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Abstract
An increasing number of verification tools (e.g., soft-

ware model-checkers) require the use of Satisfiability
Modulo Theories (SMT) solvers to implement the back-
ends for the automatic analysis of specifications and
properties. The most prominent approach to build SMT
solvers consists in integrating an efficient Boolean solver
with decision procedures capable of checking the satisfia-
bility of sets of ground literals in selected theories. Al-
though the problem of checking the satisfiability of ar-
bitrary Boolean combinations of atoms modulo a back-
ground theory is NP-hard, there is a strong demand for
high-performance SMT-solvers.

In this paper, we describe the design and prototype im-
plementation of—to the best of our knowledge—the first
distributed SMT solver. The emphasis is on providing
ways to reduce the implementation effort and to make the
system easily extensible. This is achieved in two ways: (a)
we re-use as much as possible the code of an available

sequential SMT solver and (b) we adopt the TOOLBUS

architecture for rapid prototyping. The behavior of the
distributed SMT solver was tested on a set of problems
which are representative of those generated by software
verification techniques. The experiments show the possi-
bility to obtain super-linear speed-ups of the distributed
SMT solver with respect to its sequential version.

Keywords: Satisfiability Modulo Theories, dis-

tributed computing, BDDs, haRVey.

1. INTRODUCTION
An increasing number of verification tools (e.g., soft-

ware model-checkers [10, 2]) require the use of Satisfia-

bility Modulo Theories (SMT) solvers [26] (in first-order

logic) to implement the back-ends for the automatic anal-

ysis of specifications and properties. This is so because

verification problems require to solve satisfiability prob-
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lems (e.g., checking if an abstract trace yields a spurious

concrete trace can be reduced to a satisfiability problem

modulo the theory of the data structures manipulated by

the program). So, the availability of efficient SMT solvers

becomes a crucial pre-requisite for automating the various

verification tasks. To make the situation more complex,

most verification problems involve several theories (e.g.,

programs manipulate composite data structures such as

arrays and integers for their indexes), so that methods to

combine theories are also required.

There are two prominent approaches to build SMT

solvers: eager and lazy. The former (see, e.g., [8]) is

based on ad-hoc translations that convert an input for-

mula (and relevant consequences of the background the-

ory) into an equisatisfiable Boolean formula. The ap-

proach applies in principle to all theories whose ground

satisfiability problem is decidable, possibly at the cost

of an exponential blow-up in the translation. The ap-

proach is appealing because SAT solvers today are able

to quickly process extremely large formulas. The imple-

mentation effort is relatively small for being limited to the

translator—after that, one can use any off-the-shelf SAT

solver. The main disadvantage of the eager approach is

that it does not scale up because of the exponential blow-

up of the eager translation and the difficulty of combining

encodings for different theories.

The lazy approach (see, e.g., [3, 21, 15, 1, 23]), cur-

rently the most popular and most successful in terms of

run-time performance, consists in building ad-hoc proce-

dures to solve the satisfiability problem in a given back-

ground theory. The lure of these specialized procedures is

that one can use for them whatever specialized algorithms

and data structures are best for the background theory un-

der consideration, which typically leads to better perfor-

mance. The main disadvantage of this approach is that

one has to write an entire solver for each new theory of

interest. The standard way to overcome this problem is to

reduce a theory solver to its essence by separating generic

Boolean reasoning from theory reasoning. The common

practice is to write theory solvers just for sets of ground

literals (i.e. atomic formulas and their negation). These

simple procedures are then integrated with an efficient

Boolean solver, allowing the resulting system to accept

arbitrary Boolean combinations of ground literals. The

key idea is to regard the ground first-order atoms of the

input formula as Boolean variables and use the Boolean

solver to enumerate all its satisfying assignments. As one

of these assignments can be seen as a set of ground first-

order literals, the decision procedure for the background

theory is used to establish its satisfiability. If one assign-

ment is found satisfiable, we are entitled to conclude the

satisfiability of the input formula. Otherwise, if all assign-

ments are unsatisfiable, we conclude the unsatisfiability

of the formula.

In the lazy approach, reasoning modules for a back-

ground theory obtained as the union of several simpler

theories are modularly built by writing procedures for

each component theory and then use the solvers co-

operatively via well-known combination schemas (see,

e.g., [25] for an overview). More recently, a new

schema—called Delayed Theory Combination, DTC—

combining the procedures directly with the Boolean

solver has been put forward and shown more efficient

than SMT solvers based on the classic combination

schemas [6].

The problem of checking the satisfiability of arbitrary

Boolean combinations of atoms modulo a background

theory is NP-hard as it subsumes the problem of check-

ing the satisfiability of Boolean formulas. In spite of the

computational complexity, there is a strong demand for

high-performance SMT-solvers to make a range of veri-

fication techniques viable in practice. In this paper, we

describe the design and prototype implementation of—

to the best of our knowledge—the first distributed SMT

solver based on the lazy approach. The emphasis is on

providing ways to reduce the implementation effort and

to make the system easily extensible. This is achieved in

two ways. First, we re-use as much as possible the code

of an available sequential SMT solver. We choose haR-
Vey [15] as the sequential SMT solver since the first two

authors are two of its main developers and hence we were

more familiar with its design and implementation struc-

ture. Second, we adopt the TOOLBUS [4] architecture in

order to obtain a robust implementation of a distributed

SMT solver in a short time. This choice is justified by

the fact that the TOOLBUS allows one to write wrappers

around a piece of available code and turn it into a module

that can be executed concurrently in a distributed environ-

ment by exchanging messages according to a protocol that

can be easily specified by means of a suitable script lan-

guage. To show the flexibility of the proposed distributed

architecture, we show how a distributed version of DTC

can be obtained without too much implementation effort.

After the implementation of the distributed version of

haRVey was completed, its behavior was tested on a set

of problems which are representative of those generated

by software verification techniques, where the sequen-

tial version of the solver was already successfully used

(see [15, 11]). The main contribution of this work is to

show the possibility to obtain super-linear speed-ups for

the distributed version of the SMT solver with respect

to its sequential version. This is possible by exploiting

the following simple observation, which can be general-

ized to many situations in distributed computing: if we

consider n ≥ 2 Boolean assignments at the same time

and invoke n instances of the available procedure on their

first-order counterparts, we can hope to significantly re-

duce the overall running time. As it is well-known in
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distributed computing, to make this observation practical,

special care must be put into choosing a suitable number

n of instances of the decision procedures. Another inter-

esting question is whether there is an “optimal” way to

choose the n different assignments to be solved in paral-

lel. Our experiments suggest that the best heuristic in this

respect consists of randomly selecting the n Boolean as-

signments. As we will see, this is the only way to obtain

the aforementioned super-linear speed-up.

