Weak Completeness: all agents that permanent-
ly crash are eventually suspected by a nonfaulty agent;

Eventual Weak Accuracy: eventually, at least one non-
faulty agent will stop being suspected by the other non-
faulty agents.

The Ω leader election oracle [11] is an abstraction equiv-
alent to ♦W . Briefly, Ω ensures that nonfaulty agents even-
tually agree on the identity of some nonfaulty agent to be the
leader.

In spite of their strength, UFD and randomization are still
fallible in the sense that they give no guarantees of when
they will provide correct information. To make sure that no



52 J Braz Comput Soc (2010) 16: 49–68

irreversible decision is taken based on these tools, one extra
assumption is needed [12, 23]:

Assumption 1 (Quorum requirement) If Q and R are quo-
rums, then Q ∩ R �= ∅.

2.4 Rounds and coordinators

Paxos [23] is a notorious example of Ω-based consensus
protocol. In Paxos, computation progresses as a sequence of
rounds, each of which is managed by a coordinator agent.
The coordinators are the only agents that send proposals to
acceptors to get them decided; proposers resort to coordina-
tors to have their proposals considered. When a new round is
started, its coordinator must determine possible previously
decided values and use such values, if existent, in the new
rounds. Moreover, in starting a new round, the coordinator
must prevent previous ones from deciding if they have not
done so yet. Hence, if rounds are indiscriminately started,
it may happen that no round ever decides on any value. To
avoid such a scenario, a leader coordinator is selected to
start new rounds through a leader election oracle like Ω .
Because the Ω oracle is allowed to make mistakes and elect
multiple agents at the same time, rounds may be started even
in the absence of failures, preventing progress toward a de-
cision until mistakes cease to happen.

A proposal issued by the leader takes two steps to be
decided and learned, in the best scenario. One step to be
propagated to the acceptors and one more from the accep-
tors to the learners. From the point of view of regular pro-
posers, one step more is required to send their proposals to
the leader. Hence, the leader becomes a single point of fail-
ure for every round. When it fails, its failure must be de-
tected, a new leader must be elected, and a new round must
be started. The new leader must synchronize with acceptors
to block previously started rounds and, while this synchro-
nization is done, no decision can be reached. That is, the
protocol is unavailable.

Fast Paxos [26] is an extension of Paxos in which the
leader, after determining that no value could have been de-
cided in previous rounds, delegates to the proposers the task
of sending proposals directly to the acceptors. Hence, in Fast
Paxos, the leader can decide to switch back and forth from
a classic Paxos round to a Fast Paxos round. Hereafter we
refer to these round types respectively as classic and fast
rounds.

Without the leader to filter out proposals, different accep-
tors may accept different values, which we call a collision.
Collisions may prevent any value from ever being decided
and to recover from them, quorums of acceptors must be
bigger in fast than in classic rounds. Therefore, fast rounds
are potentially less available than classic ones, as stated by
the following requirement.

Assumption 2 (Simple fast quorum requirement) If Q, R,
and S are quorums, then Q ∩ R ∩ S �= ∅.

This requirement is actually stronger than necessary, but
serves as a good generalization. The actual Fast-Quorum re-
quirement is presented later in the paper.

2.5 Multicoordinated rounds

As the name suggests, multicoordinated rounds have multi-
ple coordinators to which the proposers send their proposals
in parallel. Similarly to what happens in single coordinated
rounds, coordinators in a multicoordinated round forward
the proposals from proposers to the acceptors. Acceptors,
however, only take into consideration proposals forwarded
by a quorum of the round coordinators. This way, values
may be accepted even if some coordinators crash, as long as
a full quorum is alive. By requiring these coordinator quo-
rums to intersect, the protocol ensures that no two differ-
ent values will be considered on the same round and, thus,
no collision happens on the acceptors. Hence, acceptor quo-
rums are only required to satisfy Assumption 1, being more
resilient than in Fast Paxos. Collisions, however, may occur
at the coordinators if different proposals are sent in parallel.
These collisions are inherently less expensive than collisions
on the acceptors in that they can be handled without any sta-
ble storage access [7].

Many algorithms in the literature may be seen as in-
stances of Fast Paxos, in spite of several differences in their
actual specifications. As an example, consider differences in
the assumed failure model: some algorithms were specified
for the crash–stop model [12, 15, 19, 20, 36], some for the
crash–recovery [1, 18, 23, 24], and some for the Byzantine
[10, 28, 29, 40]. Therefore, by presenting multicoordination
as an extension to Fast Paxos we make it simpler to derive
multicoordinated modes to the other protocols. We do so in
the next section by reviewing a multicoordinated consensus
protocol [8].

3 Multicoordinated consensus

Our multicoordinated consensus protocol, MCC for short,
is an extended version of Fast Paxos [25] that, in turn, ex-
tends the classic Paxos protocol [23]. As a result, MCC has
the same requirements of the Paxos protocols as well as the
same structure. While here we present MCC directly, we
refer the reader to [7] to a progressive explanation starting
with Paxos, extending it to Fast Paxos, and finally presenting
MCC.

The rounds in MCC are uniquely identified by round
numbers totally ordered by a relation <. Nonetheless, their
execution does not have to follow this order. In fact, actions



J Braz Comput Soc (2010) 16: 49–68 53

referring to different rounds may even interleave. In this pa-
per, we assume that round numbers correspond to the set of
natural numbers. For a discussion of other types of round
numbers and their interesting properties, the reader is re-
ferred to [7].

Acceptors and coordinators are divided in quorums
per round. The quorums of acceptors and of coordina-
tors of round i are called, respectively, i-quorums and i-
coordquorums. We say that a value is chosen in a round i if
all acceptors in an i-quorum have accepted the value while
in i. The goal of each round is to choose a value while
ensuring the following property: If a value v is chosen in
round i, then no acceptor will ever accept a value different
from v in any round j such that j > i. This is done in two
phases: phase 1 serves to identify previously decided values
and phase 2 tries to decide on some value while maintain-
ing consistency with previous decisions, identified in the
phase 1.

We initially require that Assumptions 1 and 2 be satisfied.
In the next section we show that a combination of the first
and a weakened version of the second are sufficient. More-
over, MCC also requires Assumption 3 be satisfied.

Assumption 3 (Coordquorum requirement) For any two
quorums of coordinators P and Q for the same classic
round, P ∩ Q �= ∅.

3.1 The algorithm

The actions of Algorithm 1 are defined in terms of the vari-
ables manipulated by the agents. The function of each vari-
able will become clear from the explanation of the actions.
A coordinator c keeps the following variable:

crnd[c] The current round of c. Initially 0.

An acceptor a keeps three variables:

rnd[a] The current round of a, that is, the highest-number-
ed round a has heard of. Initially 0.

vrnd[a] The round at which a has accepted the latest value.
Initially 0.

vval[a] The value a has accepted at vrnd[a]. Initially none.

Each learner l keeps only the value it has learned so far:

learned[l] The value learned by l. Initially none.

3.1.1 Proposing a value

A proposer agent a proposes a value v by executing ac-
tion Propose(a, v). The action consists simply of sending
a 〈“propose”, v〉 message to all coordinators and, to al-
low the execution of fast rounds, to acceptors alike. To min-
imize communication overhead, proposals may be initially
sent only to coordinators and sufficient acceptors to form

the quorums needed to decide; if needed, the proposals are
then re-submitted in broadcast. Observe that this is only pos-
sible if multiple rounds share the same quorums, otherwise
proposers would not know where to send proposals, because
they are oblivious to rounds.

3.1.2 Phase one

In Paxos and Fast Paxos, each round i has a 1-to-1 associ-
ation to a coordinator agent c, and only such a coordinator
can execute action Phase1a(c, i). In MCC, the association
is 1-to-many, and any of such coordinators can execute the
action, no matter how they are subdivided in coordquorums.
The action consists of c sending a message 〈“1a”, c, i〉 to
each acceptor a asking a to take part in round i.

In reply, an acceptor a executes Phase1b(a, i) if it has not
heard of any round bigger than i, where a has heard of j if it
already executed actions Phase1b(a, j) or Phase2b(a, j). In
this case, a joins round i by setting rnd[a] to i, and sends a
message 〈“1b”, a, i, vrnd[a], vval[a]〉 to all the coordinators
of round i, where vrnd[a] is the highest-numbered round in
which a has accepted a value, and vval[a] is the value it ac-
cepted in vrnd[a]. If no value has been yet accepted by a,
then vrnd[a] equals its initial state and vval[a] equals an in-
valid proposal, none.

By the precondition that rnd[a] < i and because the ac-
tion sets rnd[a] to i, once executed for i, this action can only
execute again for a bigger round number. Moreover, it also
forbids the execution of action Phase2b for a round smaller
than i.

3.1.3 Phase two

The second phase starts once a coordinator c receives
〈“1b”, a, i, vrnd, vval〉 messages for the same round i

from all acceptors a in an i-quorum Q and executes ac-
tion Phase2a(c, i). Observe that a coordinator c executes
Phase2a(c, i) at most once for each round i, but any coordi-
nator of round i can start the second phase even if it did not
start phase one, as long as it has received the “1b” messages
required to execute action Phase2a. This approach allows
a round to finish even if the coordinator that just started it
becomes unavailable.

In executing Phase2a(c, i), c sends a 〈“2a”, c, i, val〉
message to the acceptors, where val is the value picked by
c to be accepted by the acceptors. c picks val based on the
“1b” messages received from the acceptors in Q in round
i, as explained next. This procedure is formally defined as
function PickValue(c,Q, i) in Algorithm 2.