This article extends a paper previously published in

the proceedings of the VIII Brazilian Symposium on For-

mal Methods [17]. It provides additional technical details

on the TOOLBUS framework and gives more information

on the algorithm and experimental results. Moreover Sec-

tion 3.4 is completely original and describes a possible

evolution of the distributed SMT-solver to handle new ad-

vancements in verification, such as delayed theory com-

bination [6].

Plan of the paper. Section 2 provides the background no-

tion on the TOOLBUS (Section 2.1) and the lazy approach

to SMT solving (Section 2.2). Section 3 explains how a

distributed SMT solver can be derived from its sequen-

tial version (Section 3.1 describes the architecture, Sec-

tion 3.2 the protocol, and Section 3.3 the internal work-

ings of the various concurrently executing modules) as

well as the distributed version of DTC (Section 3.4). Sec-

tion 4 reports on the experiments. Finally, Section 5 con-

cludes and sketches our future directions of research.

Results presented in this paper have been previously

published in [17]. This paper adds on the proceedings

version [17] by giving a more detailed presentation of the

TOOLBUS framework for the implementation of hetero-

geneous, distributed systems, in addition to fixing several

small mistakes and improved writing. A more fundamen-

tal contribution found in this paper over [17] is the in-

clusion of the treatment of DTC in the already existing

framework. This is a strong indicator of the flexibility

of the proposed approach to incorporate further technical

improvements in the implementation of sequential SMT

solvers into the proposed distributed algorithm.

2. BACKGROUND
There are two key ingredients to our implementation

of a distributed SMT solver: the TOOLBUS [13] and haR-
Vey [15]. The former allows us to build a prototype and

experiment with concrete benefits of using the TOOLBUS;

the latter is our implementation of a lazy (and sequential)

SMT solver based on the combination of a Boolean solver

and satisfiability procedures for some theories, such as

equality, lists, arrays, and their combination. We provide

some background notions both on the TOOLBUS and lazy

SMT-solving to make the paper self-contained.

2.1. THE TOOLBUS
The construction of (heterogeneous) distributed sys-

tems is a challenging task, both from a design and imple-

mentation points of view. The TOOLBUS [13] provides an

elegant solution to implement robust distributed and het-

erogeneous systems, using a variation of the Algebra of

Communication Processes [5] as a script language to de-

scribe the protocol between the different components and

a uniform, generic, data type (called ATerms, see below

for more details). The TOOLBUS framework has two en-

tity classes: processes and tools. The former are respon-

sible for coordinating actions and synchronizing commu-

nications throughout the system, while the latter are the

components of the systems which are ultimately respon-

sible for the actual computational work and may be writ-

ten in a number of different programming languages. All

data exchanges are performed using ATerms [29], a term-

like data type that features maximal sharing of sub-terms,

resulting in a compact representation of symbolic expres-

sions and efficient comparison operators.

The TOOLBUS encourages a methodology whereby

programmers write a TOOLBUS script describing the in-

tended interaction protocol between tools. Scripts are

then directly executable by the TOOLBUS interpreter.

Moreover, the TOOLBUS suite provides utilities to au-

tomatically generate the interfaces that each tool has to

implement to participate in the protocol. Currently, there

is support for two programming languages (JAVA and C)

and several adapters are available for Perl, ASF+SDF,

UNIX scripts, etc.

A TOOLBUS script defines an interaction protocol be-

tween different tools by means of a composition of pro-

cesses. We will adopt the term tool bus to denote an in-

stance of such a protocol.

The TOOLBUS scripting language provides the classic

process algebra constructs: + for choice, . for sequential

composition, ‖ for parallel composition, * for repetition,

if then [else] fi for guarded command, and delta to repre-

sent deadlock. The operator create dynamically creates

process instances; finally, execute and snd-terminate
spawns and aborts the execution of a tool instance, re-

spectively.

The execution of a tool can be dispatched from within

the tool bus, with the command execute or it can be

started externally by issuing a connection request to the

tool bus, that may accept such connection requests with

the rec-connect command.

Once connected to the tool bus, tools do not commu-

nicate directly. Instead, communication channels are es-

tablished between tools and processes, or between pro-

cesses. The communication between processes can be

synchronous, using matching send-msg and rec-msg
commands, or asynchronous, with the send-note broad-

casting command, which can be received using the rec-
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01 process CALC is
02 let Tid: calc, E: str, V: term
03 in
04 execute(calc, Tid?) .
05 ( rec-msg(compute, E?) .
06 snd-eval(Tid, expr(E)) .
07 rec-value(Tid, val(V?)) .
08 send-msg(result, E, V) .
09 send-note(result(E, V))
10 ) * delta
11 endlet
12 process UI is
13 let UI : ui, E, V : str,
14 in
15 execute(gui, UI?) .
16 ( rec-event(UI, expr(E?)) .
17 snd-msg(compute, expr(E)) .
18 rec-msg(result, expr(E, V?)) .
19 snd-ack-event(UI, expr(E, V))
20 ) *
21 rec-event(UI, quit) .
22 snd-ack-event(UI, quit) .
23 shutdown("Goodbye!")
24 endlet
25 tool calc is { command="calc" }
26 tool gui is
27 { command="wish-adapter -script ui.tcl" }

Figure 1. Excerpt of a TOOLBUS script

note command from all processes that had previously is-

sued a subscribe command on the corresponding label.

Processes use handshaking to communicate with

tools. The tool-to-process communication can be either a

send-event message (notifies an event) or a send-value
message (sends a value), while the communication from

a process to a tool can be one of the following three com-

mands: snd-eval (evaluation request), snd-do (action re-

quest, i.e. without return value), or snd-ack-event (ac-
knowledges a previous event).

All the communication commands may have typed pa-

rameters and return results. To distinguish between input

and output parameters, the former are decorated with the

symbol ? as suffix.

Let us illustrate all these concepts with a simple ex-

ample.

Example 1 Figure 1 presents the definition of a tool bus

gluing a graphical user interface and the (command-line)

UNIX calculator calc. The tool bus is composed of these

two tools and the related (two) processes. The first pro-

cess, named CALC (cf. lines 01–11) mediates requests for

numeric computations to a command-line calculator: it

spawns the calculator tool and assigns the corresponding

identifier to Tid (line 04), then repeatedly receives a mes-

sage on channel compute and assigns its value to E (line

05), sends it for evaluation to the tool (line 06), gets the

answer in variable V (line 07), forwards it along channel

result (line 08), and also broadcasts it to any interested

party (line 09). The second process, called UI (cf. lines
12–24), is responsible for getting expressions to be calcu-

lated from the user: it spawns a graphical user-interface

gui tool (line 15), and then repeatedly receives expres-

sions from the interface, transmits them to the calculator,

gets the corresponding value, and forwards it back to the

user interface (lines 16 to 20), until it gets a command to

quit the application (line 21). Finally, the last three lines

associate the toolbus actors with actual programs.

2.2. THE LAZY APPROACH TO SMT-SOLVING
Before getting to a detailed explanation of the classic

SMT-solving algorithm, we recall the main concepts and

properties of first-order logic employed in this approach.

2.2.1. First-order logic: We assume the usual syn-

tactic (such as signature, variable, constant and function

symbol, term, atom, literal, formula, sentence, and sub-

stitution) and semantic notions (such as interpretation,

model, satisfiability, validity, logical consequence, and

theory) of first-order logic (see, e.g., [19]). The symbol

= is a predefined logical constant. If l and r are terms,

then the atom l = r is an equality and the literal l �= r is

a disequality.
In this paper, we consider first-order theories (i.e. set

of first-order sentences) with equality, meaning that the

predefined logical constant = is always interpreted as a

reflexive, symmetric, transitive relation which is also a

congruence. Let T be a theory. A formula ϕ is satisfiable
in T if it is satisfiable in a model of T . The satisfiabil-
ity problem for T amounts to checking whether any given

finite and quantifier-free conjunction (or, equivalently, fi-

nite set) of literals is satisfiable in T . A satisfiability pro-
cedure for T is an algorithm capable of solving the satisfi-

ability problem of T . The satisfiability of a quantifier-free

formula ϕ can be reduced to the satisfiability of several

conjunctions of literals by converting ϕ to disjunctive nor-

mal form (DNF), splitting on disjunctions, and then solv-

ing the resulting satisfiability problems. For this reason,

by abuse of language, we talk about satisfiability problem

when considering the problem of establishing the satisfi-

ability of arbitrary quantifier-free formulas. Indeed, the

conversion to DNF may result in an exponential blow-up

of the size of the formula. A much more efficient way,

in practice, to tackle this problem is described in the rest

of this section. The problem of checking the satisfiability

of arbitrary quantifier-free formulas in T is NP-hard, as

it subsumes the problem of checking the satisfiability of
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function check_unsat (T : theory; ϕ: ground formula)
ϕb ←− fol2prop(ϕ)
while satB(ϕb) do begin

βb ←− pick_assignment(ϕb)
(ρ, π)←− satT (prop2fol(βb))
if ρ = sat then return sat
ϕb ←− ϕb ∧ ¬fol2prop(π)

end
return unsat

Figure 2. The core algorithm of a lazy SMT solver

Boolean formulas.

2.2.2. SMT-solving: An SMT solver takes as input a

quantifier-free formula ϕ and it is capable of checking

its (un-)satisfiability in a certain theory T . The lazy ap-

proach to build SMT solvers consists of using a Boolean

enumerator and a decision procedure for T . The former

enumerates all satisfying Boolean assignments of ϕ (its

atoms are considered as Boolean variables) and then the

decision procedure checks if each assignment is satisfi-

able (or not) in T . Indeed, several refinements are needed

to make this integration to work efficiently in practice as

we may end up invoking the decision procedure exponen-

tially many times in the number of atoms of ϕ. In the

following, we give an abstract view of a lazy SMT solver

based on the enumeration of (total) Boolean assignments

and the use of “theory conflict clauses” to prune the search

space of the Boolean solver. Although this will be suf-

ficient to understand the rest of the paper, we point the

reader to, e.g., [6] for more realistic versions of the lazy

architecture.

We assume the availability of two simple functions.

The first is the propositional abstraction fol2prop func-

tion, i.e. a bijective mapping from atoms to Boolean vari-

ables, which is homomorphically extended to arbitrary

Boolean combination of atoms. The second is the refine-
ment prop2fol function, which is the inverse of fol2prop.
In the following, sat and unsat denote the possible values

returned by a satisfiability procedure; βb is used to denote

a Boolean assignment; π is used to denote a conjunction

(or, equivalently, a set) of literals and πb its Boolean ab-

straction; in general, we use the superscript b to denote

Boolean expressions.

Figure 2 presents a simple version of the core algo-

rithm underlying any lazy SMT solver. The algorithm

enumerates the (total) truth assignments for the Boolean

abstraction of ϕ and checks for satisfiability in T . It

concludes satisfiability if an assignment is satisfiable in

T or returns unsatisfiable, otherwise. The function call

satB(ϕb) establishes whether the Boolean formula ϕb is

satisfiable or not. The function pick_assignment returns

a total assignment to all atoms in ϕ or equivalently, to all

Boolean variables in ϕb = fol2prop(ϕ). The function

call satT (β) detects if the set β of literals is satisfiable in

the background theory T ; if so, it returns (sat, ∅); other-
wise, it returns (unsat, π), where fol2prop(π) ⊆ βb and

π is an unsatisfiable set in T , called a theory conflict set.
The negation of fol2prop(π) is a theory conflict clause
and it is used to eliminate—at once—all (total) Boolean

assignments sharing the same Boolean abstraction of the

theory conflict set π. Indeed, when fol2prop(π) = βb,
we end up enumerating all possible Boolean assignments

of ϕb and performances are likely to be poor. So, in prac-

tice, computing conflict sets is the key to speed-up the

performances of check_unsat .

3. DISTRIBUTED SMT SOLVING
In order to design a distributed version of the algo-

rithm in Figure 2, a simple—yet promising—idea would

be to modify check_unsat so as to consider n ≥ 2
Boolean assignments at the same time and let n instances

of the decision procedure (encapsulated in the function

unsatT ) be executed concurrently on the n Boolean as-

signments. In this way, we can hope to significantly re-

duce the overall running time of the reasoning system.

Indeed, to make this observation practical, particular care

must be put in choosing a suitable value for n. In the re-

maining of this section, we develop this idea by using the

TOOLBUS architecture.

3.1. OVERVIEW OF THE ARCHITECTURE
The first step in designing the distributed version of

check_unsat is to identify the various tools (i.e. the mod-

ules in TOOLBUS terminology) that can be distributed

over a network. In doing this, good software engineer-

ing suggests to take into account the following desider-

ata. First, the distributed version shall be scalable so as

to take advantage of having a large or a small amount of

available computing resources. Second, the communica-

tion overhead in the distributed version shall be minimal;

this requires sharing of data between the different tools to

be minimal. Third, the distributed and the sequential ver-

sions of the algorithm shall have as much code in common

as possible, in order to facilitate code maintenance when

new features are implemented or changes are made to the

code.

We have therefore split haRVey into the following

components, as illustrated in the interaction diagram de-

picted in Figure 3.

1. The module ‘Interface’ is responsible for receiving

proof obligations from interested clients (not dis-

played in the figure) and returns the result of solving.
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Interface(client )

Boolean reasoning(master-server)

�
(T , ϕ)

�
yes/no

(T , β1)�

sat/(unsat, π1)�

Theory
reasoning

(slave)

(T , β2)�

sat/(unsat, π2)�

Theory
reasoning

(slave)
· · ·

(T , βn)�

sat/(unsat, πn)�

Theory
reasoning

(slave)

Figure 3. Architecture of the distributed version of check_unsat (cf. Figure 2)

2. The module ‘Boolean reasoning’ creates the

Boolean abstraction of the given (quantifier-free)

formulaϕ, it generates the Boolean assignments, and

then refines and dispatch the resulting set of first-

order literals to the available instances of the theory

reasoning component.