• If none of the “1b” messages received from acceptors in
Q has a value different from the invalid proposal none,
then they have not and will not accept any value for any
round j < i. Since any j -quorum R must intersect Q,



54 J Braz Comput Soc (2010) 16: 49–68

Algorithm 1 Multicoordinated Consensus
1: Proposer Actions:

2: Propose(a, v) �
3: preconditions:
4: a ∈ proposers
5: actions:
6: send 〈“propose”, v〉 to coordinators ∪ acceptors

7: Phase One:
8: Phase1a(c, i) �
9: pre-conditions:

10: c ∈ ⋃
i-coordquorum

11: crnd[c] < i
12: actions:
13: send 〈“1a”, c, i〉 to acceptors

14: Phase1b(a, i) �
15: pre-conditions:
16: a ∈ acceptors
17: rnd[a] < i
18: received message 〈“1a”, c, i〉 from coordinator c
19: actions:
20: rnd[a] ← i
21: send 〈“1b”, a, i, vrnd[a], vval[a]〉 to c
22: Phase Two:
23: Phase2a(c, i) �
24: preconditions:
25: c ∈ ⋃

i-coordquorum
26: crnd[c] ≤ i
27: ∃Q : Q is an i-quorum and ∀a ∈ Q, c received 〈“1b”, a, i, rnd, val〉
28: actions:
29: crnd[c] ← i
30: cval[c] ← PickValue(c,Q, i)
31: send 〈“2a”, c, crnd[c],PickValue(c,Q, i)〉 to acceptors

32: PickValue(c,Q, i) is defined in Algorithm 2.

33: Phase2b(a, i) �
34: preconditions:
35: a ∈ acceptors
36: rnd[a] ≤ i
37: vrnd[a] < i
38: ∃C, val : C is an i-coordquorum and ∀c ∈ C a received 〈“2a”, c, i, val〉 from c
39: actions:
40: rnd[a] ← i
41: vrnd[a] ← i
42: IF val �= Any
43: THEN vval[a] ← val
44: ELSE vval[a] ← CHOOSE v: a received 〈“propose”, v〉 from some proposer
45: send 〈“2b”, a, i, val〉 to learners

46: Learn(l) �
47: preconditions:
48: l ∈ learners
49: ∃Q : Q is an i-quorum and ∀a ∈ Q, l received 〈“2b”, a, i, val〉
50: actions:
51: learned[l] ← val

Algorithm 2 PickValue(Q) in Multicoordinated Consensus

1: PickValue(c,Q, i) �
2: LET
3: k � CHOOSE r :
4: c received 〈“1b”, a, i, r,_〉 from some a ∈ Q and
5: ∀a′ ∈ Q,m′ =〈“1b”, a′, i, r ′,_〉 c received from a′: r ′ ≤ r

6: rAcceptors(S, r) �
7: {a : a ∈ S and c received 〈“1b”, a, i, r,_〉 from a}
8: rVals(S, r) �
9: {v : c received 〈“1b”, a, i, r, v〉 from a ∈ S}

10: IN
11: IF ∃R,v �= none : R is an i-quorum and Q ∩ R ∈ rAcceptors(Q,k) and rVals(Q ∩ R,k) = {v}
12: THEN v
13: ELSE IF i is a fast round THEN Any
14: ELSE CHOOSE v: received 〈“propose”, v〉 from some proposer



J Braz Comput Soc (2010) 16: 49–68 55

by Assumption 1, no such a quorum has or will succeed
in choosing any value in j . As a result, c can pick any
proposed value.

Otherwise, if some valid value is received by c, let k be the
greatest round number vrnd received among the “1b” mes-
sages received by c.

• If there exists a value v such that, for some k-quorum R, c
received message 〈“1b”, a, i, k, v〉 from every acceptor in
a ∈ R ∩ Q, then c picks v, since it may have been chosen
by the acceptors of R.

• If no such a value exists, then c can pick any proposed
value.

Whether the round was fast or not is irrelevant to the
agents until the moment in which the coordinator must ex-
ecute function PickValue(c,Q, i) and pick a value. At this
point, if i is a fast round and if either the first or the third case
happens, that is those in which any value may be picked,
then c can tell the acceptors to accept proposals directly
from proposers. It does so by picking a special value Any

in PickValue. Irrespectively of the value picked, Any or oth-
erwise, c sends the message 〈“2a”, c, i, val〉 to acceptors.

Once an acceptor a accepts some value val in round i, by
executing action phase2b, it sends a message
〈“2b”, a, i, val〉 to warn the learners. The exact way in
which action phase2b works, however, depends on whether
the round is fast or not, if the coordinator has sent the Any
special value, and on the concept of coordinator quorums.
We focus on these points in the following sections. In any
case, a learner l executes action Learn(l) when it receives
a 〈“2b”, a, i, val〉 message from each acceptor a in an i-
quorum. The messages imply that val has been chosen and l

can learn it by attributing it to variable learned[l].

3.2 Accepting values in fast rounds

As we have stated above, each round is associated with many
coordinators, each of which is allowed to execute action
phase2a and send a proposal to the acceptors and, therefore,
it is possible that acceptors receive multiple proposals in the
same round i.

If the acceptors were to accept the first proposal they see,
then the round may not succeed in the sense that no single
value is accepted by a quorum of acceptors. To avoid this
situation, in non-fast rounds an acceptor accepts a value iff
it was received from all coordinators in an i-coordquorum.
Since we required coordinator quorums to satisfy Assump-
tion 3, no two different values can ever be accepted in the
multicoordinated (non-fast) round.

In a fast round, however, if an acceptor a receives the
value Any from a coordinator, then a will accept proposals
directly from the proposers. Since no restriction is put on
the number of proposers in the system, we cannot organize

Fig. 1 Q is an i-quorum, R and
S are k-quorums, and v and w

are the values accepted by
acceptors in Q ∩ R and Q ∩ S,
respectively

them in quorums to avoid accepting multiple values, and it
may happen that different acceptors accept different values
in the same fast round. If we define quorums as any major-
ity of the acceptors (satisfying Assumption 1 only), having
multiple values accepted in the same round might lead to the
following run of MCC:

1. In the fast round i, acceptor av accepts value v and ac-
ceptor aw accepts value w �= v.

2. In round i +1, every coordinator c of i +1 receives “1b”
messages from a quorum Q containing av and aw .

At this point, there are two different values, v and w,
and two i-quorums, R and S, such that Q ∩ R = av and
Q∩S = aw . Moreover, for every acceptor a in Q∩R, a mes-
sage 〈“1b”, a, i, k, v〉 was received from a, and, for every
acceptor b in Q ∩ S, a message 〈“1b”, b, i, k,w〉 was re-
ceived from b. This means that either one of the values has
been chosen or might still be chosen depending on what the
acceptors in (S ∪ R) \ Q accept. By Assumption 1, R and S

have a non-empty intersection, which prevents both values
from being chosen, but since this intersection does not inter-
sect Q, c cannot decide which value to pick. Even worse, if
all acceptors in R \ S accepted v and all acceptors in S \ R

accepted w, then if the acceptors R ∩ S crash definitively,
the algorithm will never be able to tell whether v or w were
already decided and cannot progress any further. This sce-
nario is depicted in Fig. 1.

The way to avoid such a scenario is by strengthening the
assumption made on the intersection of quorums and mak-
ing sure that the intersection of any two quorums R and S,
as shown above, also intersects Q. If this is ensured, the sit-
uation discussed above will never happen. The Simple Quo-
rum Requirement in Assumption 2 would suffice here, but
as we mentioned when defining it, it is stronger than really
needed. The reason is that it forces any three quorums to in-
tersect. In MCC and Fast Paxos, the following requirement
is sufficient:

Assumption 4 (Fast quorum requirement) For any rounds i

and j :

• If Q is an i-quorum and S is a j -quorum, then Q∩S �= ∅.
• If Q is an i-quorum, R and S are j -quorums, and j is

fast, then Q ∩ R ∩ S �= ∅.



56 J Braz Comput Soc (2010) 16: 49–68

If every set of n−E acceptors is a fast quorum and every
set of n−F acceptors is a classic quorum, where n is the to-
tal number of acceptors, then n must be greater than 2E+F ,
as well as greater than 2F . These constraints are achieved,
for example, if every set of � 2n

3 � + 1 acceptors is a fast and
classic quorum. If classic quorums are defined to be any ma-
jority of acceptors, fast quorums must be as big as � 3n

4 � + 1
acceptors. It has been shown that any asynchronous con-
sensus protocol that allows a decision to be reached in two
communication steps must satisfy similar quorum require-
ments [27] (Fast Learning Theorem).

Even though we can avoid the situation in which the
algorithm cannot safely execute more rounds, the accep-
tance of multiple values in fast rounds can still prevent the
round from succeeding, if no complete quorum accepts the
same value. There are different ways of recovering from
such a collision [26], and all reduce to executing a higher-
numbered round. However, depending on how this new
round is chosen, latency can be reduced considerably. We
refer the reader to [26] and [7] for in-depth discussions of
collision recovery.

3.3 Correctness and liveness

The MCC algorithm satisfies the safety properties of con-
sensus mainly because it ensures that rounds are consistent
with previous decisions. As described in the definition of
Phase1b, executing action Phase1b for a given round pre-
vents the same acceptor from executing action Phase2b for
any smaller round, and action Phase2a selects the previ-
ously chosen value, if any. If different coordinators keep
starting new rounds, it may happen that acceptors continu-
ously execute Phase1b for the new rounds before executing
Phase2b for the smaller rounds, and no value is ever chosen.

In the simplified case where rounds are single-coordin-
ated, if a quorum of acceptors, a coordinator, a proposer, and
learner do not crash, then the learner will eventually learn
the decision if there is a single coordinator that believes it-
self to be the leader (by using an Ω oracle) and the proposer
proposes some value. This is equivalent to the rounds of the
original Paxos protocol [23].

A similar condition may seem harder to achieve for mul-
ticoordinated rounds, since any of its coordinators can start
the round but, in fact, the complexity is exactly the same.
In a multicoordinated round, a proposal will be accepted
by an acceptor only if a quorum of coordinators has for-
warded such a value. Since all coordinator quorums inter-
sect, at most one value is accepted in such rounds. Coordi-
nators of rounds executed afterward contact only the accep-
tors and are not influenced by the multiple coordinators of
lower rounds. Roughly speaking, a multicoordinated round
i will finish if no other round is started, some proposal is
made, and at least one of its coordquorums is composed of

non-crashed coordinators and all of its coordinators receive
the same proposal. Moreover, because our protocol is an ex-
tension of Fast Paxos, it can switch to single-coordinated
rounds at any moment and ensure liveness under the same
conditions of classic Paxos. We formalized this argument in
[6].

4 Agreement in networks of groups

With data centers spread across the globe and distributed
systems that span the Internet, the problem of ensuring con-
sistency in distributed environments has gained new dimen-
sions. The busyness model of online retailers, such as Ama-
zon.com, and social networking sites, such as Facebook and
Orkut, mandate that the user data, such as profiles and shop-
ping carts, be available to their millions of users at nearby
data centers for a better user experience. Data must also
be available at other locations to support mobility. In some
cases, although clients may access their data on any data
center, updates are performed in a single location and only
later propagated to the other locations. While simpler to im-
plement, this strategy incurs in higher latency between an
update and the availability of the written data at the clos-
est data center; allowing updates everywhere, instead, is
preferable. Implementing such an update-everywhere data-
base replication may be done atop of agreement protocols
(e.g., Pedone et al. [30]) but, to be effective, such agreement
protocols must be efficient and resilient in this networking
scenario which we refer to as networks of groups.

Networks of groups may be abstracted as groups of
agents and, typically, are characterized by large differences
in terms of latency of communication between two agents:
while agents within the same group exchange messages
through low-latency communication channels, those in dif-
ferent groups may experience latencies that are orders of
magnitude higher. More specifically, we consider networks
abstracted by Fig. 2, in which agents are organized in a set
of m subsets or groups Γ = {G1, . . . ,Gm}. Although groups
may be seen as data centers, the same abstraction also works
for smaller setups as, for example, the internals of a single
data center, where groups are racks of nodes.

Besides the sets G1, . . . ,Gm of agents that effectively
propose and learn the agreed values, Fig. 2 depicts the ac-
ceptors in the system as another set, A. To ensure fault-
tolerance, A should be composed of agents executing in the
same physical locations as the agents in Γ . Hence, we con-
sider that the cost of exchanging information between any
group and A and between the elements of A is as expensive
as between two agents in different groups.



J Braz Comput Soc (2010) 16: 49–68 57

Fig. 2 Agents distributed in groups in a wide area network. Agents in
a group Gi,0 ≤ i ≤ m, are physically close to each other. Agents in A

are spread geographically

4.1 A round type for network of groups

4.1.1 Multicoordinated fast rounds

Consider the price of solving standard consensus in a net-
work of groups using a leader-based protocol such as Paxos.
Let Gl be the group to which the leader belongs. Because the
protocol is so dependent on the leader, it has the following
clear drawbacks: (i) agents in Gm,m �= l, must monitor the
leader through intergroup links; (ii) in the case of a leader
failure, the reconfiguration takes two intergroup delays, plus
the time to detect the failure; and, (iii) while for every agent
in Gl the time between proposal and decision is of two in-
tergroup delays in good runs, for any other agent not in Gl

the latency is of at least three intergroup delays.
Using the multicoordinated approach that we have de-

scribed in the previous sections with all coordinators within
Gl will minimize the effects of the first two drawbacks. That
is, failure detection may be less aggressive since rounds are
more resilient and it is unlikely that rounds will need to be
changed due to conflicts, since groups are probably within
a single-area network where messages tend to be ordered
spontaneously and collisions are more unlikely. Multicoor-
dination, however, does not help with the third drawback.

To allow a two-step latency from any group of agents, fast
rounds would be more appropriate, but they have their own
drawbacks: collisions of proposals and, by consequence,
larger acceptor quorums and, therefore, lesser resiliency and
more messages crossing the boundaries of groups. To mini-
mize the number of messages exchanged, one agent may be
selected from each group to aggregate the groups’ proposals
and forward them to the acceptors instead of letting every
agent propose in every fast round. Such a fast round with
aggregation is, in fact, a multicoordinated round in which
each agent aggregating proposals is a coordquorum. Ob-
serve however that this multicoordinated fast round does not
satisfy the coordquorum requirement (Assumption 3).

When comparing single-coordinated and fast rounds, we
see that we either need to ensure that a single value is pro-

posed or we allow conflicting values be proposed but require
Assumption 4 be true and more acceptors be available. The
same holds true for multicoordinated classic and multico-
ordinated fast rounds, as the one described in the previous
paragraphs of this section. That is, we either enforce that
only a single proposal per round can possibly be accepted
by satisfying the coordquorum requirement or we relax this
requirement and satisfy the fast-quorum requirement. Both
requirements can only be relaxed at the same time if absence
of conflicts is guaranteed in some other way. This is what is
accomplished by collision-fast rounds.

4.1.2 Fast rounds in spite of collisions

Guaranteeing that proposals do not conflict is exactly what
the Collision-Fast Paxos protocol [37] does to ensure that, in
the absence of failures and message loss, agents reach agree-
ment and learn the decision in two communication steps. In
Collision-Fast Paxos, CFPaxos for short, agents agree not
on a single value but on a mapping from each proposer to its
proposed value, allowing the protocol to void any conflicts
since each proposal is mapped from a different proposer. If
commands are not commutable, then once the mapping is
learned, a deterministic function may be applied to trans-
form it into a sequence. Another very interesting aspect of
CFPaxos is that, in the absence of failures, the more parallel
proposals there are, the smaller the relative cost for each one
to be learned because all proposals are learned in parallel.

By combining CFPaxos and the multicoordinated fast
rounds presented in the previous section we get a round type
that is perfectly suited for reaching agreement in networks
of groups. In Sect. 5 we introduce two of such combined
protocols, a basic and an optimized version. To simplify the
presentation of our protocols, we first overview the CFPaxos
protocol in the following section.

4.2 Collision-fast Paxos

In CFPaxos, learners must eventually learn a mapping from
all proposers to the values that have been proposed or to a
special value Nil. Ideally, a proposer would be mapped to Nil
only if it does not have any proposal to make. Nonetheless,
due to the asynchrony of the system and false failure suspi-
cions, proposers can be mapped to Nil also if suspected to
have crashed during the execution of the protocol. The map-
ping is a special data structure called value mappings [37],
or v-maps. These mappings are also what name the problem
solved by CFPaxos, that is, the Mapping Consensus prob-
lem [37], or M-Consensus for short.

4.2.1 Value mapping sets

A Value Mapping Set, VMap, is defined in terms of sets
Domain and Value as the set of all surjective mappings from



58 J Braz Comput Soc (2010) 16: 49–68

subsets of Domain to values on Value or to Nil /∈ Value. That
is, a value mapping (v : D → R) ∈VMap has as domain
D ⊆ Domain and as range R ⊆ Value ∪ {Nil}, such that all
values in the range are mapped from some value in the do-
main. Let ⊥ be a mapping with empty domain and range. ⊥
is clearly an element of every value mapping set.

We represent a v-map v : {a} → {b}, with domain and
range of cardinality one, simply as {a �→ b}. We refer to
such v-maps as s-maps, short for “single maps.” We also de-
fine the • operator, which extends a v-map with an s-map—
where v is a v-map, s is an s-map, and Dom(v) is the domain
of v-map v—as follows:

v • s = w, such that
– Dom(w) = Dom(v) ∪ Dom(s),
– ∀e ∈ Dom(v),w(e) = v(e), and
– ∀e ∈ Dom(s) \ Dom(v),w(e) = s(e).

Although described for a v-map and an s-map, the • op-
erator naturally works for any two v-maps. One can think of
extending a v-map v with another v-map w as the recursive
extension of v with the s-maps that form w. We say that v-
map v is a prefix of v-map w and that w extends v (v � w)
iff there exists a v-map σ such that v • σ = w. Therefore, �
is a partial order relation on v-map sets.

Given a v-map set V , we say that v-map v is a lower
bound of V iff v � w for all w in V . A greatest lower bound
(glb) of V is a lower bound v of V such that w � v for every
lower bound w of V , and we represent it by �V . Similarly,
we say that v is an upper bound of V iff w � v for all w in
V . A least upper bound (lub) of V is an upper bound v of
V such that v � w for every upper bound w of V , and we
represent it by �V . For simplicity of notation, we use v � w

and v � w to represent �{v,w} and �{v,w}, respectively.
A set V of v-maps is compatible iff for every pair of v-maps
v,w ∈ V , for all elements e ∈ Dom(v) ∩ Dom(w), v(e) =
w(e). Note that, since � is a reflexive partial order on the
set of v-maps, if a glb or lub of V exists, then it is unique,
and that the existence of the lub �V of a set of v-maps V

depends on V being compatible.
Other than the aforementioned single maps, two other

v-maps are of special interest: complete and trivial. Com-
plete v-maps are those whose domain equals the respective
Domain set; complete v-maps cannot be extended, hence the
name. Trivial v-maps are complete v-maps whose ranges
equal {Nil}.