As the data structures necessary to handle proposi-

tional reasoning are quite complex and intertwined

(be they BDDs or a SAT-solver), we chose to have a

single instance of this component.

3. The module ‘Theory reasoning’ checks if a set of

literals of the background theory T (corresponding

to a Boolean assignment) is satisfiable or not.

As it is possible to carry out several independent sat-

isfiability checks, this component is the obvious can-

didate to be replicated in a distributed algorithm.

command =

The interaction between these components is mod-

eled after two well-known architectural patterns in dis-

tributed programming: client/server and master/slave.

More precisely, the interaction taking place between the

modules ‘Interface’ and ‘Boolean reasoning’ follows the

client/server pattern, while that occurring among the

module ‘Boolean reasoning’ and the various instances of

the module ‘Theory reasoning’ follows the master/slave

pattern. Notice that the module ‘Boolean reasoning’ plays

two roles at the same time: it is the server when interact-

ing with the client ‘Interface’ and it is the master for each

instance of the slave ‘Theory reasoning.’

3.2. DESCRIPTION OF THE TOOL BUS PROTOCOL
This section describes in detail the processes that form

the interaction protocol between the different modules of

the distributed version of the SMT-solver. The description

starts with the main process and goes on with the different

component sub-processes.

01 process Main is
02 let M : master-server,
03 in
04 execute(master-server, M?) .
05 (ConnectSlave(M)
06 +
07 Check(M)
08 ) *
09 rec-event(M, quit) .
10 shutdown("Checker is closed")
11 endlet
12 toolbus(Main)

Figure 4. The main process

3.2.1. The main process: The top-level process

(Main) is depicted in Figure 4 and it corresponds to the

box labelled with ‘Boolean reasoning’ in Figure 3. Main
spawns an instance M of ‘Boolean reasoning’ (line 04)—

which is a master-server in the sense it plays both roles

(see above)—and then repeatedly (lines 05–08) shows

one of the following two behaviours:

• the process ConnectSlave (line 05 and Figure 5) is

activated when a connection request is received from

an instance S (slave) of ‘Theory reasoning’ and

• the process Check (line 07 and Figure 7) is initiated

on reception of a new quantifier-free formula from

(the client) ‘Interface.’

Finally, when M emits a quit event (i.e. when it has

considered all assignments for satisfiability), the process

Main successfully terminates (lines 09 and 10).

3.2.2. Establishing new master-slave connections:
The process ConnectSlave (cf. Figure 5) is a sub-process

of Main and it is responsible for the connection between
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01 process ConnectSlave(M: master-server) is
02 let Pid : int, Name : str, S : slave
03 in
04 rec-connect(S?) .
05 create(Slave(S), Pid?) .
06 snd-do(M, slaveCreate(Pid))
07 endlet

Figure 5. Establishing a connection with a new slave

a new instance S of a slave (i.e. an instance of the mod-

ule ‘Theory reasoning’) and the instance M of the tool

master-server.
It sequentially receives a connection request from S

(line 04), then creates an instance of the process Slave
(described below) which is attached to S, gets the cor-

responding process identifier Pid (line 05), and it asyn-

chronously notifies the master M that a new slave is avail-

able, sending a message parametrized with the value Pid
of the process identifier (line 06). From the architectural

viewpoint of Figure 3, the execution of this process corre-

sponds to the creation of a new box labelled with ‘Theory

reasoning’ (at the bottom of the Figure) and the establish-

ment of a communication channel between this box and

the box marked ‘Boolean reasoning.’

3.2.3. Interface with instances of the first-order rea-
soning tool: The process Slave (cf. Figure 6) is the

wrapper around the decision procedure for the back-

ground theory T , which is required for this to be used

in the TOOLBUS architecture. Slave takes as input the

identifier S for an instance of ‘Theory reasoning’ and it is

responsible for handling two types of events.

1. Requests for satisfiability checking in the back-

ground theory T are received from Check via a

folCheckUnsat message (line 08) and are then dis-

patched to S (lines 09 and 10). The result (i.e. either

sat or unsat together with a conflict set, if the case)

is then sent back through a folCheckUnsatResults
message (line 11).

2. Initialization requests, parametrized with the back-

ground theory T , are forwarded to S, via a folInit
message (lines 13 and 14). It is useful to parametrize

initialization requests by T as an SMT solver may

feature decision procedures for several background

theories. However, notice that T is the same for a

given quantifier-free formula. We will see in Sec-

tion 3.4 that this parameter may play an important

role when considering a background theory obtained

as the union of several simpler theories.

3.2.4. Handling proof obligations: Process Check
(cf. Figure 7) mediates the communications and describes

the interactions between the three types of tools. Most im-

portantly, it orchestrates the various activities required to

check the satisfiability of a given quantifier-free formula.

This can be decomposed in two phases. First, Check
accepts a connection request from a client tool C (line

08), sends it the message propCheckUnsat, and gets the

parameters of the satisfiability problem: the background

theory and goal formula (lines 09 and 10), which are then

forwarded to the master-server tool M (line 11). The pro-

cess then enters in the second phase, which consists of the

loop at lines 12–19, until the process gets notified by M
that satisfiability checking has been completed (line 20).

Then, it forwards the result (namely, sat or unsat) to the

client and terminates it (lines 21–22). The body of the

loop at lines 12–19 is a choice between two behaviours:

• lines 12—15: M can send out a new assignment to be

checked for unsatisfiability by some available slave

tool S. S is initialized and notified with the new sat-

isfiability problem. Afterwards, M is sent an ac-

knowledgement message, as soon as the activity of

satisfiability solving has been started.

• lines 17–18: a slave tool S may return the answer to

a satisfiability problem that has been previously sent

out. The result is then forwarded to M.

The activity of satisfiability checking in the slave tools

is done asynchronously with respect to the master tool. It

is up to the master to create new assignments and dispatch

them to slaves that have previously been connected to the

tool bus. A detailed description of the internal structure

of the master-slave tool is presented in the next section.