4.2.2 M-consensus

The M-Consensus problem is formalized in terms of pro-
posers, acceptors, learners, and a v-map set whose Domain
and Value sets equal the set of proposers and the set of pro-
posable commands, respectively.

As proposers propose commands, learners learn v-maps
from proposers to commands or to Nil. Learners may learn

different v-maps, but they must be always compatible.
A learner can only learn another v-map if it is an exten-
sion of the previously learned one. Eventually, all nonfaulty
learners must learn the same complete non-trivial v-map.
Formally, the properties of M-Consensus are the following,
where learned[l] is the v-map learned by learner l, initially
⊥ [37]:

Nontriviality For any learner l, learned[l] is always a non-
trivial v-map and the range of learned[l] contains only pro-
posed commands.

Stability For any learner l, if learned[l] = v at some time,
then v � learned[l] at all later times.

Consistency The set of learned v-maps is always compati-
ble and has a nontrivial least upper bound.

Liveness For any proposer p and learner l, if p, l and a
quorum of acceptors are nonfaulty and p proposes a value,
then eventually learned[l] is complete.

The similarity between the specification of M-Consensus
and consensus is not coincidental. These problems are, in
fact, equivalent: one can solve consensus by deterministi-
cally choosing a proposal from the M-Consensus solution
and, conversely and, conversely, one solve M-Consensus by
building v-map whose range equals the decision of consen-
sus. As a result, all lower-bounds of consensus are valid for
M-Consensus, as for example, the Quorum Requirement for
asynchronous algorithms (Assumption 1).

4.2.3 Algorithm

CFPaxos [37] is a Paxos-like M-Consensus protocol. As
with other Paxos-like protocols, CFPaxos runs in rounds to-
tally ordered by a relation ≤ and associated with a single
coordinator agents that may start them. Each round is asso-
ciated with a subset of proposers, which are the only ones al-
lowed to send their proposals to the acceptors in that round.
As a result, they may have their proposals decided in two
communication steps in such a round. We call these pro-
posers the collision-fast proposers of the round. The other
proposers use the collision-fast ones as their proxies. As
we explain later, making all proposers collision-fast for all
rounds would restrict the algorithm’s resilience.

To propose a value v in some round, a collision-fast pro-
poser p builds the s-map {p �→ v} and sends it to the ac-
ceptors and the other collision-fast proposers of the round.
This is a request to the acceptors to accept the s-map and
to inform the other collision-fast proposers that a proposal
has been made. When informed of a proposal, if a collision-
fast proposer q has not proposed yet, then it abstains from
proposing by sending the s-map {q �→ Nil} to the learners.

Acceptors accept s-maps to extend their accepted v-
maps. Since they only receive s-maps with value other than
Nil from collision-fast proposers, their accepted v-maps al-
ways map to a range other than {Nil}. Every time acceptors



J Braz Comput Soc (2010) 16: 49–68 59

extend their accepted v-maps, they notify the learners about
the newly accepted v-map.

As learners receive notifications from the acceptors and
the Nil valued s-maps from the collision-fast proposers, they
can identify which proposers must be mapped to Nil and
which have had their proposals already accepted by a quo-
rum of acceptors satisfying Assumption 1. We say that these
mappings are chosen and are bound to compose the com-
plete v-map which learners will eventually learn. Formally, a
v-map v has been chosen in a round r iff, for every collision-
fast proposer p ∈ Dom(v), of round r , either

• there is a quorum of acceptors which accepted v-maps
mapping p to v(p), or

• p has proposed {p �→ Nil} in r and v(p) = Nil.

In a good run of CFPaxos in which a single collision-fast
proposer p proposes a value v, a round executes as follows:

• p proposes {p �→ v};
• after one communication step, the acceptors and each

other collision-fast proposers cp learn about {p �→ v}
and, respectively, accept the value and send the s-map
{cp �→ Nil} to learners;

• after the second communication step, learners receive the
messages from the acceptors and collision-fast proposers
and learn the v-map decided.

If the other collision-fast proposers have proposed before
receiving p’s proposal then, in the absence of failures, at
most three communication steps before the protocol termi-
nates and all proposed values are learned.

To cope with failures, an elected leader will start a new
round with a different set of collision-fast proposers when
suspecting that one of the current ones has crashed. To en-
sure consistency, the leader starts the new round by identi-
fying possibly chosen v-maps and making sure that they are
the only possibly chosen v-maps in the new round. The pro-
cedure is similar to the other Paxos algorithms and, in spe-
cial, to Generalized [25] and Multicoordinated Paxos [9]:
if no v-map may be possibly chosen at a lower-numbered
round, the collision-fast proposers of the new round are no-
tified so that they can fast-propose.

For a full description of the algorithm, the reader is re-
ferred to the original work [37], in which the authors prove
the correctness of the algorithm, show how to implement
Atomic Broadcast on top of CFPaxos, and state the assump-
tions needed to ensure liveness.

5 Multicoordinated agreement for groups

Collision-Fast Paxos may be used to reach agreement be-
tween processes in various scenarios, but it is specially
suited for systems that can be organized in groups of

processes such as the one in Fig. 2. By assigning one
collision-fast proposer to each group, to whom proposers
in the same group send their proposals, CFPaxos can de-
liver messages from each group to each other in two inter-
group communication steps in the absence of failures. In
case some collision-fast proposer crashes, the leader simply
starts a new round to replace it with another proposer in the
same group. If no agent is up to the task of collision-fast
proposer, however, then the leader has no option but not se-
lect one from the given group, forcing regular proposers to
the resort to other groups to have their proposals considered
or stop proposing.

In this section we show how we can extend CFPaxos
to tolerate the failure of collision-fast proposers in a group
without changing rounds nor leaving the proposers “orphan”
in situations in which CFPaxos would do so. Our extension
consists in using multicoordination and recursively apply-
ing consensus inside each group. Because collision-fast pro-
posers execute the tasks that we have associated with coor-
dinators in the previous sections, notably, forwarding mes-
sages from proposers to acceptors, hereinafter we refer to
them also as coordinators.

There are two main differences between the original CF-
Paxos and our multicoordinated version. First, instead of a
single coordinator per group, each round defines a set of co-
ordinators per group. The set of coordinators of a group im-
plement the collision-fast proposer in the original protocol.
To propose in some round, a proposer sends its proposal to
all coordinators in its group. The coordinators of the current
round then forward the proposals to the acceptors. Second,
agents agree on a map from groups to proposed values as
opposed to maps from proposers to values as in CFPaxos.
That is, coordinators send s-maps of the form {G �→ v} to
the acceptors, where G is a group and v the proposal of
some proposer in G (or possibly an aggregation of propos-
als).

On the acceptors side the only difference is that accep-
tors do not accept a proposal unless it has been received
from a quorum of coordinators of the respective group for
the respective round. More precisely, let Gi be the set of
quorums of coordinators of group G in round i, or the Gi -
coordquorums. An acceptor a accepts proposal {G �→ v} in
round i if it has received the same proposal from every coor-
dinator in some set Q ∈ Gi -coordquorum. To ensure that no
two acceptors accept different mappings for the same group,
we require that every two quorums intersect. This require-
ment is formally stated in Assumption 5.

Assumption 5 (Group quorum requirement) For any
round i, if P and Q are Gi -coordquorums, then P ∩Q �= ∅.

Assumption 5 is easily satisfied by having each quorum
contain any majority of the coordinators of round i in a
group G.



60 J Braz Comput Soc (2010) 16: 49–68

In the following section we detail a basic algorithm, Ba-
sicMCF, which implements our multicoordinated extension
of CFPaxos. This basic algorithm improves the resilience of
CFPaxos but may be further enhanced to allow reconfigura-
tion internally to a group before resorting to a round change.
We present this algorithm, ExtendedMCF, in Sect. 5.2.

5.1 Basic algorithm

In BasicMCF, we assume that every proposer and coordi-
nator a knows to which group it belongs. This information
is stored in the variable group[a]. Proposers keep no other
information. A coordinator c has two other variables:

crnd[c] The current round of c, initially 0.
cval[c] The s-map that c is proposing in round crnd[c], if al-

ready defined, or the special value none, otherwise.
The value is defined and informed by the coordina-
tor who started the round or left to be defined once
a proposal is received from some proposer. Initially,
it equals none.

An acceptor a keeps three variables:

rnd[a] The current round of a; initially 0.
vrnd[a] The round at which a has accepted its latest value;

initially 0.
vval[a] The v-map a has accepted at vrnd[a] if it has ac-

cepted something at vrnd[a], or special value none
otherwise; initially none.

Each learner l keeps only the v-map it has learned so far:

learned[l] The v-map currently learned by l; initially ⊥.

We assume that round numbers are partitioned among
the possible coordinators in the protocol, for example, by
including the coordinator’s unique identifier as part of the
round number. Moreover, every round is associated with
a set of coordinator quorums. This scheme may be de-
fined as by having each round number as the sequence
〈Count, Id, S〉, where Count is an integer, Id is the coordi-
nator of the round, and S is the set of coordinator quorums.
Round numbers are compared lexicographically taking only
the two first fields into account to define the required total
order among them.

Algorithm 3 presents the actions of BasicMCF.

5.1.1 Proposing a command

To propose a value v, proposer p executes action
Propose(p, v). In the action, p simply sends its proposal
to all coordinators that belong to its own group for them to
forward the proposal to the acceptors. The proposal is ex-
ecuted out of the context of the phases one and two of the
algorithm, which effectively choose a v-map.

5.1.2 Phase one

To start the phase one of round i, the coordinator c of i ex-
ecutes action Phase1a(c, i). In the action, c queries the ac-
ceptors about previously accepted v-maps by sending them
a 〈“1a”, c, i〉 message.

An acceptor a reacts to a 〈“1a”, c, i〉 message as fol-
lows: if its current round rnd[a] is smaller than i, then a

sets rnd[a] to i and replies to c with message 〈“1b”, a, i,

vrnd[a], vval[a]〉. Through this “1b” message, a promises
to c that it will not accept any v-map in any round smaller
than i.

5.1.3 Phase two

The second phase of round i starts when its coordinator c

receives “1b” messages from a quorum Q of acceptors for
round i. It then executes action Phase2Start(c, i) as follows.
Initially, c picks a v-map v that must extend any v-map pos-
sibly chosen in a round smaller than i; the v-map is picked
based on the “1b” messages received from the acceptors
in Q through function PickValue(c,Q, i), which we explain
later. Next, c sends a 〈“2S”, c, i, v〉 message to all the co-
ordinators in the round i. The purpose of this message is
twofold: first, it lets the coordinators that form the coordquo-
rums of round i know whether they are allowed to propose
something (if v = ⊥) or not; second, it lets acceptors know
whether the coordinator who started i has defined a single
mapping that they can accept in the round (v �= ⊥) or not. If
v �= ⊥, the message is also sent to the acceptors. If c is also
one of the coordinators of i, it sets its cval[c] variable as the
other coordinators will do after receiving the “2S” message:
to none if v = ⊥ or to v(group[c]) otherwise.

When a coordinator c receives message 〈“2S”, d, i, v〉
for the first time, it executes action Phase2Prepare. In the
action, c first sets crnd[c] to i and then checks whether v

equals ⊥ or not. If v �= ⊥, then it sets cval[c] to v(group[c]),
which has been determined by the coordinator who started
the round. Otherwise, it sets cval[c] to none, to indicate that
it can still send some s-map to the acceptors by executing
action Phase2a(c, i).

After having executed action Phase2Prepare(c, i), if
it is in some coordinator quorum of round i for group
group[c], coordinator c may execute action Phase2a(c, i)
in two situations. The first situation is after receipt of a
〈“propose”,w〉 message, in which case c sets cval[c] to w

and then sends a 〈“2a”, c, i, {group[c] �→ cval[c]}〉 message
to the acceptors and all the other coordinators of round i.
The second is after receipt of a 〈“2a”,_, i,_, {G �→ w}〉
message where {G �→ W } is an s-map from group G �=
group[p] to a value w �= Nil. In this case, c sets cval[c]
to Nil and sends message 〈“2a”, c, i, {group[c] �→ cval[c]}〉
directly to the learners.



J Braz Comput Soc (2010) 16: 49–68 61

Algorithm 3 BasicMCF
1: Proposer Actions:

2: Propose(p, v) �
3: preconditions:
4: p ∈ proposers
5: actions:
6: send 〈“propose”, v〉 to all coordinators of group group[p]
7: Phase One:
8: Phase1a(c, i) �
9: preconditions:

10: c is the coordinator of i
11: crnd[c] < i
12: actions:
13: send 〈“1a”, c, i〉 to acceptors

14: Phase1b(a, i) �
15: preconditions:
16: a ∈ acceptors
17: rnd[a] < i
18: received 〈“1a”, c, i〉 from coordinator c
19: actions:
20: rnd[a] ← i
21: send 〈“1b”, a, i, vrnd[a], vval[a]〉 to c

22: Phase Two:
23: Phase2Start(c, i) �
24: preconditions:
25: c is the coordinator of i
26: crnd[c] < i
27: ∃Q : Q is a quorum and ∀a ∈ Q, c received 〈“1b”, a, i, rnd, val〉
28: actions:
29: LET v � PickValue(c,Q, i)
30: IN
31: crnd[c] ← i
32: IF v = ⊥
33: THEN
34: send 〈“2S”, c, i, v〉 to

⋃
G∈Γ Gi -coordquorum

35: IF c ∈ ⋃
G∈Γ Gi -coordquorum

36: THEN cval[c] ← none
37: ELSE
38: send 〈“2S”, c, i, v〉 to

⋃
G∈Γ Gi -coordquorum ∪acceptors

39: IF c ∈ ⋃
G∈Γ Gi -coordquorum

40: THEN cval[c] ← v(group[c])
41: PickValue(c,Q, i) �
42: LET
43: k � CHOOSE r : c received 〈“1b”, a, i, r,_〉 from some a ∈ Q and ∀a′ ∈ Q,m′ =〈“1b”, a′, i, r ′,_〉 c received from a′: r ′ ≤ r}
44: S � {v : c received 〈“1b”, a, i, k, v〉 from a ∈ Q} \ {none}
45: IN IF S = {} THEN ⊥ ELSE �S • {G ∈ Γ �→ Nil}
46: Phase2Prepare(c, i) �
47: preconditions:
48: c ∈ ⋃

G∈Γ Gi -coordquorum
49: crnd[c] < i
50: c received 〈“2S”, c, i, v〉
51: actions:
52: crnd[c] ← i
53: IF v = ⊥ THEN cval[c] ← none ELSE cval[c] ← v(group[c])
54: Phase2a(c, i) �
55: preconditions:
56: c ∈ ⋃

G∈Γ Gi -coordquorum
57: crnd[c] = i ∧ cval[c] = none
58: ∃v : (c received 〈“propose”, v〉) ∨ (received 〈“2a”, d, i, {G �→ w}〉: G �= group[c] ∧ w �= Nil = v)
59: actions:
60: cval[c] ← {G �→ v}
61: IF v = Nil
62: THEN send 〈“2a”, c, crnd[c], cval[c]〉 to learners
63: ELSE send 〈“2a”, c, crnd[c], cval[c]〉 to

⋃
G∈Γ Gi -coordinators ∪acceptors

64: Phase2b(a, i) �
65: preconditions:
66: a ∈ acceptors
67: rnd[a] ≤ i
68: (a received 〈“2S”, c, i, v〉: v �= ⊥ ∧ (vnrd[a] < i ∨ vval[a] = none))∨

(∃L,v �= Nil : L is an Gi -coordquorum ∧∀c ∈ L: a received 〈“2a”, c, i, {G �→ v}〉)



62 J Braz Comput Soc (2010) 16: 49–68

Algorithm 3 BasicMCF (Continued)
69: actions:
70: IF a received 〈“2S”, c, i, v〉: v �= ⊥ ∧ (vnrd[a] < i ∨ vval[a] = none)
71: THEN vval[a] ← v
72: ELSE IF ∃L,v �= Nil : (L is an Gi -coordquorum) ∧

(∀c ∈ L: a received 〈“2a”, c, i, {G �→ v}〉) ∧
(vnrd[a] < i ∨ vval[a] = none)

73: THEN vval[a] ← {G �→ v} • {G ∈ Γ �→ Nil}
74: ELSE vval[a] ← vval[a] • {G �→ v}
75: rnd[a] ← vrnd[a] ← i
76: send 〈“2b”, a, i, vval[a]〉 to learners

Learn(l) �
77:78: preconditions:
79: l ∈ learners
80: ∃Q : Q is a quorum and ∀a ∈ Q, l received 〈“2b”, a, i, val〉
81: ∃γ ∈ Γ : ∀G ∈ γ : ∃P : P is a Gi -coordquorum and ∀c ∈ P , l received 〈“2b”, c, i, {G �→ Nil}〉
82: actions:
83: LET Q2Vals � {v : l received m =〈“2b”, a, i, v〉, a ∈ Q}
84: IN learned[l] ← learned[l] � (�Q2bVals • {G ∈ γ �→ Nil})

An acceptor a executes action Phase2b(a, i) upon receipt
of a 〈“2S”, c, i, v〉 message for round i from coordinator c,
if i is bigger than its current round, rnd[a] or if it equals its
current round but a has never accepted any v-map, that is
vval[a] = none. If this is the case, then a accepts the v-map
v picked by c. It does so by setting rnd[a] and vrnd[a] to i

and vval[a] to v.
Acceptors may also execute action Phase2b(a, i) after

receiving a 〈“2a”, c, i, {G �→ v}〉 message from every co-
ordinator c in some Gi -coordquorum L, where v �= Nil.
Observe that such a condition implies that the coordina-
tor who started round i has picked an empty v-map in ac-
tion Phase2Prepare and informed the coordinators of i with
“2S” messages. Hence, the “2a” messages received from
the coordinators in L actually convey the information in
the “2S” not received. When first executing action Phase2b
in this case, a has not accepted any v-map yet. Therefore,
besides setting rnd[a] and vrnd[a] to i, a sets vval[a] to
{G �→ v} extended with {H �→ Nil} for every group H

with no Hi -coordquorum. That is, it records the fact that
it will not receive any “2a” messages from coordinators in
H during round i. On the following times that a executes
Phase2b(a, i), it simply extends vval[a] with {G �→ v}, that
is, it sets vval[a] to vval[a] • {G �→ v}. The action finishes
when a sends message 〈“2b”, a, i, vval[a]〉 to all learners,
with the updated value of vval[a].

Because a coordinator can only pick a single v-map when
starting the phase two in action Phase2Start(c, i), the two
conditions to execute action Phase2b are mutually exclu-
sive. That is, there are no two acceptors such that one exe-
cutes action Phase2b due to receipt of “2S” messages and
another that executes it due to receipt of “2a” messages for
the same round i. Either both accept the same complete v-
map v sent by the coordinator, or they accept s-maps re-
ceived from quorums of coordinators. Since no coordinator
can send different “2a” messages for the same round and
all quorums of the same group for round i intersect, by As-
sumption 5, there is only one s-map per group that may be

accepted. Since no accepted s-map conflicts, all v-maps ac-
cepted by must be compatible. This property is explored in
picking a v-map in function PickValue(c,Q, i), explained
next.