3.3. DESCRIPTION OF THE COMPONENTS
In this section, we describe the computations carried

out in each of the three modules depicted in Figure 3. The

module ‘Interface’ (client) performs simple operations

on the input satisfiability problem, such as recognizing

the background theory T and the quantifier-free formula

φ specified in the input satisfiability problem (besides

low level activities such as parsing); it is also respon-

sible of performing the Boolean abstraction/refinement

step by invoking the functions fol2prop and prop2fol , re-
spectively (see Section 2.2). The module ‘Theory rea-

soning’ (slave) simply invokes the function unsatT (see

again Section 2.2) upon reception of a message labelled

folCheckUnsat.
For the ‘Boolean reasoning’ component (master-

server), the situation is more complex. Its main activity

is to generate several distinct Boolean assignments (sat-

isfying the abstraction of the input formula) and dispatch

each one of them to a slave (i.e. an instance of the mod-
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01 process Slave(S: slave) is
02 let Assignment, Theory: term,
05 ProofStatus: int,
06 ProofLiterals: term
07 in
08 ( (rec-msg(folCheckUnsat(S, Assignment?)) .
09 snd-eval(S, folCheckUnsat(Assignment)) .
10 rec-value(S, folCheckUnsat(ProofStatus?, ProofLiterals?)) .
11 snd-msg(folCheckUnsatResult(S, ProofStatus, ProofLiterals)) )
12 +
13 (rec-msg(folInit(S, Theory?)) .
14 snd-do(S, folInit(Theory)) )
15 ) * delta
16 endlet

Figure 6. Process mediating communications with a slave tool

ule ‘Theory reasoning’) as soon as it becomes idle, in or-

der to minimize latency. To avoid useless computations,

it is crucial that the master-server fairly enumerate the

Boolean assignments, i.e. without reconsidering the same

two or more times. To meet all these requirements, a

Boolean solver and some auxiliary data structures moni-

toring the progress in the satisfiability solving activity are

used.

Efficient implementations of Boolean solvers are

available, using either carefully engineered variants

of the Davis-Putnam-Logeman-Loveland (DPLL) algo-

rithm [12] (SAT-solvers) or Binary Decision Diagrams

(BDD) packages. In this paper, we only consider com-
plete solvers, i.e. based on algorithms that are always able

to establish the satisfiability or the unsatisfiability of any

Boolean formula SAT-solvers are based on the incremen-

tal construction of a single satisfying assignment while

pruning the search space by using the inconsistencies de-

rived by each truth value assigned, one after the other, to

Boolean variables. BDDs compactly encode the disjunc-

tive normal form of a formula, thereby representing all its

possible satisfying Boolean assignments. So, SAT-solvers

are apt to tackle very large satisfiability problems be-

cause they scale up much more significantly than BDDs,

which suffer from exponential blow-up in space; but SAT-

solvers are not designed to compute several Boolean as-

signments of a certain formula at once. On the contrary,

it is straightforward to extend a BDD package with the

capability of generating several distinct Boolean assign-

ments as all possible assignments are readily available.

For simplicity, we have chosen BDDs as the core tech-

nique underlying the Boolean enumerator of multiple as-

signments required by master-server. Also, since we

are more interested in SMT-solving for software verifica-

tion, the issue of the dimension of the formulas to be re-

futed is less important as their Boolean structure is usually

less important than for other (e.g., hardware) verification

problems.

In order to avoid reconsidering several times the same

Boolean assignment, it is sufficient to assume that the

function pick_assignment (see Section 2.2) is fair, i.e. it

does not return twice the same Boolean assignment, and

that the master-server maintains some data structures to

track the progress in the satisfiability solving activity: a

set S containing the available slaves, a set B ⊆ S con-

taining those slaves which are busy, the background the-

ory T of the current satisfiability problem, and a BDD of

a formula ϕb representing the assignments that have not

yet been checked for unsatisfiability.

The pseudo-code of the ‘Boolean reasoning’ mod-

ule is shown in Figure 8. The set S of slaves
is initialized and the event handling loop is started,

namely HandleEvents(), which is supposed to handle

the following messages. We omit the pseudo-code for

HandleEvents() as its implementation is automatically

generated by the TOOLBUS.

• The message slaveCreate happens when a new in-

stance s of the the ‘Theory reasoning’ component

connects to the tool bus (line 06 of Figure 5). The

routine handling this message simply adds the in-

stance s to the set S of available slaves (see Fig-

ure 9).

• The message propCheckUnsat occurs when the

‘Interface’ component (client) has sent a new sat-

isfiability problem to the tool bus (line 11 of Fig-

ure 7). The routine handling this message is given in

Figure 10. First it initializes the satisfiability prob-

lem (by considering the background theory T and

the quantifier-free formula ϕ) and then invokes the

auxiliary routine dispatch(), whose pseudo-code is
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01 process Check (M:master-server) is
02 let C: client, S: slave,
03 CTheory, CGoal: term,
04 MAssignment, MTheory: term,
05 SProofStatus: int, SProofLiterals: term,
06 FinalResult: int,
07 in
08 rec-connect (C?) .
09 snd-eval(C, propCheckUnsat) .
10 rec-value(C, propCheckUnsat(CTheory?,CGoal?)) .
11 snd-do(M, propCheckUnsat(CTheory,CGoal)) .
12 ( (rec-event(M, folCheckUnsat(S?,MAssignment?, MTheory?)) .
13 snd-msg(folInit(S,MTheory)) .
14 snd-msg(folCheckUnsat(S,MAssignment)) .
15 snd-ack-event(M,folCheckUnsat(S,MAssignment)) )
16 +
17 (rec-msg(folCheckUnsatResult(S?,SProofStatus?,SProofLiterals?)) .
18 snd-do(M,folCheckUnsatResult(S,SProofStatus,SProofLiterals)) )
19 ) *
20 rec-event(M, checkEnd(FinalResult?)) .
21 snd-do(C, checkEnd(FinalResult)) .
22 snd-terminate(C,FinalResult)
23 endlet

Figure 7. Process handling verification requests

function master_server_main ()

B,S←− ∅, ∅
HandleEvents()

Figure 8. The main routine of the master-server

depicted in Figure 11, which is responsible for dis-

patching new assignments to idle slaves. This is

implemented by the loop choosing an idle slave (if

any) and considering a not yet dispatched assign-

ment (by re-using the function pick_assignment
of the sequential version of the SMT-solving al-

gorithm, cf. Fig. 2), if any Boolean assignments

are left to be considered (by invoking the function

has_assignment). Finally, after updating the set of

busy slaves, the new satisfiability problem is dis-

patched to the selected (idle) slave. Otherwise, no

assignment has been shown unsatisfiable (see mes-

sage folCheckUnsatResult below) and the result is

that the input formula is unsatisfiable in T .