5.1.4 Picking a v-map

Let k be the highest vrnd in the “1b” messages that c re-
ceived from acceptors in Q in round i, and let S be the set
of all v-maps received in the “1b” messages with field vrnd

equal to k, not including none. If S is empty, then no v-map
has been or might be chosen in a lower-numbered round and
the function returns ⊥.

If S is not empty, then some v-map has been or might
still be chosen in a round lower than or equal to k. In this
case, the function evaluates �S extended with {G �→ Nil}
for every group G. Because the coordinator of round k must
have picked a v-map that extended v-maps possibly chosen
in rounds smaller than k and because any v-map chosen in k

must be in S due to Assumption 1, the v-maps in S are ex-
tensions of any v-map possibly chosen in a round smaller
than k. Moreover, as we explained in the previous para-
graphs, acceptors do not accept conflicting s-maps in the
same round and, therefore, S is compatible and �S extends
any v-map possibly chosen in round k. In addition, because
acceptors only accept v-maps not mapping to Nil, �S does
not map to Nil.

5.1.5 Learning a value

Learning a v-map takes place in action Learn. The action is
enabled for a learner l once it has received “2b” messages
for some round i from a quorum Q of acceptors and message
〈“2a”, c, r, {G �→ Nil}〉 from every coordinator c in some
Gi -coordquorum P for every group G in a (possibly empty)
subset γ ∈ Γ of the groups that have coordinators in round i.
In this case, l calculates the lub of the chosen v-maps based



J Braz Comput Soc (2010) 16: 49–68 63

on the received information in order to update its currently
learned v-map. Let Q2bVals be the set of all v-maps received
in the “2b” messages for round i from acceptors in Q. The
glb of Q2bVals is the chosen v-map identifiable from the
messages in Q2bVals. Hence, the action sets learned[l] to
learned[l] � (�(Q2bVals • {G ∈ γ �→ Nil})).

5.1.6 Handling collisions

Because the communication latencies within a single G

group are very low, there is a high probability that proposals
will be spontaneously ordered at the coordinators. This, in
turn, makes it likely that at least one Gi -coordquorum for
each round i will forward the same proposal to the accep-
tors. In the cases when spontaneous ordering does not hold
and conflicting proposals are forward to the acceptors, the
acceptors simply will not accept any s-map for group G and
it will be treated as if the whole group had failed. That is, a
new round is started so that new acceptors in G have another
chance of proposing.

5.1.7 Example round

Figure 3 shows a sample execution of a single round of the
BasicMCF protocol. The scenario depicted has three groups
of agents, G1, G2, and G3. Even though the acceptor agents
belong to these three groups, they are depicted outside the
groups to make explicit their message exchange; the loca-
tion of the learners is irrelevant. No value has been proposed
and no mapping has been accepted in this execution of the

protocol. Some messages unnecessary in a run without fail-
ures as well as the communication inside groups G2 and G3
were omitted to keep the figure simple.

The coordinator of the round, one of the coordinators of
group G1, starts the round by sending a 1A message to the
acceptors and waiting for their 1B reply. Next, the coor-
dinator sends a 2S message to the acceptors and all other
coordinators of the round stating that nothing has yet been
accepted. In an implementation of atomic broadcast, these
steps are executed for multiple instances of the protocol
within the same message exchange, as explained in [37].

When a proposer of group G1 sends its proposal to its
group’s coordinators, the later forward the proposal to the
acceptors and coordinators of groups G2 and G3. Observe
that in parallel, coordinators of G2 also send 2A messages
to acceptors and coordinators, implying that a proposal was
also made inside the group. The coordinators of G3, how-
ever, only send 2A after receiving the 2A from G1, and
send their messages to the learners, implying that they have
nothing to propose. Assuming that the proposal of G1 was
{G1 �→ c} and the proposal of G2 was {G2 �→ d}, at the
end of the round, the learners will learn the mapping (v :
G1 → c,G2 → d,G3 → Nil).

5.2 Adding intra-group reconfiguration

Although reconfiguration happens less often in BasicMCF
than in the original CFPaxos, it may still happen if coor-
dinators inside groups are unreliable. We now discuss how
to extend BasicMCF in such a way that, in certain situa-
tions, failures are handled inside groups without changing

Fig. 3 A sample BasicMCF round; some messages have been omitted
and acceptors are depicted outside their groups for clarity. After the
round coordinator in G1 starts the round, two values from proposers in

G1 and G2 are decided; as the number of proposals raises, the amor-
tized cost of each decision decreases



64 J Braz Comput Soc (2010) 16: 49–68

rounds. This extended algorithm, which we call Extend-
edMCF, makes two extra assumptions.

The first assumption is that messages may be addressed
to the coordinators inside a group obliviously to the group’s
actual membership. In practice, this feature is available
through multicast protocols such as IP multicast. In IP
multicast, processes subscribe to a group by registering at
the closest multicast router. The router then informs other
routers that it has subscribers for the group, but does not
have to inform which or how many. The second assumption
is that the coordinators of a group have access to a consensus
oracle running inside that group.

In general lines, the idea in ExtendedMCF is that inter-
group message exchanges addresses all coordinators of a
group instead of specific ones. Inside each group, agents
agree on exactly which coordinators should actually form
coordquorums for the group. As the protocol proceeds, the
selected coordinators may be replaced to cope with alleged
failures, as long as care is taken to avoid inconsistent deci-
sions. That is, if a mapping from the group to some value has
been possibly learned, the group can only confirm the value;
it cannot propose another. Acceptors and learners, which re-
ceive messages from the coordinators, can be informed on-
the-fly about the composition of coordquorums. To allow
them to distinguish different coordquorum versions for the
same round, coordinators add a version number to their mes-
sages; acceptors and learners only consider the messages
with the highest version numbers. The following paragraphs
detail these procedures.

When the leader starts the second phase of a round i,
it multicasts the “2S” message to the coordinators of each
group containing coordquorums. When the coordinators of
some group G hear about round i, by receiving the respec-
tive “2S” message, they run consensus to decide on the Gi -
coordquorums. A deterministic function over the decision
assigns unique identifiers to each coordinator in a quorum,
which are used in the “2a” messages sent outside the group.

Once coordinators agree on the Gi -coordquorums, they
start monitoring the selected coordinators for failures. If
they suspect that more failures than some configurable
threshold have happened, then they try an internal recon-
figuration. That is, the coordinators execute the following
steps:

• The suspicious coordinators broadcast a request to all co-
ordinators in Gi -coordquorum not to send any other “2a”
message outside the group until a new set of coordquo-
rums is agreed upon.

• Coordinators reply to this request positively if they have
not sent any “2a” message yet. If they have already sent
such a message, then they reply negatively. Both replies
are sent to all coordinators in the group.

• All coordinators gather the replies for some adjustable
time and then propose such values in a consensus in-
stance.

The outcome of the consensus instance is then used to
identify one of the following situations and define the ap-
propriate line of action.

• For every current coordquorum, there is at least one coor-
dinator that has not sent any “2a” message in the current
round and that abides by the request for not doing so.

In this case, no mapping from the group to a value was
possibly chosen in the round. Coordinators then determin-
istically choose a new set of coordquorums and continue
with the round.

• There is at least one Gi -coordquorum P for which every
coordinator in P has already sent a “2a” message in
round i with the same s-map. Therefore, the s-map may
have been already chosen by the acceptors. Moreover, due
to Assumption 5, this is the only s-map possibly chosen.

In this case, the coordinators deterministically choose
replacements for the suspected ones, but with the condi-
tion that the already proposed s-map will be their pro-
posal.

• Coordinators cannot determine whether any of the previ-
ous situations hold.

In this case they cannot do anything but wait for an
external reconfiguration (round change).

In the first alternative, in which the set of coordquorums
of the group is changed and could propose different s-maps,
it might happen that “2S” messages from before and after
the change combine to have different s-maps accepted, for
the same group. To avoid such a case, “2S” messages are ex-
tended with a coordquorum version number. Acceptors and
learners are then modified to consider messages only from
coordquorums with the same version number.

In the third case, if no coordquorum is functional to
ensure liveness, the coordinator of the round will eventu-
ally give up on waiting for a decision and start a higher-
numbered round, in which the problematic group will be
initially mapped to Nil. This is equivalent to suspecting a
coordinator in the original CFPaxos protocol.

5.3 Correctness and liveness

The correctness and liveness properties of CFPaxos were
formally proven when the protocol was introduced [37].
Proving the same properties for BasicMCF and Extend-
edMCF is a matter of reducing these protocols to CFPaxos.
The reduction is rather simple, as we now will show.

To understand the reduction, observe that the idea behind
BasicMCF and ExtendedMCF is to use a set of coordinators
forming overlapping quorums to implement each collision-
fast proposer. Hence, an action of a collision-fast proposer in
the original protocol is implemented by executing the same
action in at least a quorum of the correspondent coordina-
tors in our protocols. In the following discussion, we refer



J Braz Comput Soc (2010) 16: 49–68 65

to each action A of BasicMCF as A, to differentiate it from
its homonym in CFPaxos. ExtendedMCF is discussed after-
ward.

The original Propose action and our extended version
Propose differ only in the number of messages sent by the
proposer. Instead of sending a single message to a collision-
fast proposer, the proposer sends the message to all coor-
dinators in its group. In fact, even in the original protocol,
it is up to the proposer to choose to which coordinators to
send its proposals and this choice does not affect the cor-
rectness of the protocol, although it could affect liveness.
Hence, Propose implements Propose. The other actions of
phase one, Phase1a and Phase1b, are exactly the same in
both protocols and, hence, implementations of each other.

Action Phase2Start(c, i) implements action
Phase2Start(c, i) by performing the same sub-actions under
the same preconditions. More than that, Phase2Start(c, i)
also implements a special case of action Phase2Prepare(c, i)
if c is in some coordquorum for round i. To avoid hav-
ing a flag variable to indicate this special condition in
Phase2Prepare(c, i) as in CFPaxos, we added the sub-
actions to Phase2Start(c, i).

Phase2Prepare(c, i), where c is not the creator of i, dif-
fers from Phase2Prepare(c, i) only in that in the first c must
be in some Gi -coordquorum for some group G, while in
the latter c must be in the list of collision-fast proposers of
round i. As we mentioned above, for each collision-fast pro-
poser g in CFPaxos, there is a corresponding set of coordi-
nators in G forming coordquorums to implement g. Hence,
action Phase2Prepare(g, i) is implemented by the compo-
sitions of actions Phase2Prepare(c, i) for every coordinator
c in some Gi -coordquorum and due to the reception of the
same “2S” message (and Phase2Start(c, i), if c is the creator
of round i). On the one hand, since all Gi -coordquorums
overlap (Assumption 5), no two coordquorums will suc-
ceed in executing the action with different “2S” messages
and, therefore, action Phase2Prepare(c, i) will be simulated
only once. On the other hand, if no Gi -coordquorum exe-
cute the action, then no Phase2Prepare(c, i) will be simu-
lated, which does not violate the safety of the protocol. Ex-
actly the same analysis is valid for actions Phase2a(c, i) and
Phase2a(c, i).

Action Phase2b(a, i) differs from Phase2b(a, i) in the
sense that the latter requires a single message 〈“2a”, c, i,
{c �→ v}〉 from a collision-fast proposers c to accept an s-
map {c �→ v}, while the first requires similar messages from
a quorum of the coordinators implementing c. Because co-
ordquorums overlap, the concatenation of the actions of re-
ceiving a similar message from each coordinator in a co-
ordquorum implements the reception of a single message
with the same contents from a collision-fast proposer in the
original protocol. Hence, Phase2b(a, i) in fact implements
action Phase2a(a, i). With a similar argument we conclude
that action Learn(l) implements Learn(l).

It is straightforward to see that ExtendedMCF imple-
ments BasicMCF since each action in BasicMCF is executed
in the same way in ExtendedMCF or under more precon-
ditions. In particular, the actions that use “2a” messages,
Phase2b(a, i) and Learn(l), require all such messages to
have the same version number in order do be executed. Since
version numbers are only incremented if there is no possi-
bility that Phase2b and Learn had been executed, it does not
happen that the actions execute twice for the same round,
due to the messages sent by the same coordquorum.

To ensure liveness, CFPaxos must be modified to have
round creation limited to a leader coordinator, elected
through some leader election oracle. Moreover, to ensure
that a learner l eventually learns a complete v-map, CF-
Paxos requires that (i) l, a proposer p, a coordinator c, a
quorum of acceptors Q, and a set S of collision-fast pro-
posers remain alive from some point on, (ii) a subset of S

is trusted by c from some point on, and (iii) p issues a pro-
posal. These conditions are easily adapted to BasicMCF by
replacing the set S by a set of coordquorums. ExtendedMCF
requires the extra condition that coordinators in the groups
with coordquorums in S stop suspecting these coordquo-
rums and, therefore, do not change their versions from some
point in time on.

6 Related works

In [8] we have presented a multicoordinated consensus pro-
tocol (MCC) that extends Fast Paxos [26], with its fast and
classic modes. The protocol can switch between classic, fast,
and multicoordinated modes in runtime. This feature allows
the protocol to be deployed in many different environments
and to adapt to changes therein during the execution. It is
also an important tool in the study of agreement protocols,
by using the right combination of round types and recov-
ery technique, our protocol emulates most consensus proto-
cols that we are aware of. In [9] we have shown the use of
the multicoordinated mode in solving generic broadcast and
discussed its relation to generalized consensus. We reviewed
the multicoordinated execution mode in Sect. 2.5 and MCC
in Sect. 3.

In this paper we tackled the problem of efficiently reach-
ing agreement in a network organized as groups of agents.
Our solution is an extension of the Collision-Fast Paxos pro-
tocol [37], which does not consider groups. For the reader’s
convenience we explained CFPaxos in Sect. 4.2. The same
problem, agreement in groups of agents, was studied by
Kooh and Haddad [21]. Their hierarchical consensus algo-
rithm recursively agrees on proposals over a multilevel tree
of agents. More specifically, in their protocol each set of
agents in a given level of the same branch of the tree consti-
tute a group. From the leaves to the root, agents in the same



66 J Braz Comput Soc (2010) 16: 49–68

Table 1 Comparison of
message and time complexity in
scenario with G groups with c

coordinators, L learners, A

acceptors, and 1 proposal per
group

Delay Number of messages Decisions

Intra Inter Intra Inter

Paxos 0 3 G + A ∗ (L + 1) 1

Fast Paxos 0 2 G ∗ A + A ∗ L 1

CFPaxos 1 2 G (G − 1) ∗ G + G ∗ A + A ∗ L G

BasicMCF 1 2 c ∗ G c2 ∗ (G − 1) ∗ G + c ∗ G ∗ A + A ∗ L G

ExtendedMCF 1 2 G c ∗ (G − 1) ∗ G + c ∗ G ∗ A + A ∗ L G

group agree on a value to be their proposal on the upper
level, until they have agreed on a single value at the root of
the tree. The cost of such an approach depends on the choice
of consensus algorithm used inside each group. There are
two main differences between Kooh and Haddad’s work and
ours. First, our protocol is better suited for applications that
need to agree on all proposals, not just a single one. This is
the case, for example, when solving atomic broadcast; solu-
tions based on consensus require each command proposed
but not decided to be proposed again in a new consensus in-
stance. Because our protocols solve M-Consensus instead,
all proposals may be part of a single decision.

Second, in Kooh and Haddad’s protocol, agents are repli-
cated using consensus: an instance is used to agree on each
state change. In our approach, we let the coordinators in each
quorum diverge and only use consensus to recover from fail-
ures. The price we pay is in terms of messages sent from the
group: since each coordinator may be in a different state, we
must have all of them communicating with the acceptors.

Other works have considered reaching agreement over
wide area networks but focusing on the delay aspect, not on
the topology of the network [38, 39]. That is, they consid-
ered a flat group of agents connected by heterogeneous links,
some to nearby and some to far nodes. These protocols may
reach agreement in two long link message steps, but because
they rely on spontaneous ordering on these links, they will
be inefficient when this assumption does not hold. CFPaxos
ensures agreement in two steps in the absence of failures,
irrespective of the ordering of messages. Although our ex-
tension to CFPaxos does rely on spontaneous ordering, it
does so only inside groups, where we expect this property to
hold often [31].

Steward [2] solves Byzantine atomic broadcast among
agents organized in groups; to tolerate Byzantine failures
Steward assumes the availability of a Byzantine agreement
protocol inside each group to make the group behave as a
single agent in a Paxos instance among the groups, and as
such requires 3f + 1 agents inside each group, where f is
the maximum number of Byzantine failures tolerated inside
that group. Our protocols do not tolerate Byzantine failures
and, therefore, only require 2f +1 agents inside each group,
if group coordquorums are defined as any majority of the co-
ordinators of group for a given round.

Because each group behave as single agent in Steward,
less intergroup messages are needed when compared to our
protocols, which require each coordinator to send its own
messages outbound its group. That is, our protocols trade a
weaker failure model and extra intergroup messages for the
need to reach agreement inside a group for every proposed
message. Since the extra intergroup messages are sent in
parallel, no extra delay is added. Moreover, because our pro-
tocols extend CFPaxos and not Paxos, they end up delivering
more proposals per intergroup agreement than Seward’s, fi-
nally resulting in a similar intergroup message complexity
but with a much smaller delay for delivering each proposed
command. (Remember that our protocol decides on a v-map
of proposals, not on a single proposal.)

In Table 1 we compare the message and time complexity
of our protocols and the Paxos-like related ones; we omitted
Kooh and Haddad’s protocol because its analysis depends on
the consensus protocol employed, and also Steward because
it solves a different problem, Byzantine Atomic Broadcast.
Given the particularities of each protocol and the many exe-
cution scenarios, we restrict the analysis to a simple sample
scenario, with the topology described below, in the absence
of failures, and for phase 2 only, given that phase 1 may be
executed a priori and has no impact in the absence of fail-
ures.

• There are G groups.
• There are C coordinators in the round, and each group has

c = C/G coordinators.
• There are A acceptors.
• There are L learners.
• 1 proposal is made in each group in the round.

The table shows the inter- and intra-group delays and the
number of inter- and intra-group messages for each proto-
col. The table also shows the number of values, out of the
G proposals, that are decided at the end of the round. As
shown by the values of the last column, simply executing
multiple instances of Paxos to achieve G decisions requires
(G−1)∗A∗L more messages and (G−1)∗3 more commu-
nication delays than CFPaxos. If the needed Paxos instances
are executed in parallel and messages aggregated, then num-
bers similar to CFPaxos could be achieved. However, fail-
ures in each instance would have to be handled individually



J Braz Comput Soc (2010) 16: 49–68 67

or at the expense of greater complexity. CFPaxos and the
MCF both decide on G values, but the BasicMCF protocol
requires an order of c2 times more messages than CFPaxos,
the price for the extra availability provided by multicoordi-
nation. With ExtendedMCF, the c2 factor is reduced to c.
It also reduces any extra delay due to the higher number of
messages in the system.