• The message folCheckUnsatResult happens when

a slave s returns the result of invoking the function

unsatT on a dispatched assignment (line 11 of Fig-

ure 6), i.e. either sat or unsat. The routine handling

function slaveCreate (s: slave)
S ←− S ∪ {s}

Figure 9. The routine handling slaveCreate messages.

function propCheckUnsat (O: options, T : theory, g: formula)
ϕ←− g
T ←− T
dispatch()

Figure 10. The routine handling propCheckUnsat messages.

this message is given in Figure 12. First, the slave

s becomes idle (i.e. it is deleted from the set B of

busy slaves). Then, the outcome of a satisfiability

problem is tested: if the assignment is unsatisfiable,

then the (Boolean abstraction of the) conflict set π
is used to prune ϕb (similar to what was done in the

sequential case in Fig. 2) and a new Boolean assign-

ment is considered (cf. the invocation to the func-

tion dispatch(), see also Fig. 11 above). Otherwise,

the whole satisfiability solving activity is terminated

with a checkEnd message. In this second case, the

conclusion is that the formula ϕ is satisfiable in T .
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function dispatch ()

if satB(ϕb) = sat then
while (B \ S �= ∅) ∧ has_assignment(ϕb) do

let s ∈ (B \ S) and
β = prop2fol(pick_assignment(ϕb))

in
B←− B ∪ {s}
send-event(folCheckUnsat(s, β, T ))

end
end

else
send-event(checkEnd(unsat))

end

Figure 11. Handling propCheckUnsat messages: the auxiliary routine
dispatch

function folCheckUnsatResult (s: slave,
ρ: {sat, unsat},
π: formula)

B←− B− {s}
if (ρ = unsat) then

ϕb ←− ϕb ∧ ¬πb
dispatch()

else
send-event(checkEnd(unsat))

end

Figure 12. The routine handling folCheckUnsatResult messages

3.4. FLEXIBILITY OF THE APPROACH: DELAYED
THEORY COMBINATION

Program verification often requires to verify proof

obligations that are expressed as first-order formulas over

a combination of diverse theories that reflect the different

data and specification constructs used in program design

and implementation artifacts: fragments of arithmetics,

set theory, array theory, etc. From a practical viewpoint,

such formulas are in expressed in a theory resulting from

the union of the component thoeries.

The proposed architecture for the distributed version

of an SMT solver can easily be adapted to handle satis-

fiability problems in combinations of theories, i.e. when

the background theory T is obtained as the union of sev-

eral simpler theories. In the following, we assume that

T is the union of two theories T1 and T2; the generaliza-

tion to more than two theories is straightforward. In order

to precisely talk about combination of satisfiability pro-

cedures, we need to introduce some basic notions about

unions of theories (for more details, the reader is pointed

to, e.g., [25]).

3.4.1. Combination: Let V be a (finite) set of vari-

ables. An identification over V is an idempotent substitu-

tion from V to V . Any identification σ over V defines a

partition of V and identifies all the variables in the same

equivalence class of the partition with a representative of

that class. If σ is an identification over V , then σ̂= (σ̂�=)

is the conjunction of equalities (disequalities, resp.) of

the form1 xσ = yσ (xσ �= yσ, resp.) for x, y ∈ V . Intu-
itively, σ̂= expresses the fact that any two variables identi-

fied by an identification σ must take identical value, while

σ̂�= expresses the fact that any two variables not identi-

fied by σ must take distinct values. Hence, the formula

σ̂= ∧ σ̂�= (denoted with σ̂) faithfully represents the iden-

tification σ over V .
A term in the union of T1 and T2 is an i-term if it is a

variable or it has the form f(t1, ..., tn), where f is in the

signature of Ti, for i = 1, 2. According to this definition,

any variable is both a 1-term and 2-term. A non-variable

sub-term s of an i-term t is alien if s is a j-term, where

i, j ∈ {1, 2} and i �= j. An atom (literal) is i-pure if

it contains only i-pure terms and its predicate symbol is

either in the signature of Ti or is =, for i = 1, 2.
In order to re-use the satisfiability procedures for T1

and T2 (which can only handle sets of literals in the re-

spective signatures) to solve the satisfiability problem in

T , i.e. in the union of T1 and T2, we need to perform a

suitable pre-processing step, called purification. We pu-

rify a conjunction ϕ of literals in the union of T1 and T2

into a conjunction ϕ1∧ϕ2, where ϕi is a conjunction of i-
pure literals, for i = 1, 2. This is done by replacing each

alien sub-term t with a “fresh” (i.e. not occurring in ϕ)
variable x and adding the equality x = t to the resulting

formula. Indeed, purification terminates as there are only

finitely many subterms in ϕ and it produces an equisat-

isfiable formula. The variables shared by ϕ1 and ϕ2 are

called interface variables in ϕ1 ∧ ϕ2.

The non-deterministic version of the Nelson-Oppen

combination schema [24] can be summarized as follows:

1. purify ϕ into the conjunction ϕ1∧ϕ2, where ϕi con-
tains only i-pure literals, for i = 1, 2;

2. guess an identification σ over the interface variables

in ϕ1 ∧ ϕ2;

3. if ϕi ∧ σ̂ is satisfiable in Ti for both i = 1 and i =
2, then ϕ is satisfiable in the union of T1 and T2.

Otherwise, go back to step 2 and consider another

identification of variables (if any);

4. if no more identification of interface variables must

be considered and no satisfiability has been detected

at step 2, then ϕ is unsatisfiable in the union of T1

and T2.

1We write the application of a substitution in post-fix form.
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The termination of the schema is obvious as there are only

finitely many identifications to be considered over a finite

set of interface variables. Its soundness can be shown un-

der the assumption that T1 and T2 are signature disjoint,

i.e. their signatures have no symbols in common except

for the predefined logical constant =, and stably-infinite,

i.e. for every satisfiable formula ϕi, there exists a model

of Ti whose domain is infinite and which satisfies ϕi, for
i = 1, 2 (see, e.g., [25]). Examples of stably-infinite theo-

ries are the theory of uninterpreted function symbols, the

theory of Linear Arithmetic (both over integers and ratio-

nals), and the theory of arrays.

The non-deterministic schema above can be turned

into a deterministic procedure by case-splitting on the for-

mulas faithfully representing all the identifications over

the shared variables and the satisfiability procedures for

the component theories can be used to check the satisfi-

ability of each pure conjunction of the split. Indeed, the

resulting procedure is far from efficient. A much more

efficient way, in practice, to tackle this problem has been

proposed in [6] and it is briefly described in the rest of

this section.

3.4.2. Delayed Theory Combination: The Delayed

Theory Combination (DTC) schema does not require the

direct combination of the procedures for T1 and T2 as

in the Nelson-Oppen schema. Instead, DTC couples the

available Boolean solver with each available procedure

separately. The Boolean solver enumerates the Boolean

assignments of the input formula ϕ extended with a con-

junction σ̂ of equalities and disequalities, faithfully rep-

resenting one of the possible identifications over the in-

terface variables. This is obtained by adding to the set

of Boolean variables abstracting the atoms in ϕ, the set

of all equalities that can be formed over the shared vari-

ables. (It is possible to generalize the computation of the

set of shared variables from conjunctions of atoms to ar-

bitrary quantifier-free formulas, see [6] for details.) As

a consequence, any Boolean assignment is of the form

βb1 ∧ βb2 ∧ σ̂b, where βi is a conjunction of atoms in the

theory Ti, for i = 1, 2, and σ̂ is a conjunction of equal-

ities and disequalities over the interface variables. Then,

DTC invokes each available satisfiability procedure for Ti
on βi ∧ σ̂ (i = 1, 2): if both return satisfiable, then the

satisfiability of ϕ in the union of T1 and T2 is derived;

otherwise, at least one of the procedures detected an un-

satisfiability, the (Boolean abstraction of the) negation of

the corresponding conflict set is added to ϕb, and a new

Boolean assignment of the resulting Boolean formula is

considered, if any. When the Boolean formula becomes

unsatisfiable, ϕ is declared unsatisfiable in the union of

T1 and T2. DTC can be implemented by a simple modi-

fication of the core algorithm underlying an SMT solver

depicted in Figure 2. The argument underlying its correct-

ness is an adaptation of the correctness of the algorithm

in Figure 2 and the completeness of the non-deterministic

Nelson-Oppen schema (see [6] for details).

3.4.3. Distributed Delayed Theory Combination:
As it is possible to derive an implementation of DTC from

the algorithm for SMT solving in one theory, it is straight-

forward to derive a distributed version of DTC by modify-

ing the distributed SMT solver described above (cf. Fig-

ure 3). The only delicate point is the handling of the mes-

sages returned from the ‘Theory reasoning’ modules, as

they run asynchronously and there is no guarantee that

their results are received in the right order by the ‘Boolean

reasoning’ module. More precisely, we must make sure

that the answers to the satisfiability problems β1 ∧ σ̂ and

β2 ∧ σ̂ deriving from the same assignment β1 ∧ β2 ∧ σ̂
are considered together. This is done by decorating each

βi ∧ σ̂ with the same time-stamp t and propagating t to
the result returned by the satisfiability procedure for Ti
(i = 1, 2). Some more details follow.

The ‘Boolean reasoning’ module is extended so as to

compute a purified version of the input formula ϕ, deter-
mine the set V of interface variables, and form all pos-

sible equalities over V . Then, the Boolean solver is in-

strumented so as to generate Boolean assignments over

the atoms in the input formula and the equalities over V .
When an assignment β1 ∧ β2 ∧ σ̂ is considered, it is split

into two conjunctions of i-pure literals (namely, β1 ∧ σ̂
and β2 ∧ σ̂), each dispatched to an available ‘Theory rea-

soning’ module together with the identifier of the related

theory Ti, for i = 1, 2, and a common time-stamp t (i.e.
the ‘Boolean reasoning’ module generates messages con-

taining triples of the form (Ti, βi ∧ σ̂, t)) for i = 1, 2).
Each ‘Theory reasoning’ module is associated to one

of the background theories Ti and it can accept a satis-

fiability problem only if it is in Ti (i = 1, 2). If the

‘Theory reasoning’ module refuses to handle a satisfiabil-

ity problem, after being notified, the ‘Boolean reasoning’

module looks for another idle instance. Otherwise, the

‘Theory reasoning’ module sends the answer to the satis-

fiability problem back to the ‘Boolean reasoning’ module

with the conflict set πTi (if the case), for i = 1, 2, and
the received time-stamp t (i.e. the ‘Boolean reasoning’

module receives messages of one of the following forms:

(unsat, t) or (sat, πTi , t), where πTi is a conflict set in the

theory Ti for i = 1, 2).
The ‘Boolean reasoning’ module maintains a set TS of

time-stamps associated to sat results received from ‘The-

ory reasoning’ modules. As soon as a sat message is re-

ceived, the corresponding time-stamp t is tested for mem-

bership in TS: if t is in TS, then the satisfiability of the

input formula ϕ is derived; otherwise, t is added to TS.
If an unsat message is received, it is also tested for mem-

bership in TS: if t is in TS, then t is deleted from TS;
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otherwise, t is discarded. After the reception of an unsat
message, independently of the fact that t is in TS or not,

the (Boolean abstraction of the) negation of the associated

conflict set πTi (for i = 1, 2) is passed to the Boolean

solver.

4. EXPERIMENTS
As suggested in Section 3, we have implemented the

distributed SMT solver by re-using the available function-

alities of a sequential SMT solver. Our choice was haR-
Vey [15], which is based on the algorithm depicted in Fig-

ure 2 and it is being developed by the first two authors and

Pascal Fontaine. In haRVey, one is free to choose the im-

plementation of the functions satB and pick_assignment
(cf. Figure 2) by either BDDs [7] (the CMU BDD pack-

age by Long) or a SAT-solver (MiniSAT [18]). A pecu-

liarity of haRVey is that the implementation of the func-

tion unsatT is done by an automated (first-order) theo-

rem prover, called the E prover [28], which is combined

with a decision procedure for a fragment of Linear Arith-

metic via the Nelson-Oppen combination schema [24].

The availability of an automated prover for full first-order

logic makes it possible to handle also formulas contain-

ing quantifiers, as shown in [11], and this is particularly

useful for software verification. So far, haRVey has been

successfully applied to the verification of pointer-based

programs [27], B specifications [11], static checking of

automatically generated code for aerospatial applications

[16] as well as array programs [14].

The distributed version of haRVey has been devel-

oped along the lines of Section 3 by using TOOLBUS

version 0.24, the available BDD package in haRVey for

the ‘Boolean reasoning’ module, and the E prover as the

‘Theory reasoning’ module. It took us 20 man hours to

come up with the first running prototype which consists of

105 lines of TOOLBUS and 5900 lines of C code, mostly

re-used from the sequential version of haRVey, whose

source is 5300 lines of C code.

Experiments have been carried out over a 10 Mbps

Ethernet network of desktop workstations in a normal

working environment, where all the tools had to com-

pete for resources with other user processes. The comput-

ing nodes had the following configuration: 2.0GHz Pen-

tium IV processor, with 512MB of RAM, operated under

Linux.

As benchmark problems, we have selected 50 proof

obligations requiring several interactions between the

Boolean solver and the satisfiability procedure from pre-

vious experiences with the sequential version of haRVey
(namely, proof obligations generated from the B method-

ology [11], the verification of pointer-manipulating pro-

grams and Burns protocol [27]). The goal of our exper-

iments was to understand if it were possible to signifi-

cantly reduce the overall running time by invoking several

instances of the satisfiability procedure concurrently.

To understand the rationale underlying the experi-

ments, the following observation is useful. From Fig-

ure 2, recall that function pick_assignment chooses an

assignment β which is checked for (un-)satisfiability in

the background theory. If β is unsatisfiable, a conflict

set π is computed and used to prune the search space by

adding the Boolean abstraction of ¬π to the input for-

mula. In this way, all assignments satisfying π are no

longer considered.