7 Conclusion

Multicoordination is a mode of execution for agreement pro-
tocols. This mode has advantages of both fast and classic
execution modes, namely, not dependency on a single leader
and small acceptor quorums. While it does require more co-
ordinator agents to participate in the protocol, these are sim-
pler and easily replaceable, unlike acceptors.

In this paper we have reviewed previous works on mul-
ticoordination, aggregating their results in a single place.
Moreover, we presented a novel protocol for reaching agree-
ment between agents organized in groups. Such a scenario
reflects the network topologies that are commonplace in
many organizations, such as online retailers.

A general drawback of multicoordination with respect to
the other execution modes is its increased message complex-
ity: the number of messages from coordinators to acceptors
is multiplied by the number of coordinators in each round.
This is the reason why multicoordination should not be
blindly applied. Instead, it should be employed by adaptable
protocols capable of changing modes to adapt to changes
of the environment and executing in multicoordinated mode
only when appropriate.

As our next steps we plan to study, develop, and exper-
iment with adaptation policies for multi-mode agreement
protocols. This is an important step in the development of
truly adaptable protocols. Moreover, we would like to ex-
plore the multicoordinated mode as a way to mask Byzan-
tine failures.

Acknowledgements The authors would like to thank the CNPq,
FAPESP, and the Hasler Foundation (project #2316), for their support,
as well as the anonymous reviewers for their insightful feedback.

References

1. Aguilera M, Chen W, Toueg S (1998) Failure detection and con-
sensus in the crash–recovery model. In: Proceedings of the 12th
international symposium on distributed computing, September
1998

2. Amir Y, Danilov C, Dolev D, Kirsch J, Lane J, Nita-Rotaru C,
Olsen J, Zage D. Steward: scaling Byzantine fault-tolerant repli-
cation to wide area networks. IEEE Trans Depend Secure Comput
99(2):5555

3. Ben-Or M (1983) Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In: PODC
’83: proceedings of the second annual ACM symposium on prin-
ciples of distributed computing. ACM, New York, pp 27–30

4. Bracha G, Toueg S (1983) Resilient consensus protocols. In:
PODC ’83: proceedings of the second annual ACM symposium
on principles of distributed computing. ACM, New York, pp 12–
26

5. Camargos L, Madeira E, Pedone F (2006) Optimal and practi-
cal WAB-based consensus algorithms. In: Euro-Par 2006 parallel
processing. Lecture notes in computer science, vol 4128. Springer,
Berlin, pp 549–558

6. Camargos L, Pedone F, Schmidt R (2006) A primary-backup pro-
tocol for in-memory database replication. In: NCA ’06: proceed-
ings of the fifth IEEE international symposium on network com-
puting and applications. IEEE Computer Society, Washington,
pp 204–211

7. Camargos L, Schmidt R, Pedone F (2006) Multicoordinated
Paxos. Technical Report 2006/2, EPFL and University of Lugano,
2006

8. Camargos L, Schmidt R, Pedone F (2007) Multicoordinated
Paxos: brief announcement. In: PODC ’07: proceedings of the
twenty-sixth annual ACM symposium on principles of distributed
computing. ACM, New York, pp 316–317

9. Camargos L, Schmidt R, Pedone F (2008) Multicoordinated agree-
ment protocols for higher availability. In: NCA ’08: proceedings
of the seventh IEEE international symposium on network comput-
ing and applications. IEEE Computer Society, Washington

10. Castro M, Liskov B (1999) Practical Byzantine fault tolerance. In:
OSDI ’99: proceedings of the third symposium on operating sys-
tems design and implementation. USENIX Association, Berkeley,
pp 173–186

11. Chandra TD, Hadzilacos V, Toueg S (1996) The weakest failure
detector for solving consensus. J ACM 43(4):685–722

12. Chandra TD, Toueg S (1996) Unreliable failure detectors for reli-
able distributed systems. Commun ACM 43(2):225–267

13. Cristian F, Fetzer C (1999) The timed asynchronous distributed
system model. IEEE Trans Parallel Distrib Syst 10(6):642–657

14. Dolev D, Dwork C, Stockmeyer L (1987) On the minimal syn-
chronism needed for distributed consensus. J ACM 34(1):77–97

15. Dutta P, Guerraoui R (2002) Fast indulgent consensus with zero
degradation. In: Lecture notes in computer science, vol 2485.
Springer, Berlin

16. Dwork C, Lynch N, Stockmeyer L (1988) Consensus in the pres-
ence of partial synchrony. J ACM 35(2):288–323

17. Fischer M, Lynch N, Paterson M (1985) Impossibility of distrib-
uted consensus with one faulty process. J ACM 32(2):374–382

18. Hurfin M, Mostefaoui A, Raynal M (1998) Consensus in asyn-
chronous systems where processes can crash and recover. In: Pro-
ceedings seventeenth IEEE symposium on reliable distributed sys-
tems. IEEE Computer Society, Los Alamitos, pp 280–286

19. Hurfin M, Mostéfaoui A, Raynal M (2002) A versatile family of
consensus protocols based on Chandra–Toueg’s unreliable failure
detectors. IEEE Trans Comput 51(4):395–408

20. Hurfin M, Raynal M (1999) A simple and fast asynchronous con-
sensus protocol based on a weak failure detector. Distrib Comput
12(4):209–223

21. Kooh N, Haddad S (1999) Reaching agreement in hierarchical
groups. In: Proceedings of the 12th international conference on
parallel and distributed computing systems. IASTED Press, Fort
Lauderdale

22. Lamport L (1978) Time, clocks, and the ordering of events in a
distributed system. Commun ACM 21(7):558–565

23. Lamport L (1998) The part-time parliament. ACM Trans Comput
Syst 16(2):133–169

24. Lamport L (2001) Paxos made simple. ACM SIGACT News
32(4):18–25



68 J Braz Comput Soc (2010) 16: 49–68

25. Lamport L (2004) Generalized consensus and Paxos. Technical
Report MSR-TR-2005-33, Microsoft Research

26. Lamport L (2006) Fast Paxos. Distrib Comput 19(2):79–103
27. Lamport L (2006) Lower bounds for asynchronous consensus.

Distrib Comput 19(2):104–125
28. Lampson B (2001) The abcd’s of Paxos. In: PODC ’01: Proceed-

ings of the twentieth annual ACM symposium on principles of
distributed computing. ACM, New York

29. Martin JP, Alvisi L (2006) Fast Byzantine consensus. IEEE Trans
Dependable Secure Comput 3(3):202–215

30. Pedone F, Guerraoui R, Schiper A (2003) The database state ma-
chine approach. Distrib Parallel Databases 14(1):71–98

31. Pedone F, Schiper A (1999) Generic broadcast. In: Proceedings
of the 13th international symposium on distributed computing
(DISC’99, formerly WDAG)

32. Pedone F, Schiper A (2002) Handling message semantics with
generic broadcast protocols. Distrib Comput 15(2):97–107

33. Pedone F, Schiper A, Urbán P, Cavin D (2002) Solving agreement
problems with weak ordering oracles. In: EDCC-4: proceedings
of the 4th European dependable computing conference on depend-
able computing. Springer, London, pp 44–61

34. Pedone F, Schiper A, Urbán P, Cavin D (2002) Weak ordering ora-
cles for failure detection-free systems. In: Proceedings of the inter-
national conference on dependable systems and networks (DSN),
supplemental volume

35. Rabin MO (1983) Randomized Byzantine generals. In: Proceed-
ings of the 24th annual IEEE symposium on foundations of com-
puter science, pp 403–409

36. Schiper A (1997) Early consensus in an asynchronous system with
a weak failure detector. Distrib Comput 10(3):149–157

37. Schmidt R, Camargos L, Pedone F (2007) On collision-fast atomic
broadcast. Technical report, EPFL

38. Sousa A, Pereira J, Moura F, Oliveira R (2002) Optimistic total or-
der in wide area networks. In: Proceedings of the 21st IEEE sym-
posium on reliable distributed systems. IEEE Computer Society,
New York, pp 190–199

39. Vicente P, Rodrigues L (2002) An indulgent uniform total order al-
gorithm with optimistic delivery. In: Proceedings of the 21st sym-
posium on reliable distributed systems, Osaka University, Suita,
Japan. IEEE, New York, pp 92–101

40. Zielinski P (2004) Paxos at war. Technical Report UCAM-CL-TR-
593, University of Cambridge, Computer Laboratory


	Multicoordinated agreement for groups of agents
	Abstract
	Introduction
	Distributed agreement problems
	System model
	The consensus problem
	Circumventing FLP
	Rounds and coordinators
	Multicoordinated rounds

	Multicoordinated consensus
	The algorithm
	Proposing a value
	Phase one
	Phase two

	Accepting values in fast rounds
	Correctness and liveness

	Agreement in networks of groups
	A round type for network of groups
	Multicoordinated fast rounds
	Fast rounds in spite of collisions

	Collision-fast Paxos
	Value mapping sets
	M-consensus
	Algorithm


	Multicoordinated agreement for groups
	Basic algorithm
	Proposing a command
	Phase one
	Phase two
	Picking a v-map
	Learning a value
	Handling collisions
	Example round

	Adding intra-group reconfiguration
	Correctness and liveness

	Related works
	Conclusion
	Acknowledgements
	References