When using a BDD, to choose an assignment,

pick_assignment recursively traverses it from the root

to a true leaf (this can be done in time linear in the num-

ber of atoms occurring in the BDD). We have considered

four ways to perform this traversal, according to how the

sub-tree to traverse is chosen:

• the rightmost sub-tree is chosen (this is the simplest

heuristic to implement and it is the one implemented

in the sequential version of haRVey),

• either the right or the left sub-tree is randomly se-

lected,

• the zigzag heuristic chooses alternatively the right or

the left sub-tree, and

• in the alternate heuristics, the traversal proceeds by

alternatively following the rightmost or the leftmost

sub-tree.

Indeed, if two similar assignments are checked for satis-

fiability, one after the other (and found unsatisfiable), it is

reasonable to expect that their conflict sets be similar (if

not identical), thereby pruning essentially the same part

of the search space of the Boolean solver. In a distributed

environment, it seems desirable to choose a heuristics

for pick_assignment that allows us to consider “differ-

ent” assignments concurrently in the hope that their con-

flict sets will prune different portions of the search space,

thereby (furtherly) reducing the execution time.

Guided by this observation, we present below two ex-

periments. The former (Section 4.1) considers the se-

quential version of haRVey and studies its behaviour

according to the four heuristics above to implement

pick_assignment . The latter (Section 4.2) consists of re-

peating the previous experiment with the distributed ver-

sion in order to investigate the advantages of having sev-

eral instances of the satisfiability procedure running con-

currently. Indeed, the first experiment is conducted so as

to be able to compute the speed-up of the distributed ver-

sion and it is not very interesting per se.
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Figure 13. Sequential case: comparison of the assignment choice heuristics

4.1. SEQUENTIAL CASE
The graph in Figure 13 depicts the number of assign-

ments (y-axis) that need to be considered for each of the

four choice heuristics on the sequential version of haR-
Vey (the x-axis shows the identifiers of the 50 proof obli-

gations in our benchmark). ‘Ri’ stands for rightmost, ‘Ra’

for random, ‘Zz’ for zigzag, and ‘Al’ for alternate heuris-

tic. As it is apparent, no approach dominates the others.

We conclude that the assignment choice heuristics has no

measurable impact on the performances of the sequential

version of haRVey. Again, we emphasize that these re-

sults are not interesting per se but rather as a reference for

the next experiment.

4.2. DISTRIBUTED CASE
We repeated the previous experiment with the dis-

tributed version of haRVey in two configurations: (up

to) two or four slaves. For each of the 50 proof obli-

gation in the benchmark, we measured the number of

Boolean assignments that were considered with two and

four slaves, using the four possible assignment choice

heuristics (namely, rightmost, random, zigzag, and alter-

nate). To measure the impact of distributing the work-

load, we computed the speed-up as follows:

Shn =
n ·Bh1
Bhn

,

h is one of ‘Ri’, ‘Ra’, ‘Zz’, and ‘Al’, n is the number of

instances of the ‘Theory reasoning’ modules (i.e. n = 2
or n = 4), Bh1 is the number of Boolean assignments

considered in the sequential version of haRVey with h

as assignment choice heuristic (cf. the values on the y-

axis of the graph in Figure 13), and Bhn is the number of

Boolean assignments considered in the distributed version

of haRVey with h as assignment choice heuristic. No-

tice that the value of Bhn is averaged over several runs of

the distributed version for each proof obligation. This is

necessary because of the concurrent executions of the in-

stances of the ‘Theory reasoning’ and the essentially ran-

dom nature of low-level network protocols. In fact, when

two instances of the ‘Theory reasoning’ module deliver

their results concomitantly, ‘Boolean reasoning’ might re-

ceive them in a different order for two different executions

on a given proof obligation. As a consequence, different

sequences of conflict sets might be considered, thereby

causing the ‘Boolean reasoning’ module to consider dif-

ferent assignments at the next iteration, which ultimately

explains the difference in the number of generated assign-

ments. In our experiments, we repeated each verification

three times and report an average value for the number

of Boolean assignment per proof obligation in the bench-

mark. The speed-ups are reported in Figure 14. For ref-

erence purposes, each diagram also contains two lines,

corresponding to no speed-up (horizontal solid line, with

speedup = 1), and linear speed-up (diagonal dotted line,

with speedup = n). The closer the results are to the lin-

ear speed-up, the more efficient is the distributed version

of haRVey. We can clearly visualize that, on our bench-

mark, the random assignment choice heuristic performs

better than the three others (which present similar behav-

iors). A plausible explanation is that rightmost, zigzag
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Figure 14. Distributed case: speed-ups for the four assignment choice heuristics

and alternate tend to generate similar successive assign-

ments (in the case of alternate, every other assignment is

generated on the same “region” of the graph representing

the BDD), which have a higher probability to obtain the

same (or similar) prunings of the search space, while this

is not the case for random. Indeed, while in the sequen-

tial version, the n+ 1-th assignment is generated after the

pruning of the search space with the conflict set generated

from the n-th assignment, this is not necessarily the case

in the distributed version. Therefore approaches that tend

to generate different consecutive assignments will always

tend to perform better in the distributed version.

Finally, note that, in some experiments, the distributed

SMT solver achieves super-linear speed-ups. This hap-

pens when the conflict set associated to an assignment

is so general that it prunes a (relatively) large part of

the search space. This may happen for the class of for-

mulas such that the value of a relatively small subset of

the atoms causes unsatisfiability. Our experiment shows

that the probability of achieving super-linear speed-ups is

larger for the random assignment choice heuristic.

5. CONCLUSION
We have presented a distributed version of a lazy SMT

solver, based on haRVey. This allows us to distribute the

work-load over a network of workstations. The feature,

unique to haRVey, that BDDs can be used to represent the

Boolean structure of the formulas has greatly simplified

the implementation of the distributed version.

The distributed algorithm has been prototyped by re-

organizing the architecture of the sequential version of

haRVey into three modules whose execution is concur-

rent: ‘Interface,’ ‘Boolean reasoning,’ and ‘Theory rea-

soning.’ The last module can be instantiated an arbitrary

number of times in the distributed version. The imple-

mentation has been realized using the TOOLBUS archi-

tecture: a process algebra script describes the module in-

teraction protocol and it is used to generate the code re-

sponsible for the communication and synchronization, as

well as the interfaces that the modules implement to par-

ticipate in the interaction. The extension of the architec-

ture to handle a combination of background theories by

using a distributed variant of the DTC schema show the

flexibility of our approach.

Experiments on a set of representative proof obliga-

tions of software verification problems show the possi-

bility to obtain super-linear speed-ups of the distributed

SMT solver over its sequential version, thereby showing

the viability and the benefits of the proposed architecture.

In the future, we plan to use the interaction protocol

as a basis to a grid-based approach to SMT solving (see,

e.g., [9] for a grid-based approach to Boolean solving).

We also envision to extend or adapt the proposed proto-

col so that the ‘Boolean reasoning’ module can be imple-

mented by a SAT-solver, based on some existing parallel

implementations of DPLL algorithms (see, e.g., [22, 20]).
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